Purification Efficiency for Treated Waste Water in Case of Joint Infiltration with Water Originating from Precipitation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Column Experiments-Set Up
2.2. Column Experiments—Operation System
2.2.1. TWWE Infiltration
2.2.2. Joint Infiltration of TWWE and Additional Water Originating from Precipitation
2.2.3. Sampling
2.3. Analytics
2.4. Numerical Investigations—Set Up
3. Results and Discussion
3.1. Hydraulic Behavior
3.2. Water Quality and Purification Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Foertsch, S.; Engelmann, U. Status Report 2016 on Municipal Wastewater Disposal and Sewage Sludge Disposal in the Free State of Saxony (in German); Saxon State Ministry for the Environment and Agriculture: Dresden, Germany, 2017; p. 20. [Google Scholar]
- Obermann, I.; Sattler, K. Comparison of centralized, semi-centralized and decentralized sanitation systems. In Proceedings of the First International Symposium on Urban Development, Anchorage, AK, USA, 2–5 June 2013; pp. 159–167. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Wang, X.C. Cost–benefit evaluation of a decentralized water system for wastewater reuse and environmental protection. Water Sci. Technol. 2009, 59, 1515–1522. [Google Scholar] [CrossRef] [PubMed]
- Chirisa, I.; Bandauko, E.; Matamanda, A.; Mandisvika, G. Decentralized domestic wastewater systems in developing countries: The case study of Harare (Zimbabwe). Appl. Water Sci. 2016, 7, 1069–1078. [Google Scholar] [CrossRef] [Green Version]
- Capodaglio, A.G. Integrated, Decentralized Wastewater Management for Resource Recovery in Rural and Peri-Urban Areas. Resources 2017, 6, 22. [Google Scholar] [CrossRef] [Green Version]
- Capodaglio, A.G.; Callegari, A.; Cecconet, D.; Molognoni, D. Sustainability of decentralized wastewater treatment technologies. Water Pr. Technol. 2017, 12, 463–477. [Google Scholar] [CrossRef]
- Hophmayer-Tokich, S. Wastewater Management Strategy: Centralized v. Decentralized Technologies for Small Communities; Center for Clean Technology and Environmental Policy: Enschede, The Netherlands, 2006; p. 27. [Google Scholar]
- DIN 4261-5—Small Sewage Treatment Plants—Part 5: Infiltration of Aerobic Biologically Treated Domestic Waste Water; DIN Deutsches Institut für Normung e.V.: Berlin, Germany, 2012; p. 10.
- Wieczorek, B. The federal ministry for the environment, nature conservation and nuclear safety. Schriftenreihe des Vereins fur Wasser-, Boden- und Lufthyg. 1993, 88, 26–32. [Google Scholar]
- Schlaepfer, D.; Bradford, J.B.; Lauenroth, W.K.; Munson, S.M.; Tietjen, B.; Hall, S.A.; Wilson, S.D.; Duniway, M.C.; Jia, G.; Pyke, D.A.; et al. Climate change reduces extent of temperate drylands and intensifies drought in deep soils. Nat. Commun. 2017, 8, 14196. [Google Scholar] [CrossRef]
- Boojhawon, A.; Surroop, D. Impact of climate change on vulnerability of freshwater resources: A case study of Mauritius. Environ. Dev. Sustain. 2020, 1–29. [Google Scholar] [CrossRef]
- Collins, M.; Knutti, R.; Arblaster, J.; Dufresne, J.L.; Fichefet, T.; Friedlingstein, P.; Gao, X.; Gutowski, W.J.; Johns, T.; Krinner, G.; et al. Long-term Climate Change: Projections, Commitments and Irreversibility; Intergovernmental Panel on Climate Change (IPCC): Genf, Switzerland, 2018; p. 108. [Google Scholar]
- Directive 2000/60/EC - A framework for thecCommunity action in the field of water policy; European Parliament and the Council of the European Union: Brussels, Belgium, 2000; p. 73.
- Martins, T.; Leitão, T.; Carvalho, M.D.R. Assessment of Wastewater Contaminants Retention for a Soil-aquifer Treatment System Using Soil-column Experiments. Procedia Earth Planet. Sci. 2017, 17, 332–335. [Google Scholar] [CrossRef]
- Reemtsma, T. Infiltration of combined sewer overflow and tertiary municipal wastewater: An integrated laboratory and field study on nutrients and dissolved organics. Water Res. 2000, 34, 1179–1186. [Google Scholar] [CrossRef]
- Morales, I.; Cooper, J.; Amador, J.A.; Boving, T.B. Modeling Nitrogen Losses in Conventional and Advanced Soil-Based Onsite Wastewater Treatment Systems under Current and Changing Climate Conditions. PLoS ONE 2016, 11, e0158292. [Google Scholar] [CrossRef]
- Zhang, Z.; Lei, Z.; Zhang, Z.; Sugiura, N.; Xu, X.; Yin, D. Organics removal of combined wastewater through shallow soil infiltration treatment: A field and laboratory study. J. Hazard. Mater. 2007, 149, 657–665. [Google Scholar] [CrossRef] [PubMed]
- Dostmann, H.; (M & S Umweltprojekt GmbH, Plauen, Germany). Personal communication, 2018.
- Lyman, W.J.; Patrick, J.R.; Benjamin, L. Mobility and Degradation of Organic Contaminants in Subsurface Environments; CRC Press: Chelsea, MI, USA, 1992; ISBN 978-0-87371-800-4. [Google Scholar]
- Meikle, A.; Amin-Hanjani, S.; Glover, L.A.; Killham, K.; Prosser, J.I. Matric potential and the survival and activity of a Pseudomonas fluorescens inoculum in soil. Soil Boil. Biochem. 1995, 27, 881–892. [Google Scholar] [CrossRef]
- Šimunek, J.; Van Genuchten, M.T.; Šejna, M. The HYDRUS Software Package for Simulating the Two- and Three-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media; PC Progress: Prague, Czech Republic, 2013. [Google Scholar]
- DIN EN ISO 17892-11—Geotechnical Investigation and Testing—Laboratory Testing of Soil—Part 11: Permeability Tests; Deutsches Institut für Normung e.V.: Berlin, Germany, 2019; p. 20.
- Hyprop System. User’s Manual; Metergroup AG: Munich, Germany, 2015. [Google Scholar]
- DIN EN ISO 11272—Soil Quality—Determination of Dry Bulk Density; Deutsches Institut für Normung e.V.: Berlin, Germany, 2017; p. 14.
- DIN 4261-1—Small Sewage Treatment Plants—Part 1: Plants for Waste Water Pretreatment; Deutsches Institut für Normung e.V.: Berlin, Germany, 2010; p. 15.
- DIN EN 12566-3—Small Waste Water Treatment Systems for up to 50 PT—Part 3: Packaged and/or Site Assembled Domestic Waste Water Treatment Plants; Deutsches Institut für Normung e.V.: Berlin, Germany, 2016; p. 46.
- Construction and Nuclear Safety Groundwater Ordinance; German Federal Ministry for the Environment Conservation: Bonn, Germany, 2017; p. 1044.
- Wastewater and Waste Planning, Construction and Operation of Rainwater Infiltration Systems; German Association for Water (DWA): Aachen, Germany, 2005; p. 62.
- KOSTRA-DWD—Coordinated Heavy Precipitation Regionalization Evaluations, Software Version 3-1; German Weather Service (DWD): Offenbach am Main, Germany, 2010.
- Richards, L.A. Capillary conduction of liquids through porous mediums. J. Appl. Phys. 1931, 1, 318. [Google Scholar] [CrossRef]
- Mualem, Y. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 1976, 12, 513–522. [Google Scholar] [CrossRef] [Green Version]
- Van Genuchten, M.T. A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef] [Green Version]
- Marquardt, D.W. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431–441. [Google Scholar] [CrossRef]
- Corwin, D.L. Evaluation of a simple lysimeter-design modification to minimize sidewall flow. J. Contam. Hydrol. 2000, 42, 35–49. [Google Scholar] [CrossRef]
- Ghodrati, M.; Chendorain, M.; Chang, Y.J. Characterization of Macropore Flow Mechanisms in Soil by Means of a Split Macropore Column. Soil Sci. Soc. Am. J. 1999, 63, 1093–1101. [Google Scholar] [CrossRef]
- Lewis, J.; Sjöström, J. Optimizing the experimental design of soil columns in saturated and unsaturated transport experiments. J. Contam. Hydrol. 2010, 115, 1–13. [Google Scholar] [CrossRef]
- Sentenac, P.; Lynch, R.J.; Bolton, M.D. Measurement of a side-wall boundary effect in soil columns using fibre-optics sensing. Int. J. Phys. Model. Geotech. 2001, 1, 35–41. [Google Scholar] [CrossRef]
- Hardy, M.; Bryman, A. Handbook of Data Analysis; SAGE Publications Ltd.: Thousand Oaks, CA, USA, 2004; p. 728. [Google Scholar]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Gupta, H.; Sorooshian, S.; Yapo, P.O. Status of Automatic Calibration for Hydrologic Models: Comparison with Multilevel Expert Calibration. J. Hydrol. Eng. 1999, 4, 135–143. [Google Scholar] [CrossRef]
- Stevens Water Monitoring Systems Inc. HydraProbe Soil Sensor, User’s Manual; Stevens Water Monitoring Systems Inc.: Portland, OR, USA, 2018. [Google Scholar]
Parameter | Soil 1 | Soil 2 | Soil 3 | Soil 4 | Glass Beads |
---|---|---|---|---|---|
Hydraulic Conductivity under full saturation (cm day−1) | 478 | 363 | 4234 | 2333 | 15,456 |
Bulk density (g cm−3) | 1.68 | 1.70 | 1.67 | 1.65 | 1.52 |
Content of sand (%) | 99.6 | 92.5 | 100 | 100 | - |
Content of silt (%) | 0.4 | 7.1 | 0.0 | 0.0 | - |
Content of clay (%) | 0.0 | 0.4 | 0.0 | 0.0 | - |
Van Genuchten shape parameter α (cm−1) | 0.046 | 0.027 | 0.053 | 0.047 | 0.031 |
Van Genuchten shape parameter n (-) | 4.08 | 4.26 | 3.93 | 2.96 | 5 |
Residual water content θr (cm3 cm−3) | 0.084 | 0.094 | 0.072 | 0.069 | 0.036 |
Saturated water content θs (cm³ cm−3) | 0.34 | 0.37 | 0.39 | 0.35 | 0.31 |
Pore connectivity parameter in the conductivity function l (−) | −1.85 | −1.50 | −1.58 | −2 | unknown |
Type of Water | pH (-) | EC (µS cm−1) | COD | NO2-N | NO3-N | NH4-N | PO4-P |
---|---|---|---|---|---|---|---|
TWWE | 7.1 – 7.7 | 960 – 1080 | 49 – 120 | n.d. – 3.2 | 3 – 57 | 3 – 82 | 18 – 44 |
PW | 6.2 | 58 | n.d. | n.d. | 2 | n.d. | n.d. |
Limit value [27] | 6.5 – 9.5 | 2790 | n.a. | 0.15 | 11.3 | 0.39 | n.a. |
Duration (min) | 5 | 10 | 15 | 20 | 30 | 45 | 60 | 90 | 120 |
Intensities (L s−1 ha−1) | 322.9 | 245.1 | 201.4 | 172.5 | 136 | 105.5 | 87.4 | 64.2 | 51.6 |
Duration (min) | 180 | 240 | 360 | 540 | 720 | 1080 | 1440 | 2880 | 4320 |
Intensities (L s−1 ha−1) | 38 | 30.6 | 22.5 | 16.6 | 13.4 | 10.5 | 8.8 | 5.5 | 4.2 |
Event | Duration (min) | Intensity (L s−1 ha−1) | Loading Rate Per Column Surface Area (mL min−1) | Total Infiltrated Volume Per Event (mL) | ||||
---|---|---|---|---|---|---|---|---|
Soil 1, 3, 4 | Soil 2 | Soil 1, 3, 4 | Soil 2 | Soil 1, 3, 4 | Soil 2 | Soil 1, 3, 4 | Soil 2 | |
1 (5a) | 30 | 120 | 136 | 51.6 | 14.4 | 5.5 | 432 | 656 |
2 (Intensity * 5, Duration * 10 | 300 | 600 | 680 | 258 | 72.1 | 27.4 | 21,630 | 16,413 |
3 (24 h) | 1440 | 1440 | 136 | 51.6 | 14.4 | 5.5 | 20,765 | 7878 |
Parameter | Soil 1 | Soil 2 | Soil 3 | Soil 4 |
---|---|---|---|---|
Hydraulic Conductivity under full saturation K (cm day−1) | 360 | 504 | 3939 | 2651 |
Bulk density ρb (g cm−3) | 1.68 | 1.70 | 1.67 | 1.65 |
Van Genuchten shape parameter α (cm−1) | 0.03 | 0.035 | 0.049 | 0.045 |
Van Genuchten shape parameter n (-) | 2.58 | 1.96 | 2.75 | 2.05 |
Residual water content θr (cm3 cm−3) | 0.07 | 0.005 | 0.021 | 0.005 |
Saturated water content θs (cm3 cm−3) | 0.27 | 0.25 | 0.32 | 0.25 |
Pore connectivity parameter in the conductivity function l (−) | 0.5 | 0.5 | 0.5 | 0.5 |
0.25 m Below Surface | 1.15 m Below Surface | |||||||
---|---|---|---|---|---|---|---|---|
168 h Simulation Time | Precipitation Event | 168 h Simulation Time | Precipitation Event | |||||
Event | RMSE | PBIAS | RMSE | PBIAS | RMSE | PBIAS | RMSE | PBIAS |
Soil 1 | ||||||||
1 | 0.017 | −3.5 | 0.025 | −5.4 | 0.019 | −10.9 | 0.021 | −13.8 |
2 | 0.019 | −3.4 | 0.033 | −5.6 | 0.024 | −11.5 | 0.042 | −16.6 |
3 | 0.023 | −7.8 | 0.033 | −13.7 | 0.028 | −14.5 | 0.039 | −19.8 |
Soil 4 | ||||||||
1 | 0.016 | −6.4 | 0.018 | −4.3 | 0.018 | 12.3 | 0.018 | 14.4 |
2 | 0.019 | 1.1 | 0.037 | −3.6 | 0.022 | 11.4 | 0.037 | 5.7 |
3 | 0.025 | 7.2 | 0.027 | 5.0 | 0.029 | 15.7 | 0.028 | 12.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fichtner, T.; Ibrahim, S.I.; Hamann, F.; Graeber, P.-W. Purification Efficiency for Treated Waste Water in Case of Joint Infiltration with Water Originating from Precipitation. Appl. Sci. 2020, 10, 3155. https://doi.org/10.3390/app10093155
Fichtner T, Ibrahim SI, Hamann F, Graeber P-W. Purification Efficiency for Treated Waste Water in Case of Joint Infiltration with Water Originating from Precipitation. Applied Sciences. 2020; 10(9):3155. https://doi.org/10.3390/app10093155
Chicago/Turabian StyleFichtner, Thomas, Sharif Ibne Ibrahim, Frieder Hamann, and Peter-Wolfgang Graeber. 2020. "Purification Efficiency for Treated Waste Water in Case of Joint Infiltration with Water Originating from Precipitation" Applied Sciences 10, no. 9: 3155. https://doi.org/10.3390/app10093155
APA StyleFichtner, T., Ibrahim, S. I., Hamann, F., & Graeber, P.-W. (2020). Purification Efficiency for Treated Waste Water in Case of Joint Infiltration with Water Originating from Precipitation. Applied Sciences, 10(9), 3155. https://doi.org/10.3390/app10093155