The Effect of Eugenol and Chitosan Concentration on the Encapsulation of Eugenol Using Whey Protein–Maltodextrin Conjugates
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Whey Protein–Maltodextrin (WPMD) Conjugates
2.3. Encapsulation of Eugenol by Emulsification and Spray Drying
2.4. Encapsulation Performance
2.5. Particle Size and Zeta Potential Measurement of Emulsion and Spray-Dried Powder Dispersion
2.6. Differential Scanning Calorimetry (DSC)
2.7. Fourier Transform Infrared (FTIR)
2.8. Study of In Vitro Release of Eugenol and Release Kinetic
2.9. Statistical Analysis
3. Results and Discussion
3.1. Effect of Chitosan and Eugenol Concentration on Eugenol Emulsions
3.2. Performance of Spray-Dried Powder
3.3. Differential Scanning Calorimetry
3.4. Fourier Transform Infrared Spectroscopy (FTIR)
3.5. In Vitro Release Characteristic of Eugenol
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kamatou, G.; Vermaak, I.; Viljoen, A. Eugenol—From the Remote Maluku Islands to the International Market Place: A Review of a Remarkable and Versatile Molecule. Molecules 2012, 17, 6953–6981. [Google Scholar] [CrossRef] [PubMed]
- Donsi’, F.; Annunziata, M.; Sessa, M.; Ferrari, G. Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods. LWT 2011, 44, 1908–1914. [Google Scholar] [CrossRef]
- Bilia, A.R.; Guccione, C.; Isacchi, B.; Righeschi, C.; Firenzuoli, F.; Bergonzi, M.C. Essential Oils Loaded in Nanosystems: A Developing Strategy for a Successful Therapeutic Approach. Evid. Based Complement. Altern. Med. 2014, 2014, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nedović, V.; Kalusevic, A.; Manojlovic, V.; Levic, S.; Bugarski, B. An overview of encapsulation technologies for food applications. Procedia Food Sci. 2011, 1, 1806–1815. [Google Scholar] [CrossRef] [Green Version]
- Neethirajan, S.; Jayas, D.S. Nanotechnology for the Food and Bioprocessing Industries. Food Bioprocess Technol. 2010, 4, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Sowasod, N.; Nakagawa, K.; Tanthapanichakoon, W.; Charinpanitkul, T. Development of encapsulation technique for curcumin loaded O/W emulsion using chitosan based cryotropic gelation. Mater. Sci. Eng. C 2012, 32, 790–798. [Google Scholar] [CrossRef]
- Cagri, A.; Ustunol, Z.; Ryser, E.T. Antimicrobial Edible Films and Coatings. J. Food Prot. 2004, 67, 833–848. [Google Scholar] [CrossRef]
- Cha, D.; Cooksey, K.; Chinnan, M.; Park, H. Release of nisin from various heat-pressed and cast films. LWT 2003, 36, 209–213. [Google Scholar] [CrossRef]
- Young, S.; Sarda, X.; Rosenberg, M. Microencapsulating Properties of Whey Proteins. 2. Combination of Whey Proteins with Carbohydrates. J. Dairy Sci. 1993, 76, 2878–2885. [Google Scholar] [CrossRef]
- Rodea-González, D.A.; Cruz-Olivares, J.; Román-Guerrero, A.; Rodríguez-Huezo, M.E.; Vernon-Carter, E.J.; Pérez-Alonso, C. Spray-dried encapsulation of chia essential oil (Salvia hispanica L.) in whey protein concentrate-polysaccharide matrices. J. Food Eng. 2012, 111, 102–109. [Google Scholar] [CrossRef]
- Shah, B.; Davidson, P.M.; Zhong, Q. Encapsulation of eugenol using Maillard-type conjugates to form transparent and heat stable nanoscale dispersions. LWT 2012, 49, 139–148. [Google Scholar] [CrossRef]
- Preetz, C.; Rübe, A.; Reiche, I.; Hause, G.; Mäder, K.; Mäder, K. Preparation and characterization of biocompatible oil-loaded polyelectrolyte nanocapsules. Nanomed. Nanotechnol. Boil. Med. 2008, 4, 106–114. [Google Scholar] [CrossRef]
- Calero, N.; Muñoz, J.; Cox, P.; Heuer, A.; Guerrero, A. Influence of chitosan concentration on the stability, microstructure and rheological properties of O/W emulsions formulated with high-oleic sunflower oil and potato protein. Food Hydrocoll. 2013, 30, 152–162. [Google Scholar] [CrossRef]
- Zhang, Y.; Niu, Y.; Luo, Y.; Ge, M.; Yang, T.; Yu, L.; Wang, Q. Fabrication, characterization and antimicrobial activities of thymol-loaded zein nanoparticles stabilized by sodium caseinate—Chitosan hydrochloride double layers. Food Chem. 2014, 142, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Weiss, J.; Gaysinsky, S.; Davidson, M.; McClements, J. CHAPTER 24—Nanostructured Encapsulation Systems: Food Antimicrobials. In Global Issues in Food Science and Technology; Barbosa-Cánovas, G., Mortimer, A., Lineback, D., Spiess, W., Buckle, K., Colonna, P., Eds.; Academic Press: San Diego, CA, USA, 2009; pp. 425–479. [Google Scholar] [CrossRef]
- Ogawa, S.; Decker, E.A.; McClements, D.J. Production and Characterization of O/W Emulsions Containing Droplets Stabilized by Lecithin−Chitosan−Pectin Mutilayered Membranes. J. Agric. Food Chem. 2004, 52, 3595–3600. [Google Scholar] [CrossRef]
- Hsieh, W.-C.; Chang, C.-P.; Gao, Y.-L. Controlled release properties of Chitosan encapsulated volatile Citronella Oil microcapsules by thermal treatments. Colloids Surf. B Biointerfaces 2006, 53, 209–214. [Google Scholar] [CrossRef]
- Peng, H.; Xiong, H.; Li, J.; Xie, M.; Liu, Y.; Bai, C.; Chen, L. Vanillin cross-linked chitosan microspheres for controlled release of resveratrol. Food Chem. 2010, 121, 23–28. [Google Scholar] [CrossRef]
- Souza, J.M.; Caldas, A.L.; Tohidi, S.D.; Molina, J.; Souto, A.P.; Fangueiro, R.; Zille, A. Properties and controlled release of chitosan microencapsulated limonene oil. Rev. Bras. Farm. 2014, 24, 691–698. [Google Scholar] [CrossRef] [Green Version]
- Estevinho, B.N.; Rocha, F.; Santos, L.; Alves, A. Microencapsulation with chitosan by spray drying for industry applications—A review. Trends Food Sci. Technol. 2013, 31, 138–155. [Google Scholar] [CrossRef]
- Akhtar, M.; Dickinson, E. Whey protein—Maltodextrin conjugates as emulsifying agents: An alternative to gum arabic. Food Hydrocoll. 2007, 21, 607–616. [Google Scholar] [CrossRef]
- Hosseini, S.F.; Zandi, M.; Rezaei, M.; Farahmandghavi, F. Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: Preparation, characterization and in vitro release study. Carbohydr. Polym. 2013, 95, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhong, Q. A novel method of preparing stable zein nanoparticle dispersions for encapsulation of peppermint oil. Food Hydrocoll. 2015, 43, 593–602. [Google Scholar] [CrossRef]
- Keawchaoon, L.; Yoksan, R. Preparation, characterization and in vitro release study of carvacrol-loaded chitosan nanoparticles. Colloids Surf. B Biointerfaces 2011, 84, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Rojsitthisak, P.; Rojsitthisak, P.; Nimmannit, U. Preparation of turmeric oil-loaded chitosan-alginate biopolymeric nanocapsules. Mater. Sci. Eng. C 2009, 29, 856–860. [Google Scholar] [CrossRef]
- Eid, A.; Elmarzugi, N.; El Enshasy, H. Preparation and evaluation of olive oil nanoemulsion using sucrose monoester. Int. J. Pharm. Pharm. Sci. 2013, 5, 434–440. [Google Scholar]
- Gharsallaoui, A.; Saurel, R.; Chambin, O.; Cases, E.; Voilley, A.; Cayot, P. Utilisation of pectin coating to enhance spray-dry stability of pea protein-stabilised oil-in-water emulsions. Food Chem. 2010, 122, 447–454. [Google Scholar] [CrossRef]
- Bouyer, E.; Mekhloufi, G.; Rosilio, V.; Grossiord, J.-L.; Agnely, F. Proteins, polysaccharides, and their complexes used as stabilizers for emulsions: Alternatives to synthetic surfactants in the pharmaceutical field? Int. J. Pharm. 2012, 436, 359–378. [Google Scholar] [CrossRef]
- Shahavi, M.H.; Hosseini, M.; Jahanshahi, M.; Meyer, R.L.; Darzi, G.N. Evaluation of critical parameters for preparation of stable clove oil nanoemulsion. Arab. J. Chem. 2019, 12, 3225–3230. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Luo, Y.; Wang, Q. Antioxidant and antimicrobial properties of essential oils encapsulated in zein nanoparticles prepared by liquid–liquid dispersion method. LWT 2012, 48, 283–290. [Google Scholar] [CrossRef]
- Dima, C.; Cotarlet, M.; Balaes, T.; Bahrim, G.; Alexe, P.; Dima, S. Encapsulation of Coriander Essential Oil in Beta-Cyclodextrin: Antioxidant and Antimicrobial Properties Evaluation. Rom. Biotechnol. Lett. 2014, 19, 9128–9140. [Google Scholar]
- Jafari, S.M.; He, Y.; Bhandari, B. Effectiveness of encapsulating biopolymers to produce sub-micron emulsions by high energy emulsification techniques. Food Res. Int. 2007, 40, 862–873. [Google Scholar] [CrossRef]
- Woranuch, S.; Yoksan, R. Eugenol-loaded chitosan nanoparticles: I. Thermal stability improvement of eugenol through encapsulation. Carbohydr. Polym. 2013, 96, 578–585. [Google Scholar] [CrossRef] [PubMed]
- Reineccius, G.A. Flavor encapsulation. Food Rev. Int. 1989, 5, 147–176. [Google Scholar] [CrossRef]
- Pramod, K.; Suneesh, C.V.; Shanavas, S.; Ansari, S.H.; Ali, J. Unveiling the compatibility of eugenol with formulation excipients by systematic drug-excipient compatibility studies. J. Anal. Sci. Technol. 2015, 6, 265. [Google Scholar] [CrossRef] [Green Version]
- Cocero, M.J.; Martín, Á.; Mattea, F.; Varona, S.; Alonso, M.J.C. Encapsulation and co-precipitation processes with supercritical fluids: Fundamentals and applications. J. Supercrit. Fluids 2009, 47, 546–555. [Google Scholar] [CrossRef]
- Feyzioglu, G.C.; Tornuk, F. Development of chitosan nanoparticles loaded with summer savory (Satureja hortensis L.) essential oil for antimicrobial and antioxidant delivery applications. LWT 2016, 70, 104–110. [Google Scholar] [CrossRef]
- Souza, A.C.P.; Gurak, P.D.; Marczak, L.D.F. Maltodextrin, pectin and soy protein isolate as carrier agents in the encapsulation of anthocyanins-rich extract from jaboticaba pomace. Food Bioprod. Process. 2017, 102, 186–194. [Google Scholar] [CrossRef]
- Hill, L.E.; Gomes, C.; Taylor, T.M. Characterization of beta-cyclodextrin inclusion complexes containing essential oils (trans-cinnamaldehyde, eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery applications. LWT 2013, 51, 86–93. [Google Scholar] [CrossRef]
- Otálora, M.C.; Carriazo, J.G.; Iturriaga, L.; Nazareno, M.A.; Osorio, C. Microencapsulation of betalains obtained from cactus fruit (Opuntia ficus-indica) by spray drying using cactus cladode mucilage and maltodextrin as encapsulating agents. Food Chem. 2015, 187, 174–181. [Google Scholar] [CrossRef]
- Ronkart, S.N.; Paquot, M.; Blecker, C.S.; Fougnies, C.; Doran, L.; Lambrechts, J.C.; Norberg, B.; Deroanne, C. Impact of the Crystallinity on the Physical Properties of Inulin during Water Sorption. Food Biophys. 2008, 4, 49–58. [Google Scholar] [CrossRef]
- Beirão-Da-Costa, S.; Duarte, C.; Bourbon, A.I.; Pinheiro, A.C.; Januário, I.; Vicente, A.A.; Da Costa, M.L.B.; Delgadillo, I. Inulin potential for encapsulation and controlled delivery of Oregano essential oil. Food Hydrocoll. 2013, 33, 199–206. [Google Scholar] [CrossRef] [Green Version]
- Piletti, R.; Bugiereck, A.; Pereira, A.; Gussati, E.; Magro, J.D.; Mello, J.; Dalcanton, F.; Ternus, R.; Soares, C.; Riella, H.G.; et al. Microencapsulation of eugenol molecules by β-cyclodextrine as a thermal protection method of antibacterial action. Mater. Sci. Eng. C 2017, 75, 259–271. [Google Scholar] [CrossRef] [PubMed]
- Sajomsang, W.; Nuchuchua, O.; Gonil, P.; Saesoo, S.; Sramala, I.; Soottitantawat, A.; Puttipipatkhachorn, S.; Ruktanonchai, U.R. Water-soluble β-cyclodextrin grafted with chitosan and its inclusion complex as a mucoadhesive eugenol carrier. Carbohydr. Polym. 2012, 89, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Coates, J. Interpretation of Infrared Spectra, a Practical Approach. Encycl. Anal. Chem. 2006, 12, 10815–10837. [Google Scholar] [CrossRef]
- Agnihotri, S.A.; Mallikarjuna, N.N.; Aminabhavi, T.M. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J. Control. Release 2004, 100, 5–28. [Google Scholar] [CrossRef]
- Ritger, P.L.; Peppas, N.A. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J. Control. Release 1987, 5, 37–42. [Google Scholar] [CrossRef]
- Combrinck, J.; Otto, A.; Du Plessis, J. Whey Protein/Polysaccharide-Stabilized Emulsions: Effect of Polymer Type and pH on Release and Topical Delivery of Salicylic Acid. AAPS PharmSciTech 2014, 15, 588–600. [Google Scholar] [CrossRef] [Green Version]
- Patil, D.K.; Agrawal, D.S.; Mahire, R.R.; More, D.H. Synthesis, characterization and controlled release studies of ethyl cellulose microcapsules incorporating essential oil using an emulsion solvent evaporation method. Am. J. Essent. Oils Nat. Prod. 2016, 4, 9. [Google Scholar]
Samples | Eugenol Concentration in Primary Emulsion (%) | Chitosan Concentration in Chitosan Solution (%) | Eugenol Concentration in Secondary Emulsion (%) | Chitosan Concentration in Secondary Emulsion (%) |
---|---|---|---|---|
F1-chi 0.0% | 3.0 | 0.0 | 2.0 | 0.0 |
F1-chi 0.067% | 3.0 | 0.2 | 2.0 | 0.067 |
F1-chi 0.2% | 3.0 | 0.6 | 2.0 | 0.2 |
F1-chi 0.33% | 3.0 | 1.0 | 2.0 | 0.33 |
F2- chi 0.0% | 1.5 | 0.0 | 1.0 | 0.0 |
F2-chi 0.067% | 1.5 | 0.2 | 1.0 | 0.067 |
F2-chi 0.2% | 1.5 | 0.6 | 1.0 | 0.2 |
F2-chi 0.33% | 1.5 | 1.0 | 1.0 | 0.33 |
Treatments (*) | Droplet Size (nm) | Polydispersity Index | Zeta Potential (mV) |
---|---|---|---|
F1 emulsion-chi 0.0% | 243.6 ± 18.3 bcd | 0.239 ± 0.020 bcd | −16.4 ± 1.1 c |
F1 emulsion-chi 0.067% | 224.4 ± 10.5 cd | 0.202 ± 0.009 d | 20.5 ± 0.3 ab |
F1 emulsion-chi 0.2% | 288.7 ± 5.2 bc | 0.213 ± 0.006 cd | 24.8 ± 2.8 a |
F1 emulsion-chi 0.33% | 311.5 ± 4.9 b | 0.204 ± 0.016 cd | 24.9 ± 2.9 a |
F2 emulsion-chi 0.0% | 200.5 ± 12.7 d | 0.264 ± 0.013 bc | −10.5 ± 4.2 c |
F2 emulsion-chi 0.067% | 417.4 ± 61.3 a | 0.486 ± 0.042 a | 14.4 ± 5.4 b |
F2 emulsion-chi 0.2% | 301.1 ± 24.5 b | 0.250 ± 0.024 bcd | 19.1 ± 5.5 ab |
F2 emulsion-chi 0.33% | 286.9 ± 15.0 bc | 0.299 ± 0.020 b | 15.9 ± 1.3 ab |
Treatments (*) | Particle Size (nm) | Polydispersity Index | Zeta Potential (mV) |
---|---|---|---|
F1-chi 0.0% | 403.2 ± 17.2 e | 0.639 ± 0.048 abc | −26.9 ± 0.8 d |
F1-chi 0.067% | 679.2 ± 55.4 bcd | 0.511 ± 0.041 cd | −2.2 ± 0.2 c |
F1-chi 0.2% | 834.6 ± 66.3 b | 0.669 ± 0.016 ab | 10.3 ±1.5 ab |
F1-chi 0.33% | 1243 ± 72.6 a | 0.705 ± 0.085 a | 11.4 ±1.0 ab |
F2-chi 0.0% | 404.3 ± 83.6 e | 0.468 ± 0.016 d | 18.7 ± 1.2 d |
F2-chi 0.067% | 498.0 ± 25.1 de | 0.495 ± 0.067 cd | 3.0 ± 8.4 bc |
F2-chi 0.2% | 543.9 ± 109 cde | 0.540 ± 0.068 bcd | 16.1 ± 3.2 a |
F2-chi 0.33% | 702.6 ± 34.5 bc | 0.559 ± 0.043 abcd | 19.2 ±0.3 a |
Treatments (*) | Eugenol in Feed (%) | Mass of Collected Product (g) | Loading Capacity (%) | Efficiency Encapsulation (%) |
---|---|---|---|---|
F1-chi 0.0% | 37.50 | 3.91 ± 0.08 | 6.6 ± 1.2 b | 17.6 ± 3.9 c |
F1-chi 0.067% | 37.13 | 2.19 ± 0.19 | 4.7 ± 1.1 bc | 12.6 ± 2.8 c |
F1-chi 0.2% | 36.41 | 2.58 ± 0.22 | 6.3 ± 1.2 bc | 17.4 ± 3.2 c |
F1-chi 0.33% | 35.71 | 2.83 ± 0.40 | 16.8 ± 0.9 a | 47.1 ± 2.5 a |
F2-chi 0.0% | 23.08 | 3.00 ± 0.06 | 6.5 ± 1.0 b | 28.1 ± 3.5 b |
F2-chi 0.067% | 22.80 | 2.29 ± 0.36 | 3.6 ± 0.8 c | 15.8 ± 2.6 c |
F2-chi 0.2% | 22.26 | 2.54 ± 0.33 | 6.7 ± 0.7 b | 30.2 ± 2.4 b |
F2-chi 0.33% | 21.74 | 3.23 ± 0.59 | 7.4 ± 1.0 b | 34.2 ± 3.6 b |
Samples | n | k | R2 |
---|---|---|---|
F1 powder-Chi 0.0% | 0.2350 | 0.2061 | 0.8243 |
F1 powder-Chi 0.067% | 0.2061 | 0.3729 | 0.8379 |
F1 powder-Chi 0.2% | 0.1926 | 0.3204 | 0.8683 |
F1 powder-Chi 0.33% | 0.2479 | 0.2688 | 0.8538 |
F2 powder-Chi 0.0% | 0.2667 | 0.1756 | 0.8619 |
F2 powder-Chi 0.067% | 0.2519 | 0.1590 | 0.8696 |
F2 powder-Chi 0.2% | 0.2264 | 0.1756 | 0.8765 |
F2 powder-Chi 0.33% | 0.2263 | 0.1635 | 0.8720 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agustinisari, I.; Mulia, K.; Nasikin, M. The Effect of Eugenol and Chitosan Concentration on the Encapsulation of Eugenol Using Whey Protein–Maltodextrin Conjugates. Appl. Sci. 2020, 10, 3205. https://doi.org/10.3390/app10093205
Agustinisari I, Mulia K, Nasikin M. The Effect of Eugenol and Chitosan Concentration on the Encapsulation of Eugenol Using Whey Protein–Maltodextrin Conjugates. Applied Sciences. 2020; 10(9):3205. https://doi.org/10.3390/app10093205
Chicago/Turabian StyleAgustinisari, Iceu, Kamarza Mulia, and Mohammad Nasikin. 2020. "The Effect of Eugenol and Chitosan Concentration on the Encapsulation of Eugenol Using Whey Protein–Maltodextrin Conjugates" Applied Sciences 10, no. 9: 3205. https://doi.org/10.3390/app10093205
APA StyleAgustinisari, I., Mulia, K., & Nasikin, M. (2020). The Effect of Eugenol and Chitosan Concentration on the Encapsulation of Eugenol Using Whey Protein–Maltodextrin Conjugates. Applied Sciences, 10(9), 3205. https://doi.org/10.3390/app10093205