Ternary Mixes of Self-Compacting Concrete with Fly Ash and Municipal Solid Waste Incinerator Bottom Ash
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cement, FA and MIBA
2.2. Aggregates, Water-Reducing Admixtures and Water
2.3. Mix Design
2.4. Test Methods and Sample Preparation
3. Results and Discussion
3.1. Characterization of the Materials
3.2. Quantification of Metallic Aluminium in MIBA
3.3. Fresh Concrete Properties
3.4. Hardened State Properties
3.4.1. Compressive Strength
3.4.2. Tensile Strength
3.4.3. Secant Modulus of Elasticity
3.4.4. Ultrasonic Pulse Velocity
3.4.5. Shrinkage
3.4.6. Carbonation
3.4.7. Water Absorption by Immersion
3.4.8. Chloride Ion Penetration
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scrivener, K.L.; John, V.M.; Gartner, E.M. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cem. Concr. Res. 2018, 114, 2–26. [Google Scholar] [CrossRef]
- Claisse, P.A. Chapter 18—Cements and cement replacement materials. In Civil Engineering Materials; Claisse, P.A., Ed.; Butterworth-Heinemann: Boston, MA, USA, 2016; pp. 163–176. [Google Scholar]
- Hemalatha, M.S.; Santhanam, M. Characterizing supplementary cementing materials in blended mortars. Constr. Build. Mater. 2018, 191, 440–459. [Google Scholar] [CrossRef]
- Franco de Carvalho, J.M.; Melo, T.V.d.; Fontes, W.C.; Batista, J.O.d.S.; Brigolini, G.J.; Peixoto, R.A.F. More eco-efficient concrete: An approach on optimization in the production and use of waste-based supplementary cementing materials. Constr. Build. Mater. 2019, 206, 397–409. [Google Scholar] [CrossRef]
- Rahla, K.M.; Mateus, R.; Bragança, L. Comparative sustainability assessment of binary blended concretes using Supplementary Cementitious Materials (SCMs) and Ordinary Portland Cement (OPC). J. Clean. Prod. 2019, 220, 445–459. [Google Scholar] [CrossRef]
- Sandhu, R.K.; Siddique, R. Influence of rice husk ash (RHA) on the properties of self-compacting concrete: A review. Constr. Build. Mater. 2017, 153, 751–764. [Google Scholar] [CrossRef]
- Moretti, J.P.; Nunes, S.; Sales, A. Self-compacting concrete incorporating sugarcane bagasse ash. Constr. Build. Mater. 2018, 172, 635–649. [Google Scholar] [CrossRef]
- Dinakar, P.; Sethy, K.P.; Sahoo, U.C. Design of self-compacting concrete with ground granulated blast furnace slag. Mater. Des. 2013, 43, 161–169. [Google Scholar] [CrossRef]
- Tang, P.; Florea, M.; Spiesz, P.; Brouwers, H. The application of treated bottom ash in mortar as cement replacement. In Proceedings of the EurAsia Waste Management Symposium 2014, Istanbul, Turkey, 26–28 October 2014; pp. 1077–1082. [Google Scholar]
- Lynn, C.J.; Dhir, R.K.; Ghataora, G.S. Municipal incinerated bottom ash use as a cement component in concrete. Mag. Concr. Res. 2017, 69, 512–525. [Google Scholar] [CrossRef] [Green Version]
- Dwivedi, A.; Jain, M.K. Fly ash—Waste management and overview: A Review. Recent Res. Sci. Technol. 2014, 6, 30–35. [Google Scholar]
- Siddique, R. Properties of self-compacting concrete containing class F fly ash. Mater. Des. 2011, 32, 1501–1507. [Google Scholar] [CrossRef]
- Dinakar, P.; Kartik Reddy, M.; Sharma, M. Behaviour of self compacting concrete using Portland pozzolana cement with different levels of fly ash. Mater. Des. 2013, 46, 609–616. [Google Scholar] [CrossRef]
- Bouzoubaâ, N.; Lachemi, M. Self-compacting concrete incorporating high volumes of class F fly ash: Preliminary results. Cem. Concr. Res. 2001, 31, 413–420. [Google Scholar] [CrossRef]
- Şahmaran, M.; Yaman, Ö.; Tokyay, M. Development of high-volume low-lime and high-lime fly-ash-incorporated self-consolidating concrete. Mag. Concr. Res. 2007, 59, 97–106. [Google Scholar] [CrossRef]
- Şahmaran, M.; Yaman, I.O.; Tokyay, M. Transport and mechanical properties of self consolidating concrete with high volume fly ash. Cem. Concr. Compos. 2009, 31, 99–106. [Google Scholar] [CrossRef]
- Deilami, S.; Aslani, F.; Elchalakani, M. Durability assessment of self-compacting concrete with fly ash. Comput. Concr. 2017, 19, 489–499. [Google Scholar] [CrossRef]
- Xuan, D.; Tang, P.; Poon, C.S. Limitations and quality upgrading techniques for utilization of MSW incineration bottom ash in engineering applications—A review. Constr. Build. Mater. 2018, 190, 1091–1102. [Google Scholar] [CrossRef]
- Liu, Y.; Sidhu, K.S.; Chen, Z.; Yang, E.-H. Alkali-treated incineration bottom ash as supplementary cementitious materials. Constr. Build. Mater. 2018, 179, 371–378. [Google Scholar] [CrossRef]
- EN-12620:2002+A1:2008 Aggregates for Concrete; Comité Européen de Normalisation (CEN): Brussels, Belgium, 2008; p. 56.
- EN-934-1 Admixtures for Concrete, Mortar and Grout. Common Requirements; Comité Européen de Normalisation (CEN): Brussels, Belgium, 2008; p. 14.
- EN-934-2 Admixtures for Concrete, Mortar and Grout. Concrete Admixtures. Definitions, Requirements, Conformity, Marking and Labelling; Comité Européen de Normalisation (CEN): Brussels, Belgium, 2012; p. 28.
- CEU Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. Off. J. Eur. Communities 1998, 330, 32–54.
- Nepomuceno, M.; Oliveira, L.; Lopes, S.M.R. Methodology for mix design of the mortar phase of self-compacting concrete using different mineral additions in binary blends of powders. Constr. Build. Mater. 2012, 26, 317–326. [Google Scholar] [CrossRef]
- Ferraz, E.; Andrejkovičová, S.; Hajjaji, W.; Velosa, A.L.; Silva, A.S.; Rocha, F. Pozzolanic activity of metakaolins by the French Standard of the modified Chapelle Test: A direct methodology. Acta Geodyn. Geometer. Aspects 2015, 289–298. [Google Scholar] [CrossRef] [Green Version]
- NBR-15895 Materiais Pozolânicos—Determinação do Teor de Hidróxido de Cálcio Fixado—Método de Chapelle Modificado; Brazilian Association for Technical Norms (Associação Brasileira de Normas Técnicas—ABNT): Rio de Janeiro, Brasil, 2010; p. 10.
- EN-12350-8 Testing Fresh Concrete. Self-Compacting Concrete. Slump-Flow Test; Comité Européen de Normalisation (CEN): Brussels, Belgium, 2019; p. 14.
- EN-12390-3 Testing Hardened Concrete—Part 3: Compressive Strength of Test Specimens; Comité Européen de Normalisation (CEN): Brussels, Belgium, 2009; p. 22.
- EN-12390-6 Testing Hardened Concrete—Part 6: Tensile Splitting Strength of Test Specimens; Comité Européen de Normalisation (CEN): Brussels, Belgium, 2009; p. 14.
- LNEC-E397 Concrete: Determination of the Modulus of Elasticity under Compression; National Laboratory in Civil Engineering (LNEC—Laboratório Nacional de Engenharia Civil): Lisbon, Portugal, 1993; p. 2. (In Portuguese)
- EN-12504-4 Testing Concrete. Determination of Ultrasonic Pulse Velocity; Comité Européen de Normalisation (CEN): Brussels, Belgium, 2004; p. 18.
- LNEC-E398 Concrete: Determination of Drying Shrinkage and Expansion; National Laboratory in Civil Engineering (LNEC—Laboratório Nacional de Engenharia Civil): Lisbon, Portugal, 1993; p. 2. (In Portuguese)
- LNEC-E391 Concrete: Determination of Carbonation Resistance; National Laboratory in Civil Engineering (LNEC—Laboratório Nacional de Engenharia Civil): Lisbon, Portugal, 1993; p. 2. (In Portuguese)
- LNEC-E394 Concrete: Determination of Water Absorption by Immersion—Testing at Atmospheric Pressure; National Laboratory in Civil Engineering (LNEC—Laboratório Nacional de Engenharia Civil): Lisbon, Portugal, 1993; p. 2. (In Portuguese)
- LNEC-E463 Concrete: Determination of the Chloride ion Diffusion Coefficient by Non-Steady State Migration; National Laboratory in Civil Engineering (LNEC—Laboratório Nacional de Engenharia Civil): Lisbon, Portugal, 2004; p. 8. (In Portuguese)
- Luping, T. Guidelines for Practical Use of Methods for Testing the Resistance of Concrete to Chloride Ingress; CHLORTEST—EU Funded Research Project under 5FP GROWTH Programme; SP Swedish National, Testing and Research Institute: Boras, Sweden, 2005; p. 271. [Google Scholar]
- EN-197-1 Cement—Part 1: Composition, Specifications and Conformity Criteria for Common Cements; Comité Européen de Normalisation (CEN): Brussels, Belgium, 2011; p. 50.
- EN-450-1 Fly Ash for Concrete. Definition, Specifications and Conformity Criteria; Comité Européen de Normalisation (CEN): Brussels, Belgium, 2012; p. 34.
- ASTM-C618 Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete; American Society for Testing and Materials: West Conshohocken, PA, USA, 2015; p. 5.
- Silva, R.V.; de Brito, J.; Lynn, C.J.; Dhir, R.K. Use of municipal solid waste incineration bottom ashes in alkali activated materials, ceramics and granular applications: A review. Waste Manag. 2017, 68, 207–220. [Google Scholar] [CrossRef]
- Tang, P. Municipal Solid Waste Incineration (MSWI) Bottom Ash—From Waste to Value; Technische Universiteit Eindhoven: Eindhoven, The Netherlands, 2017. [Google Scholar]
- EN-206:2013+A1:2016 Concrete—Specification, Performance, Production and Conformity; Comité Européen de Normalisation (CEN): Brussels, Belgium, 2016; p. 98.
- Amat, R.C.; Ismail, K.N.; Noor, N.M.; Ibrahim, N.M. The effects of bottom ash from MSWI used as mineral additions in concrete. In MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2017. [Google Scholar] [CrossRef] [Green Version]
- Jurič, B.; Hanžič, L.; Ilić, R.; Samec, N. Utilization of municipal solid waste bottom ash and recycled aggregate in concrete. Waste Manag. 2006, 26, 1436–1442. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.; Lin, D. Hydration characteristics of municipal solid waste incinerator bottom ash slag as a pozzolanic material for use in cement. Cem. Concr. Compos. 2006, 28, 817–823. [Google Scholar] [CrossRef]
- Cheng, A. Effect of incinerator bottom ash properties on mechanical and pore size of blended cement mortars. Mater. Des. 2012, 36, 859–864. [Google Scholar] [CrossRef]
- Li, X.-G.; Lv, Y.; Ma, B.-G.; Chen, Q.-B.; Yin, X.-B.; Jian, S.-W. Utilization of municipal solid waste incineration bottom ash in blended cement. J. Clean. Prod. 2012, 32, 96–100. [Google Scholar] [CrossRef]
- Kanehira, S.; Kanamori, S.; Nagashima, K.; Saeki, T.; Visbal, H.; Fukui, T.; Hirao, K. Controllable hydrogen release via aluminum powder corrosion in calcium hydroxide solutions. J. Asian Ceram. Soc. 2013, 1, 296–303. [Google Scholar] [CrossRef] [Green Version]
- Shinzato, M.; Hypolito, R. Solid waste from aluminum recycling process: Characterization and reuse of its economically valuable constituents. Waste Manag. 2005, 25, 37–46. [Google Scholar] [CrossRef]
- Ho, C.-Y.; Huang, C.-H. Enhancement of hydrogen generation using waste aluminum cans hydrolysis in low alkaline de-ionized water. Int. J. Hydrog. Energy 2016, 41, 3741–3747. [Google Scholar] [CrossRef]
- Liu, H.; Yang, F.; Yang, B.; Zhang, Q.; Chai, Y.; Wang, N. Rapid hydrogen generation through aluminum-water reaction in alkali solution. Catal. Today 2018, 318, 52–58. [Google Scholar] [CrossRef]
- Ghorbel, H.; Samet, B. Effect of iron on pozzolanic activity of kaolin. Constr. Build. Mater. 2013, 44, 185–191. [Google Scholar] [CrossRef]
- Chakchouk, A.; Samet, B.; Bouaziz, S. Difference in pozzolanic behaviour of Tunisian clays with lime and cement. Adv. Cem. Res. 2012, 24, 11–22. [Google Scholar] [CrossRef]
- Lizarazo-Marriaga, J.; Claisse, P.; Ganjian, E. Effect of steel slag and Portland cement in the rate of hydration and strength of blast furnace slag pastes. J. Mater. Civ. Eng. 2011, 23, 153–160. [Google Scholar] [CrossRef]
- Bertolini, L.; Carsana, M.; Cassago, D.; Curzio, A.Q.; Collepardi, M. MSWI ashes as mineral additions in concrete. Cem. Concr. Res. 2004, 34, 1899–1906. [Google Scholar] [CrossRef]
- EN-1992-1-1:2004+A1:2014 Eurocode 2—Design of Concrete Structures: Part 1-1: General Rules and Rules for Buildings; Comité Européen de Normalisation (CEN): Brussels, Belgium, 2014; p. 259.
- Kuder, K.; Lehman, D.; Berman, J.; Hannesson, G.; Shogren, R. Mechanical properties of self consolidating concrete blended with high volumes of fly ash and slag. Constr. Build. Mater. 2012, 34, 285–295. [Google Scholar] [CrossRef]
- Breysse, D. Non-Destructive Assessment of Concrete Structures: Reliability and Limits of Single and Combined Techniques: State-of-the-Art Report of the RILEM Technical Committee 207-INR; Springer Science & Business Media: Berlin, Germany, 2012; p. 374. [Google Scholar]
- Silva, P.M.S.R. Avaliação da Durabilidade de Betões Autocompactáveis (BAC); Instituto Superior Técnico: Lisbon, Portugal, 2013. [Google Scholar]
Constituent (kg/m3) | RC | C10FA20BA | C20FA10BA | C20FA40BA | C40CV20BA |
---|---|---|---|---|---|
Cement | 482 | 467 | 467 | 267 | 267 |
FA | 151 | 49 | 98 | 98 | 195 |
MIBA | 0 | 106 | 53 | 212 | 106 |
Sp | 4.8 | 5.6 | 5.6 | 5.2 | 5.1 |
Water | 176 | 191 | 191 | 191 | 191 |
Fine sand 0/2 | 354 | 342 | 342 | 342 | 342 |
Fine sand 0/4 | 350 | 338 | 338 | 338 | 338 |
Gravel 1 | 384 | 384 | 384 | 384 | 384 |
Gravel 2 | 391 | 391 | 391 | 391 | 391 |
Materials | CEM I | FA (%) | MIBA (%) |
---|---|---|---|
Al2O3 | 5.24 | 24.70 | 4.10 |
CaO | 62.71 | 2.63 | 22.99 |
Fe2O3 | 3.17 | 5.40 | 9.21 |
K2O | - | 1.11 | 1.57 |
MgO | 2.23 | 1.01 | 2.37 |
Na2O | - | 0.89 | 2.40 |
SiO2 | 19.59 | 54.70 | 51.84 |
SO3 | 3.13 | 1.38 | 2.42 |
Cl− | 0.01 | <0.01 | 0.70 |
Insoluble residue | 1.37 | - | - |
LOI | 2.94 | 5.10 | 2.40 |
Mixture | Slump-Flow | Funnel V | L Box | |
---|---|---|---|---|
t500 | *SF | tv | *PL | |
(s) | (mm) | (s) | (H2/H1) | |
RC | 2.7 | 680 | 5.6 | 0.8 |
C10FA20BA | 2.8 | 685 | 4.9 | 1.0 |
C20FA10BA | 2.7 | 620 | 4.8 | 0.8 |
C20FA40BA | 2.2 | 585 | 2,8 | 0.8 |
C40FA20BA | 3.1 | 625 | 3.5 | 0.9 |
Mix | 7 Days | 28 Days | 91 Days | |||||||
---|---|---|---|---|---|---|---|---|---|---|
fcm,cube | σfcm,cube | fcm,cube | σfcm,cube | fcm | σfcm | fcm,cube | σfcm,cube | fcm | σfcm | |
RC | 50.3 | 5.3 | 57.6 | 4.2 | 55.4 | 12.5 | 80.1 | 2.3 | 65.6 | 12.4 |
C10FA20BA | 27.6 | 3.6 | 34.0 | 2.7 | 14.4 | 1.4 | 39.6 | 0.5 | 16.7 | 1.4 |
C20FA10BA | 23.0 | 2.1 | 31.7 | 1.7 | 24.6 | 1.7 | 39.3 | 0.8 | 26.3 | 2.5 |
C20FA40BA | 11.2 | 1.6 | 17.5 | 0.8 | 6.2 | 0.1 | 20.6 | 2.3 | 8.8 | 0.7 |
C40FA20BA | 12.4 | 1.0 | 19.7 | 0.6 | 8.6 | 0.7 | 23.1 | 3.0 | 10 | 1.8 |
Mix | fcm,28 | fctm,28 | fcm,91 | fctm,91 | ||
---|---|---|---|---|---|---|
EC2 | Measured | EC2 | Measured | |||
RC | 55.3 | 3.9 | 4.53 | 65.5 | 4.2 | 4.40 |
C10FA20BA | 14.4 | 1.8 | 2.81 | 16.7 | 2.0 | 3.10 |
C20FA10BA | 24.5 | 2.6 | 2.51 | 26.3 | 2.7 | 3.42 |
C20FA40BA | 6.1 | 1.0 | 1.62 | 8.7 | 1.3 | 2.08 |
C40FA20BA | 8.6 | 1.3 | 2.02 | 10.0 | 1.4 | 2.57 |
Mix | fcm,28 | Ecm,28 | fcm,91 | Ecm,91 | ||
---|---|---|---|---|---|---|
EC2 | Measured | EC2 | Measured | |||
RC | 55.4 | 36.7 | 45.4 | 65.5 | 41.5 | 41.5 |
C10FA20BA | 14.4 | 24.5 | 23.3 | 16.7 | 19.9 | 19.9 |
C20FA10BA | 24.6 | 28.8 | 28.3 | 26.3 | 24.9 | 24.9 |
C20FA40BA | 6.2 | 19.0 | 14.6 | 8.7 | 16.3 | 16.3 |
C40FA20BA | 8.6 | 12.6 | 12.6 | 10.0 | 17.5 | 17.5 |
Indicators | EC2 | |
---|---|---|
fad = 30% | fad = 60% | |
Overestimated prediction (%) | 6.0 | 58.0 |
R2 | 0.9 | 0.7 |
R | 0.9 | 0.8 |
Standard error of the estimate (×10−6) | 33.2 | 119.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simões, B.; da Silva, P.R.; Silva, R.V.; Avila, Y.; Forero, J.A. Ternary Mixes of Self-Compacting Concrete with Fly Ash and Municipal Solid Waste Incinerator Bottom Ash. Appl. Sci. 2021, 11, 107. https://doi.org/10.3390/app11010107
Simões B, da Silva PR, Silva RV, Avila Y, Forero JA. Ternary Mixes of Self-Compacting Concrete with Fly Ash and Municipal Solid Waste Incinerator Bottom Ash. Applied Sciences. 2021; 11(1):107. https://doi.org/10.3390/app11010107
Chicago/Turabian StyleSimões, B., P. R. da Silva, R. V. Silva, Y. Avila, and J. A. Forero. 2021. "Ternary Mixes of Self-Compacting Concrete with Fly Ash and Municipal Solid Waste Incinerator Bottom Ash" Applied Sciences 11, no. 1: 107. https://doi.org/10.3390/app11010107