Far Off-Resonance Laser Frequency Stabilization Technology
Abstract
:1. Introduction
2. Far Off-Resonance Laser Frequency Stabilization by Pound–Drever–Hall Technique
3. Far Off-Resonance Laser Frequency Stabilization by Using the Faraday Effect
4. Far Off-Resonance Laser Frequency Stabilization Using Transfer Cavities
5. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Schawlow, A.L.; Townes, C.H. Infrared and optical masers. Phys. Rev. 1958, 112, 1940–1949. [Google Scholar] [CrossRef] [Green Version]
- Maiman, T.H. Stimulated optical radiation in ruby. Nature 1960, 187, 493–494. [Google Scholar] [CrossRef]
- Waldman, S.J. Status of LIGO at the start of the fifth science run. Class. Quantum Gravity 2006, 23, S653–S660. [Google Scholar] [CrossRef]
- Fortier, T.M.; Kirchner, M.S.; Quinlan, F.; Taylor, J.; Bergquist, J.C.; Rosenband, T.; Lemke, N.; Ludlow, A.; Jiang, Y.; Oates, C.W.; et al. Generation of ultrastable microwaves via optical frequency division. Nat. Photonics 2011, 5, 425–429. [Google Scholar] [CrossRef] [Green Version]
- Rieker, G.B.; Giorgetta, F.R.; Swann, W.C.; Kofler, J.; Zolot, A.M.; Sinclair, L.C.; Baumann, E.; Cromer, C.; Petron, G.; Sweeney, C.; et al. Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths. Optica 2014, 1, 290–298. [Google Scholar] [CrossRef]
- Leibfried, D.; Blatt, R.; Monroe, C.; Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 2003, 75, 281–324. [Google Scholar] [CrossRef] [Green Version]
- Bjorklund, G.C. Frequency-modulation spectroscopy: A new method for measuring weak absorptions and dispersions. Opt. Lett. 1980, 5, 15–17. [Google Scholar] [CrossRef]
- Demtröder, W. Laser Spectroscopy: Basic Concepts and Instrumentation; Springer: Heidelberg, Germany, 1996. [Google Scholar]
- Wieman, C.; Hänsch, T.W. Doppler-Free Laser Polarization Spectroscopy. Phys. Rev. Lett. 1976, 36, 1170–1173. [Google Scholar] [CrossRef]
- Corwin, K.L.; Lu, Z.T.; Hand, C.F.; Epstein, R.J.; Wieman, C.E. Frequency-stabilized diode laser with the zeeman shift in an atomic vapor. Appl. Opt. 1998, 37, 3295–3298. [Google Scholar] [CrossRef]
- Robins, N.P.; Slagmolen, B.J.J.; Shaddock, D.A.; Close, J.D.; Gray, M.B. Interferometric, modulation-free laser stabilization. Opt. Lett. 2002, 27, 1905–1907. [Google Scholar] [CrossRef]
- Dang, H.B.; Maloof, A.C.; Romalis, M.V. Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer. Appl. Phys. Lett. 2010, 97, 151110.1–151110.3. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.J.; Adams, C.S.; Kasevich, M.; Chu, S. Raman cooling of atoms in an optical dipole trap. Phys. Rev. Lett. 1996, 76, 2658–2661. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Qin, J. Advances in atomic gyroscopes: A view from inertial navigation applications. Sensors 2012, 12, 6331–6346. [Google Scholar] [CrossRef] [PubMed]
- Black, E.D. An introduction to Pound–Drever–Hall laser frequency stabilization. Am. J. Phys. 2001, 69, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Nakagawa, K.; Shelkovnikov, A.S.; Katsuda, T.; Ohtsu, M. Absolute frequency stability of a diode-laser-pumped Nd:YAG laser stabilized to a high-finesse optical cavity. Appl. Opt. 1994, 33, 6383–6386. [Google Scholar] [CrossRef] [PubMed]
- Boyd, R.A.; Bliss, J.L.; Libbrecht, K.G. Teaching physics with 670-nm diode lasers—Experiments with Fabry–Pérot cavities. Am. J. Phys. 1996, 64, 1109. [Google Scholar] [CrossRef]
- Slagmolen, B.J.J.; Shaddock, D.A.; Gray, M.B.; McClelland, D.E. Frequency stability of spatial mode interference (tilt) locking. IEEE J. Quantum Electron. 2002, 38, 1521–1528. [Google Scholar] [CrossRef]
- Harvey, M.D.; White, A.G. Frequency locking by analysis of orthogonal modes. Opt. Commun. 2003, 221, 163–171. [Google Scholar] [CrossRef] [Green Version]
- Shaddock, D.A.; Gray, M.B.; Mcclelland, D.E. Frequency locking a laser to an optical cavity by use of spatial mode interference. Opt. Lett. 1999, 24, 1499–1501. [Google Scholar] [CrossRef]
- Li, X.; Xu, Z.; Zhai, Y.; Yin, Y.; Ning, X.; Quan, W. Impact analysis of cavity length on transfer cavity frequency locking system for atomic inertial measurement device. AIP Adv. 2020, 10, 015340. [Google Scholar] [CrossRef] [Green Version]
- Quan, W.; Li, Y.; Li, R.; Shang, H.; Fang, Z.; Qin, J.; Wan, S. Far off-resonance laser frequency stabilization using multipass cells in Faraday rotation spectroscopy. Appl. Opt. 2016, 55, 2503–2507. [Google Scholar] [CrossRef]
- Pound, R.V. Electronic frequency stabilization of microwave oscillators. AIP Rev. Sci. Instrum. 1946, 17, 490–505. [Google Scholar] [CrossRef] [PubMed]
- Drever, R.W.P.; Hall, J.L.; Kowalski, F.V.; Hough, J.; Ford, G.M.; Munley, A.J.; Ward, H. Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B Photophys. Laser Chem. 1983, 31, 97–105. [Google Scholar] [CrossRef]
- Black, E. Notes on Pound–Drever–Hall Technique. LIGO Tech. Notes 2008, 16, 1945–1950. [Google Scholar]
- Hough, J.; Hils, D.; Rayman, M.D.; Ma, L.S.; Hollberg, L.; Hall, J.L. Dye-laser frequency stabilization using optical resonators. Appl. Phys. B Photophys. Laser Chem. 1984, 33, 179–185. [Google Scholar] [CrossRef]
- Day, T.; Gustafson, E.K.; Byer, R.L. Sub-hertz relative frequency stabilization of two-diode laser-pumped nd:yag lasers locked to a Fabry-Pérot interferometer. IEEE J. Quantum Electron. 1992, 28, 1106–1117. [Google Scholar] [CrossRef]
- Young, B.C.; Cruz, F.C.; Itano, W.M.; Bergquist, J.C. Visible lasers with subhertz linewidths. Phys. Rev. Lett. 1999, 82, 3799–3802. [Google Scholar] [CrossRef] [Green Version]
- Webster, S.A.; Oxborrow, M.; Gill, P. Subhertz-linewidth Nd:YAG laser. Opt. Lett. 2004, 29, 1497–1499. [Google Scholar] [CrossRef]
- Jiang, Y.; Fang, S.; Bi, Z.; Xu, X.; Ma, L. Nd:YAG lasers at 1064 nm with 1-Hz linewidth. Appl. Phys. B 2010, 98, 61–67. [Google Scholar] [CrossRef]
- Ludlow, A.D.; Huang, X.; Notcutt, M.; Zanon-Willette, T.; Foreman, S.M.; Boyd, M.M.; Blatt, S.; Ye, J. Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1×10-15. Opt. Lett. 2007, 32, 641–643. [Google Scholar] [CrossRef] [Green Version]
- Alnis, J.; Matveev, A.; Kolachevsky, N.; Udem, T.; Hänsch, T.W. Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities. Phys. Rev. A 2008, 77, 053809. [Google Scholar] [CrossRef] [Green Version]
- Notcutt, M.; Ma, L.S.; Ye, J.; Hall, J.L. Simple and compact 1-Hz laser system via an improved mounting configuration of a reference cavity. Opt. Lett. 2005, 30, 1815–1817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webster, S.A.; Oxborrow, M.; Gill, P. Vibration insensitive optical cavity. Phys. Rev. A 2007, 75, 10064–10070. [Google Scholar] [CrossRef]
- Millo, J.; Magalhaes, D.V.; Mandache, C.; Coq, Y.L.; English, E.M.L.; Westergaard, P.G.; Lodewyck, J.; Bize, S.; Lemonde, P.; Santarelli, G. Ultrastable lasers based on vibration insensitive cavities. Phys. Rev. A 2009, 79, 053829. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.N.; Zhang, J.; Stejskal, A.; Liu, T.; Elman, V.; Lu, Z.H.; Wang, L.J. A vibration-insensitive optical cavity and absolute determination of its ultrahigh stability. Opt. Express 2009, 17, 8970–8982. [Google Scholar] [CrossRef] [Green Version]
- Numata, K.; Kemery, A.; Camp, J. Thermal-noise limit in the frequency stabilization of lasers with rigid cavities. Phys. Rev. Lett. 2004, 93, 250602.1–250602.4. [Google Scholar] [CrossRef]
- Chen, L.; Hall, J.L.; Ye, J.; Yang, T.; Zang, E.; Li, T. Vibration-induced elastic deformation of Fabry-Pérot cavities. Phys. Rev. A 2006, 74, 053801. [Google Scholar] [CrossRef] [Green Version]
- Dai, X.; Jiang, Y.; Hang, C.; Bi, Z.; Ma, L. Thermal analysis of optical reference cavities for low sensitivity to environmental temperature fluctuations. Opt. Express 2015, 23, 5134–5146. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Qin, Y.; Yan, Z.; Lu, H.; Jia, X. Improvement of the intensity noise and frequency stabilization of Nd:YAP laser with an ultra-low expansion Fabry-Pérot cavity. Opt. Express 2019, 27, 3247–3254. [Google Scholar] [CrossRef]
- Kessler, T.; Hagemann, C.; Grebing, C.; Legero, T.; Sterr, U.; Riehle, F.; Martin, M.J.; Chen, L.; Ye, J. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity. Nat. Photonics 2012, 6, 687–692. [Google Scholar] [CrossRef]
- Matei, D.G.; Legero, T.; Hafner, S.; Grebing, C.; Weyrich, R.; Zhang, W.; Sonderhouse, L.; Robinson, J.M.; Ye, J.; Riehle, F.; et al. 1.5 μm Lasers with Sub-10 mHz Linewidth. Phys. Rev. Lett. 2017, 118, 263202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Jiang, Y.; Fang, S.; Bi, Z.; Ma, L. Frequency stabilization of Nd:YAG lasers with a most probable linewidth of 0.6 Hz. J. Opt. Soc. Am. B 2013, 30, 1546–1550. [Google Scholar] [CrossRef]
- Bian, W.; Huang, Y.; Guan, H.; Liu, P.; Ma, L.; Gao, K. 1 Hz linewidth Ti:sapphire laser as local oscillator for 40Ca+ optical clocks. Rev. Sci. Instrum. 2016, 87, 063121. [Google Scholar] [CrossRef]
- Wu, L.; Jiang, Y.; Ma, C.; Qi, W.; Yu, H.; Bi, Z.; Ma, L. 0.26-Hz-linewidth ultrastable lasers at 1557 nm. Sci. Rep. 2016, 6, 24969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, J.; Wan, Z.; Li, Y.; Zhang, K. Generation of 8.3 dB continuous variable quantum entanglement at a telecommunication wavelength of 1550 nm. Laser Phys. Lett. 2018, 15, 015209. [Google Scholar]
- Deng, X.; Xiang, Y.; Tian, C.; Adesso, G.; He, Q.; Gong, Q.; Su, X.; Xie, C.; Peng, K. Demonstration of monogamy relations for Einstein-Podolsky-Rosen steering in Gaussian cluster states. Phys. Rev. Lett. 2017, 118, 230501. [Google Scholar] [CrossRef] [Green Version]
- Budker, D.; Gawlik, W.; Kimball, D.F.; Rochester, S.M.; Yashchuk, V.V.; Weis, A. Resonant nonlinear magneto-optical effects in atoms. Rev. Mod. Phys. 2002, 74, 1153–1201. [Google Scholar] [CrossRef] [Green Version]
- Siddons, P.; Adams, C.S.; Hughes, I.G. Off-resonance absorption and dispersion in vapours of hot alkali-metal atoms. J. Phys. B At. Mol. Opt. Phys. 2009, 42, 175004. [Google Scholar] [CrossRef]
- Siddons, P.; Adams, C.S.; Ge, C.; Hughes, I.G. Absolute absorption on rubidium D lines: Comparison between theory and experiment. J. Phys. B At. Mol. Opt. Phys. 2008, 41, 155004. [Google Scholar] [CrossRef] [Green Version]
- Kemp, S.L.; Hughes, I.G.; Cornish, S.L. An analytical model of off-resonant Faraday rotation in hot alkali metal vapours. J. Phys. B At. Mol. Opt. Phys. 2011, 44, 235004. [Google Scholar] [CrossRef] [Green Version]
- Marchant, A.L.; Händel, S.; Wiles, T.P.; Hopkins, S.A.; Adams, C.S.; Cornish, S.L. Off resonance laser frequency stabilization using the Faraday effect. Opt. Lett. 2011, 36, 64–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, Z.; Quan, W.; Zhai, Y. Off-resonance laser frequency stabilization method for fast and accurate adjustment of frequency lock points. J. Beijing Univ. Aeronaut. Astronaut. 2018, 44, 1727–1732. [Google Scholar]
- Siddons, P.; Bell, N.C.; Cai, Y.; Adams, C.S.; Hughes, I.G. A gigahertz-bandwidth atomic probe based on the slow-light Faraday effect. Nat. Photonics 2009, 3, 225–229. [Google Scholar] [CrossRef] [Green Version]
- Weller, L.; Kleinbach, K.S.; Zentile, M.A.; Knappe, S.; Hughes, I.G.; Adams, C.S. An optical isolator using an atomic vapor in the hyperfine Paschen–Back regime. Opt. Lett. 2012, 37, 3405. [Google Scholar] [CrossRef] [Green Version]
- Helmcke, J.; Lee, S.A.; Hall, J.L. Dye laser spectrometer for ultrahigh spectral resolution: Design and performance. Appl. Opt. 1982, 21, 1686–1694. [Google Scholar] [CrossRef]
- Fritschel, P.; Jeffries, A.; Kane, T.J. Frequency fluctuations of a diode-pumped Nd:YAG ring laser. Opt. Lett. 1989, 14, 993–995. [Google Scholar] [CrossRef]
- Barger, R.L.; Sorem, M.S.; Hall, J.L. Frequency stabilization of a cw dye laser. Appl. Phys. Lett. 1973, 22, 573–575. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Chen, W. Theoretical study on laser frequency stabilization in reference to Fabry-Pérot cavity. Acta Photonica Sin. 2007, 36, 2219–2222. [Google Scholar]
- Li, C.; Deng, L.; Yang, X.; Chen, Y. External optical cavity locked by laser frequency. Acta Opt. Sin. 2009, 29, 2822–2825. [Google Scholar]
- Zhao, Y.; Wang, Q.; Meng, F.; Lin, Y.; Wang, S.; Li, Y.; Lin, B.; Cao, S.; Cao, J.; Fang, Z.; et al. High-finesse cavity external optical feedback DFB laser with hertz relative linewidth. Opt. Lett. 2012, 37, 4729–4731. [Google Scholar] [CrossRef]
- Du, Z.; Zhang, Y.; Wang, X.; Yan, S.; Zhang, T.; Wang, J. Locking multiple wavelength lasers to the transition of Cesium atoms by using a Fabry-Pérot transfer cavity. Acta Opt. Sin. 2006, 26, 452–457. [Google Scholar]
- Bohlouli-Zanjani, P.; Afrousheh, K.; Martin, J.D.D. Optical transfer cavity stabilization using current-modulated injection-locked diode lasers. Rev. Sci. Instrum. 2006, 77, 093105. [Google Scholar] [CrossRef] [Green Version]
- Qu, W.; Huang, Y.; Guan, H.; Huang, X.; Gao, K. 397nm semiconductor laser stabilized with scanning transfer cavity. Chin. J. Lasers 2011, 38, 0802008. [Google Scholar]
- Zheng, G. Laser Frequency Stabilization Used by Optical Transfer Cavity Based on PDH Technique; East China Normal University: Shanghai, China, 2014. [Google Scholar]
- Subhankar, S.; Restelli, A.; Wang, Y.; Rolston, S.L.; Porto, J.V. Microcontroller based scanning transfer cavity lock for long-term laser frequency stabilization. Rev. Sci. Instrum. 2019, 90, 043115. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Quan, W. Laser frequency stabilization transmission method based on an F-P cavity. J. Beijing Univ. Aeronaut. Astronaut. 2019, 45, 841–846. [Google Scholar]
- Udem, T.; Reichert, J.; Holzwarth, R.; Hänsch, T.W. Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser. Phys. Rev. Lett. 1999, 82, 3568–3571. [Google Scholar] [CrossRef] [Green Version]
- Diddams, S.A.; Jones, D.J.; Ye, J.; Cundiff, S.T.; Hall, J.L.; Ranka, J.K.; Windeler, R.S.; Holzwarth, R.; Udem, T.; Hänsch, T.W. Direct link between microwave and optical frequencies with a 300 thz femtosecond laser comb. Phys. Rev. Lett. 2000, 84, 5102–5105. [Google Scholar] [CrossRef] [Green Version]
- Diddams, S.A.; Udem, T.; Bergquist, J.C.; Curtis, E.A.; Drullinger, R.E.; Hollberg, L.; Itano, W.M.; Lee, W.D.; Oates, C.W.; Vogel, K.R.; et al. An optical clock based on a single trapped 199Hg+ ion. Science 2001, 293, 825–828. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Zucco, M.; Picard, S.; Robertsson, L.; Windeler, R.S. A new method to determine the absolute mode number of a mode-locked femtosecond-laser comb used for absolute optical frequency measurements. IEEE J. Sel. Top. Quantum Electron. 2003, 9, 1066–1071. [Google Scholar]
- Diddams, S.A.; Jones, D.J.; Ye, J.; Cundiff, S.T.; Hall, J.L.; Ranka, J.K.; Windeler, R.S. Direct rf to optical frequency measurements with a femtosecond laser comb. IEEE Trans. Instrum. Meas. 2001, 50, 552–555. [Google Scholar] [CrossRef]
- Cundiff, S.T.; Ye, J. Colloquium: Femtosecond optical frequency comb. Rev. Mod. Phys. 2003, 75, 325–342. [Google Scholar] [CrossRef] [Green Version]
- Ye, J.; Ma, L.; Hall, J.L. Molecular iodine clock. Phys. Rev. Lett. 2001, 87, 270801.1–270801.4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fordell, T.; Wallin, A.E.; Lindvall, T.; Vainio, M.; Merimaa, M. Frequency-comb-referenced tunable diode laser spectroscopy and laser stabilization applied to laser cooling. Appl. Opt. 2014, 53, 7476–7482. [Google Scholar] [CrossRef] [PubMed]
- Li, C. Study of Laser Frequency Stabilization Based on Erbium-Doped Fiber Femtosecond Optical Frequency Comb; China Jiliang University: Hangzhou, China, 2017. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Yue, Z.; Xu, Z.; Ding, M.; Zhai, Y. Far Off-Resonance Laser Frequency Stabilization Technology. Appl. Sci. 2020, 10, 3255. https://doi.org/10.3390/app10093255
Liu C, Yue Z, Xu Z, Ding M, Zhai Y. Far Off-Resonance Laser Frequency Stabilization Technology. Applied Sciences. 2020; 10(9):3255. https://doi.org/10.3390/app10093255
Chicago/Turabian StyleLiu, Chang, Ziqian Yue, Zitong Xu, Ming Ding, and Yueyang Zhai. 2020. "Far Off-Resonance Laser Frequency Stabilization Technology" Applied Sciences 10, no. 9: 3255. https://doi.org/10.3390/app10093255
APA StyleLiu, C., Yue, Z., Xu, Z., Ding, M., & Zhai, Y. (2020). Far Off-Resonance Laser Frequency Stabilization Technology. Applied Sciences, 10(9), 3255. https://doi.org/10.3390/app10093255