Effects of Pulsed Electric Field and Thermal Treatments on Microbial Reduction, Volatile Composition, and Sensory Properties of Orange Juice, and Their Characterization by a Principal Component Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Freshly Squeezed Orange Juice
2.3. Bacterial Strains and Preparation of Inoculum
2.4. Pulsed Electric Field Treatment
2.5. Thermal Treatment
2.6. Analysis of Volatile Compounds by Headspace Solid Phase Microextraction (HS-SPME) and Gas Chromatography–Mass Spectrometry (GC–MS)
2.7. Sensory Evaluation of Orange Juice by Descriptive Analysis
2.8. Statistical Analysis of Data
3. Results
3.1. Inactivation of Inoculated E. coli and S. cerevisiae by Continuous PEF Treatment
3.2. Effect of PEF and Thermal Treatments on the Volatile Composition of Squeezed Orange Juice
3.3. Effect of PEF and Thermal Treatments on the Sensorial Properties of Squeezed Orange Juice
3.4. PCA and PLS Regression Analyses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moulehi, I.; Bourgou, S.; Ourghemmi, I.; Tounsi, M.S. Variety and ripening impact on phenolic composition and antioxidant activity of mandarin (Citrus reticulate Blanco) and bitter orange (Citrus aurantium L.) seeds extracts. Ind. Crop. Prod. 2012, 39, 74–80. [Google Scholar]
- Buckow, R.; Ng, S.; Toepfl, S. Pulsed electric field processing of orange juice: A review on microbial, enzymatic, nutritional, and sensory quality and stability. Compr. Rev. Food Sci. Food Saf. 2013, 12, 455–467. [Google Scholar]
- Knorr, D.; Geulen, M.; Grahl, T.; Sitzmann, W. Food application of high electric field pulses. Trends Food Sci. Technol. 1994, 5, 71–75. [Google Scholar]
- Lado, B.H.; Yousef, A.E. Alternative food-preservation technologies: Efficacy and mechanisms. Microbes Infect. 2002, 4, 433–440. [Google Scholar] [PubMed]
- Bevilacqua, A.; Petruzzi, L.; Perricone, M.; Speranza, B.; Campaniello, D.; Sinigaglia, M.; Corbo, M.R. Nonthermal technologies for fruit and vegetable juices and beverages: Overview and advances. Compr. Rev. Food Sci. Food Saf. 2018, 17, 2–62. [Google Scholar] [PubMed] [Green Version]
- Roobab, U.; Aadil, R.M.; Madni, G.M.; Bekhit, A.E.D. The impact of nonthermal technologies on the microbiological quality of juices: A review. Compr. Rev. Food Sci. Food Saf. 2018, 17, 437–457. [Google Scholar] [PubMed]
- Barba, F.J.; Parniakov, O.; Pereira, S.A.; Wiktor, A.; Grimi, N.; Boussetta, N.; Saraiva, J.A.; Raso, J.; Martin-Belloso, O.; Witrowa-Rajchert, D. Current applications and new opportunities for the use of pulsed electric fields in food science and industry. Food Res. Int. 2015, 77, 773–798. [Google Scholar]
- Barbosa-Cánovas, G.V.; Altunakar, B. Pulsed electric fields processing of foods: An overview. In Pulsed Electric Fields Technology for the Food Industry; Springer: Boston, MA, USA, 2006; pp. 3–26. [Google Scholar]
- Agcam, E.; Akyildiz, A.; Evrendilek, G.A. A comparative assessment of long-term storage stability and quality attributes of orange juice in response to pulsed electric fields and heat treatments. Food Bioprod. Process. 2016, 99, 90–98. [Google Scholar]
- El Kantar, S.; Boussetta, N.; Lebovka, N.; Foucart, F.; Rajha, H.N.; Maroun, R.G.; Louka, N.; Vorobiev, E. Pulsed electric field treatment of citrus fruits: Improvement of juice and polyphenols extraction. Innov. Food Sci. Emerg. Technol. 2018, 46, 153–161. [Google Scholar]
- Groot, M.N.; Abee, T.; van Bokhorst-van de Veen, H. Inactivation of conidia from three Penicillium spp. isolated from fruit juices by conventional and alternative mild preservation technologies and disinfection treatments. Food Microbiol. 2019, 81, 108–114. [Google Scholar]
- Dziadek, K.; Kopeć, A.; Dróżdż, T.; Kiełbasa, P.; Ostafin, M.; Bulski, K.; Oziembłowski, M. Effect of pulsed electric field treatment on shelf life and nutritional value of apple juice. J. Food Sci. Technol. 2019, 56, 1184–1191. [Google Scholar] [PubMed] [Green Version]
- Wibowo, S.; Essel, E.A.; De Man, S.; Bernaert, N.; Van Droogenbroeck, B.; Grauwet, T.; Van Loey, A.; Hendrickx, M. Comparing the impact of high pressure, pulsed electric field and thermal pasteurization on quality attributes of cloudy apple juice using targeted and untargeted analyses. Innov. Food Sci. Emerg. Technol. 2019, 54, 64–77. [Google Scholar]
- Zhu, N.; Zhu, Y.; Yu, N.; Wei, Y.; Zhang, J.; Hou, Y.; Sun, A.-d. Evaluation of microbial, physicochemical parameters and flavor of blueberry juice after microchip-pulsed electric field. Food Chem. 2019, 274, 146–155. [Google Scholar] [PubMed]
- Braddock, R.J. Handbook of Citrus by-Products and Processing Technology; John Wiley & Sons: New York, NY, USA, 1999. [Google Scholar]
- Gil-Izquierdo, A.; Gil, M.I.; Ferreres, F. Effect of processing techniques at industrial scale on orange juice antioxidant and beneficial health compounds. J. Agric. Food Chem. 2002, 50, 5107–5114. [Google Scholar] [PubMed]
- Field, J.A.; Nickerson, G.; James, D.D.; Heider, C. Determination of essential oils in hops by headspace solid-phase microextraction. J. Agric. Food Chem. 1996, 44, 1768–1772. [Google Scholar]
- Buchholz, K.D.; Pawliszyn, J. Optimization of solid-phase microextraction conditions for determination of phenols. Anal. Chem. 1994, 66, 160–167. [Google Scholar]
- Jia, M.; Zhang, Q.H.; Min, D.B. Optimization of solid-phase microextraction analysis for headspace flavor compounds of orange juice. J. Agric. Food Chem. 1998, 46, 2744–2747. [Google Scholar]
- Acree, T.F. Flavornet and Human Odor Space. Available online: http://flavornet.org/flavornet.html (accessed on 5 February 2020).
- Meilgaard, M.C.; Carr, B.T.; Civille, G.V. Sensory Evaluation Techniques; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Choi, S.; Seo, H.-S.; Lee, K.R.; Lee, S.; Lee, J. Effect of cultivars and milling degrees on free and bound phenolic profiles and antioxidant activity of black rice. Appl. Biol. Chem. 2018, 61, 49–60. [Google Scholar] [CrossRef]
- Lee, K.B.; Kim, Y.J.; Kim, H.J.; Choi, J.; Kim, J.K. Phytochemical profiles of Brassicaceae vegetables and their multivariate characterization using chemometrics. Appl. Biol. Chem. 2018, 61, 131–144. [Google Scholar] [CrossRef]
- Moody, A.; Marx, G.; Swanson, B.G.; Bermúdez-Aguirre, D. A comprehensive study on the inactivation of Escherichia coli under nonthermal technologies: High hydrostatic pressure, pulsed electric fields and ultrasound. Food Control 2014, 37, 305–314. [Google Scholar]
- Evrendilek, G.A.; Jin, Z.; Ruhlman, K.; Qiu, X.; Zhang, Q.; Richter, E.J.I.F.S.; Technologies, E. Microbial safety and shelf-life of apple juice and cider processed by bench and pilot scale PEF systems. Innov. Food Sci. Emerg. Technol. 2000, 1, 77–86. [Google Scholar] [CrossRef]
- Zhao, W.; Yang, R.; Lu, R.; Wang, M.; Qian, P.; Yang, W. Effect of PEF on microbial inactivation and physical–chemical properties of green tea extracts. Lwt-Food Sci. Technol. 2008, 41, 425–431. [Google Scholar] [CrossRef]
- Lee, G.J.; Han, B.K.; Choi, H.J.; Kang, S.H.; Baick, S.C.; Lee, D.-U. Inactivation of Escherichia coli, Saccharomyces cerevisiae, and Lactobacillus brevis in low-fat milk by pulsed electric field treatment: A pilot-scale study. Korean J. Food Sci. Anim. Resour. 2015, 35, 800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calderón-Miranda, M.a.L.; Barbosa-Cánovas, G.V.; Swanson, B.G. Transmission electron microscopy of Listeria innocua treated by pulsed electric fields and nisin in skimmed milk. Int. J. Food Microbiol. 1999, 51, 31–38. [Google Scholar] [CrossRef]
- Vega-Mercado, H.; Pothakamury, U.R.; Chang, F.-J.; Barbosa-Cánovas, G.V.; Swanson, B.G. Inactivation of Escherichia coli by combining pH, ionic strength and pulsed electric fields hurdles. Food Res. Int. 1996, 29, 117–121. [Google Scholar] [CrossRef]
- Furusawa, M.; Hashimoto, T.; Noma, Y.; Asakawa, Y. Highly efficient production of nootkatone, the grapefruit aroma from valencene, by biotransformation. Chem. Pharm. Bull. 2005, 53, 1513–1514. [Google Scholar] [CrossRef] [Green Version]
- Macleod, A.J.; Macleod, G.; Subramanian, G. Volatile aroma constituents of orange. Phytochemistry 1988, 27, 2185–2188. [Google Scholar] [CrossRef]
- Ahmed, E.M.; Dennison, R.A.; Dougherty, R.H.; Shaw, P.E. Flavor and odor thresholds in water of selected orange juice components. J. Agric. Food Chem. 1978, 26, 187–191. [Google Scholar] [CrossRef]
Attributes | Definition | Standard Reference |
---|---|---|
Aroma | ||
Fresh orange | Unique smell of fresh orange juice | Weak: Distilled waterjinjinjinStrong: Fresh squeezed orange juice |
Cooked orange | Characteristic aromatics associated with cooked orange | Weak: Fresh squeezed orange juicejinjinjinStrong: Cooked (12 min) orange juice |
Taste | ||
Sour | Fundamental taste of citric acid | Weak: 0.01% (w/v) Citric acid solutionjinjinjinStrong: 0.3% (w/v) Citric acid solution |
Sweet | Fundamental taste of which jinjinjinsucrose is typical | Weak: 1% (w/v) Sucrose solutionjinjinjinStrong: 5% (w/v) Sucrose solution |
Bitter | Fundamental taste of which jinjinjincaffeine is typical | Weak: 0.02% (w/v) Caffeine solutionjinjinjinStrong: 0.3% (w/v) Caffeine solution |
Vegetable | Taste of mixed vegetables | Weak: 5% (v/v) Vegetable juicejinjinjinStrong: Vegetable juice (Sun-Up, Maeil, Korea) |
No. | Retention Time (min) | Volatile Compounds | Odor Descriptor 1 | Area (%) | ||||
---|---|---|---|---|---|---|---|---|
Untreated | Thermal-1 | Thermal-2 | PEF-1 | PEF-2 | ||||
1 | 2.129 | Ethyl butyrate | Sweet, Fruity | 0.14 | 0.07 | 0.05 | 0.12 | 0.10 |
2 | 3.374 | α-Pinene | Woody, Pine, Terpenic, Herbal | 0.64 | 0.56 | 0.27 | 0.57 | 0.65 |
3 | 3.984 | β-Myrcene | Green, Metallic, Balsam | 4.68 | 4.28 | 2.97 | 3.65 | 4.09 |
4 | 4.195 | α-Phellandrene | Turpentine, Mint, Spice | 0.10 | 0.14 | 0.26 | 0.08 | 0.09 |
5 | 4.528 | dl-Limonene | Lemon, Citrus-like, | 86.85 | 85.99 | 80.60 | 87.47 | 86.17 |
6 | 4.895 | γ-Terpinene | Gasoline, Turpentine | 0.26 | 0.32 | 0.35 | 0.28 | 0.21 |
7 | 5.290 | Terpinolene | Unpleasant, Citrusy, Chemical | 0.20 | 0.29 | 1.79 | 0.14 | 0.17 |
8 | 6.049 | β-Terpineol | Woody, Pungent, Earthy | n.d. | n.d. | 0.63 | n.d. | n.d. |
9 | 6.736 | β-Fenchyl alcohol | Camphor | n.d. | n.d. | 4.11 | n.d. | n.d. |
10 | 6.897 | Decanal | Green, Soapy | 0.12 | 0.42 | 0.31 | 0.06 | 0.08 |
11 | 6.966 | 2-octyl acetate | Earthy, Herbal, Humus, Dirty | 0.06 | 0.06 | n.d. | n.d. | n.d. |
12 | 10.406 | β-Cubebene | Citrus, Fruity | 0.22 | 0.14 | n.d. | 0.22 | 0.25 |
13 | 10.698 | Tetradecanal | Fatty, Waxy, Citrus peel, Musk | n.d. | 0.13 | n.d. | n.d. | n.d. |
14 | 12.731 | Valencene | Sweet, Fresh citrus, Orange | 2.48 | 3.64 | 4.53 | 3.97 | 4.14 |
Sensory Attributes | Untreated | Thermal-1 | Thermal-2 | PEF-1 | PEF-2 |
---|---|---|---|---|---|
Aroma | |||||
Fresh orange aroma | 6.1 ± 1.9 a | 5.7 ± 1.4 a | 3.4 ± 2.2 b | 6.8 ± 1.2 a | 5.4 ± 1.3 a |
Cooked orange aroma | 4.4 ± 1.6 b | 3.5 ± 0.8 b | 7.0 ± 1.2 a | 3.7 ± 1.2 b | 3.6 ± 1.1 b |
Taste | |||||
Sour | 5.5 ± 2.0 ab | 5.5 ± 1.2 ab | 4.1 ± 2.0 b | 6.9 ± 1.3 a | 5.9 ± 1.0 a |
Sweet | 4.8 ± 2.0 a | 5.4 ± 1.4 a | 4.3 ± 1.8 a | 4.8 ± 1.7 a | 5.6 ± 2.0 a |
Bitter | 4.2 ± 1.8 b | 4.1 ± 1.4 b | 6.5 ± 1.3 a | 4.3 ± 1.3 b | 4.3 ± 1.6 b |
Vegetable | 4.6 ± 2.2 a | 4.9 ± 1.9 a | 5.9 ± 2.0 a | 4.6 ± 1.8 a | 4.5 ± 1.8 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.; Choi, S.; Kim, E.; Kim, Y.-N.; Lee, J.; Lee, D.-U. Effects of Pulsed Electric Field and Thermal Treatments on Microbial Reduction, Volatile Composition, and Sensory Properties of Orange Juice, and Their Characterization by a Principal Component Analysis. Appl. Sci. 2021, 11, 186. https://doi.org/10.3390/app11010186
Lee H, Choi S, Kim E, Kim Y-N, Lee J, Lee D-U. Effects of Pulsed Electric Field and Thermal Treatments on Microbial Reduction, Volatile Composition, and Sensory Properties of Orange Juice, and Their Characterization by a Principal Component Analysis. Applied Sciences. 2021; 11(1):186. https://doi.org/10.3390/app11010186
Chicago/Turabian StyleLee, Hyesoo, Sehun Choi, Euichan Kim, Ye-Na Kim, Jihyun Lee, and Dong-Un Lee. 2021. "Effects of Pulsed Electric Field and Thermal Treatments on Microbial Reduction, Volatile Composition, and Sensory Properties of Orange Juice, and Their Characterization by a Principal Component Analysis" Applied Sciences 11, no. 1: 186. https://doi.org/10.3390/app11010186
APA StyleLee, H., Choi, S., Kim, E., Kim, Y.-N., Lee, J., & Lee, D.-U. (2021). Effects of Pulsed Electric Field and Thermal Treatments on Microbial Reduction, Volatile Composition, and Sensory Properties of Orange Juice, and Their Characterization by a Principal Component Analysis. Applied Sciences, 11(1), 186. https://doi.org/10.3390/app11010186