# Grating Metamaterials Based on CdTe/CdMgTe Quantum Wells as Terahertz Detectors for High Magnetic Field Applications

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Samples and Experiment

#### 2.1. Wafers’ Description and Characterization

#### 2.2. Etching

## 3. Results

#### 3.1. Comparison of Etched and Au Gratings

#### 3.2. Dependence on the Grooves’ Depth

#### 3.3. Influence of Illumination with the White Light

## 4. Discussion

## Author Contributions

## Funding

## Conflicts of Interest

## Abbreviations

2DEG | two-dimensional electron gas |

AFM | atomic force microscope |

CR | cyclotron resonance |

EBL | electron beam lithography |

MP | magnetoplasmon |

PMMA | polymethyl methacrylate |

SEM | scanning electron microscope |

SPSL | short period superlattice |

QW | quantum well |

## Appendix A

## References

- Dyakonov, M.; Shur, M.S. Shallow water analogy for a ballistic field effect transistor: New mechanism of plasma wave generation by dc current. Phys. Rev. Lett.
**1993**, 71, 2465–2468. [Google Scholar] [CrossRef] - Dyakonov, M.; Shur, M.S. Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid. IEEE Trans. Electron Devices
**1996**, 43, 380–387. [Google Scholar] [CrossRef] - Knap, W.; Teppe, F.; Meziani, Y.; Dyakonova, N.; Łusakowski, J.; Boeuf, F.; Skotnicki, T.; Maude, D.; Rumyantsev, S.; Shur, M.S. Plasma wave detection of sub-terahertz and terahertz radiation by silicon field-effect transistors. Appl. Phys. Lett.
**2004**, 85, 675–677. [Google Scholar] [CrossRef][Green Version] - Ikamas, K.; Cibiraite, D.; Lisauskas, A.; Bauer, M.; Krozer, V.; Roskos, H.G. Broadband terahertz power detectors based on 90-nm silicon CMOS transistors with flat responsivity up to 2.2 THz. IEEE Electron Device Lett.
**2018**, 39, 1413–1416. [Google Scholar] [CrossRef] - Muravev, V.A.; Gusikhin, P.A.; Zarezin, A.M.; Andreev, I.V.; Gubarev, S.I.; Kukushkin, I.V. Two-dimensional plasmon induced by metal proximity. Phys. Rev. B
**2019**, 99, 241406. [Google Scholar] [CrossRef][Green Version] - Shchepetilnikov, A.V.; Kaysin, B.D.; Gusikhin, P.A.; Muravev, V.M.; Tsydynzhapov, G.E.; Nefyodov, Y.A.; Dremin, A.A.; Kukushkin, I.V. Optimization of the frequency response of a novel GaAs plasmonic terahertz detector. Opt. Quantum Electron.
**2019**, 51, 1–8. [Google Scholar] [CrossRef] - Bandurin, D.A.; Svintsov, D.; Gayuchenko, I.; Shuigang, G.X.; Principi, A.; Moskotin, M.; Tretyakov, I.; Yagodkin, D.; Zhukov, S.; Taniguchi, T.; et al. Resonant terahertz detection using graphene plasmons. Nat. Commun.
**2018**, 9, 5392. [Google Scholar] [CrossRef] - Knap, W.; Dur, D.; Raymond, A.; Meny, C.; Leotin, J.; Huant, S.; Etienne, B. A far-infrared spectrometer based on cyclotron resonance emission sources. Rev. Sci. Instr.
**1992**, 63, 3293–3297. [Google Scholar] [CrossRef] - Knap, W.; Łusakowski, J.; Parenty, T.; Bollaert, S.; Cappy, A.; Popov, V.V.; Shur, M.S. Terahertz emission by plasma waves in 60 nm gate high electron mobility transistors. Appl. Phys. Lett.
**2004**, 84, 2331–2333. [Google Scholar] [CrossRef][Green Version] - Knap, W.; Łusakowski, J.; Karpierz, K.; Orsal, B.; Robert, J.-L. Improved performance of magnetically tunable GaAs and InP far-infrared detectors. J. Appl. Phys.
**1992**, 72, 680–683. [Google Scholar] [CrossRef] - Yavorskiy, D.; Karpierz, K.; Grynberg, M.; Knap, W.; Łusakowski, J. Indium antimonide detector for spectral characterization of terahertz sources. J. Appl. Phys.
**2018**, 123, 064502. [Google Scholar] [CrossRef] - Białek, M.; Witowski, A.M.; Orlita, M.; Potemski, M.; Czapkiewicz, M.; Wróbel, J.; Umansky, V.; Grynberg, M.; Łusakowski, J. Plasmonic terahertz detectors based on a high-electron mobility GaAs/AlGaAs heterostructure. J. Appl. Phys.
**2014**, 115, 214503. [Google Scholar] [CrossRef][Green Version] - Grynberg, M.; Huant, S.; Martinez, G.; Kossut, J.; Wojtowicz, T.; Karczewski, G.; Shi, J.-M.; Peeters, F.M.; Devreese, J.T. Magneto-polaron effect on shallow indium donors in CdTe. Phys. Rev. B
**1996**, 54, 1467–1470. [Google Scholar] [CrossRef] [PubMed] - Höschl, P.; Polívka, P.; Prosser, V.; Skárivxaxnkovxax, M.; Vidra, M. Cadmium Telluride nuclear radiation detectors. Jpn. J. Appl. Phys.
**1977**, 16, 279–281. [Google Scholar] [CrossRef] - Dornhaus, R.; Nimtz, G. The properties and applications of the Hg
_{1−x}Cd_{x}Te alloy systems. In Narrow—Gap Smiconductors; Höhler, G., Ed.; Springer: Berlin/Heidelberg, Germany, 1985. [Google Scholar] - Duplantier, B.; Rivasseae, V.; Fuchs, J.N. (Eds.) Dirac Matter; Progress in Mathematical Physics; Springer International Publishing: Cham, Switzerland, 2017; Volume 71. [Google Scholar]
- Shen, S.-Q. Topological Insulators, 2nd ed.; Springer Series in Solid-State Sciences; Keimer, K., Merlin, R., Queisser, H.-J., von Klitzing, K., Eds.; Springer Nature Singapore Pte Ltd.: Singapore, 2017; Volume 187. [Google Scholar]
- Zawadzki, W. Semirelativity in semiconductors: A review. J. Phys. Condens. Matter
**2017**, 29, 373004. [Google Scholar] [CrossRef][Green Version] - Gałązka, R.R.; Wojtowicz, T. CdTe-based semimagnetic semiconductors. In CdTe and Related Compounds; Physics, Defects, Hetero- and Nano-Structures, Crystal Growth, Surfaces and Applications, Part I; Triboulet, R., Siffert, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2010; pp. 133–168. [Google Scholar]
- Kobak, J.; Smoleński, T.; Goryca, M.; Papaj, M.; Gietka, K.; Bogucki, A.; Koperski, M.; Rousset, J.-G.; Suffczyński, J.; Janik, E.; et al. Designing quantum dots for solotronics. Nat. Commun.
**2014**, 5, 3191. [Google Scholar] [CrossRef][Green Version] - Piot, B.A.; Kunc, J.; Potemski, M.; Maude, D.K.; Betthausen, C.; Vogl, A.; Weiss, D.; Karczewski, G.; Wojtowicz, T. Fractional quantum Hall effect in CdTe. Phys. Rev. B
**2010**, 82, 081307. [Google Scholar] [CrossRef][Green Version] - Furdyna, J.K.; Lee, S.; Dobrowolska, M.; Wojtowicz, T.; Liu, X. Band-Offset Engineering in Magnetic/Non-Magnetic Semiconductor Quantum Structures. In Introduction to the Physics of Diluted Magnetic Semiconductors; Springer Series in Materials Science; Kossut, J., Gaj, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 103–160. [Google Scholar]
- Grigelionis, I.; Białek, M.; Grynberg, M.; Czapkiewicz, M.; Kolkovskiy, V.; Wiater, M.; Wojciechowski, T.; Wróbel, J.; Wojtowicz, T.; Diakonova, N.; et al. Terahertz magneto-spectroscopy of a point contact based on CdTe/CdMgTe quantum well. J. Nanophotonics
**2015**, 9, 093082. [Google Scholar] [CrossRef] - Grigelionis, I.; Nogajewski, K.; Karczewski, G.; Wojtowicz, T.; Czapkiewicz, M.; Wróbel, J.; Boukari, H.; Mariette, H.; Łusakowski, J. Magnetoplasmons in high electron mobility CdTe/CdMgTe quantum wells. Phys. Rev. B
**2015**, 91, 075424. [Google Scholar] [CrossRef] - Imanaka, Y.; Takamasu, T.; Kido, G.; Karczewski, G.; Wojtowicz, T.; Kossut, J. Cyclotron resonance in high mobility CdTe/CdMgTe 2D electron system in the integer quantum Hall regime. Phys. B Condens. Matter
**1998**, 457, 256–258. [Google Scholar] [CrossRef] - Karczewski, G.; Wojtowicz, T.; Wang, Y.; Wu, X.; Peeters, F. Electron effective mass and resonant polaron effect in CdTe/CdMgTe quantum wells. Phys. Status Solidi B
**2002**, 229, 597–600. [Google Scholar] [CrossRef] - Białek, M.; Czapkiewicz, M.; Wróbel, J.; Umansky, V.; Łusakowski, J. Plasmon dispersions in high electron mobility terahertz detectors. Appl. Phys. Lett.
**2014**, 104, 263514. [Google Scholar] [CrossRef] - Białek, M.; Łusakowski, J.; Czapkiewicz, M.; Wróbel, J.; Umansky, V. Photoresponse of a two-dimensional electron gas at the second harmonic of the cyclotron resonance. Phys. Rev. B
**2015**, 91, 045437. [Google Scholar] [CrossRef][Green Version] - Nogajewski, K.; Łusakowski, J.; Knap, W.; Popov, V.V.; Teppe, F.; Rumyantsev, S.L.; Shur, M.S. Localized and collective magnetoplasmon excitations in AlGaN/GaN-based grating-gate terahertz modulators. Appl. Phys. Lett.
**2011**, 99, 213501. [Google Scholar] [CrossRef] - Łusakowski, J. Plasmon—Terahertz photon interaction in high-electron-mobility heterostructures. Semicond. Sci. Technol.
**2016**, 32, 013004. [Google Scholar] [CrossRef] - Kushvaha, M.S. Plasmons and magnetoplasmons in semiconductor heterostructures. Surf. Sci. Rep.
**2001**, 41, 1–416. [Google Scholar] [CrossRef] - Bobko, E.; Płoch, D.; Wiater, M.; Wojtowicz, T.; Wróbel, J. Fabrication of CdMgTe/Cd(Mn)Te nanostructures with the application of high-resolution electron-beam lithography. Opto-Electron. Rev.
**2017**, 25, 65–68. [Google Scholar] [CrossRef] - Szczytko, J.; Stolarek, M.; Piętka, B.; Łusakowski, J.; Barańska, A.; Papis, E.; Wawro, A.; Adomavisius, R.; Krotkus, A.; Pałka, N.; et al. Terahertz properties of metallic layers and grids. In Proceedings of the 19th International Conference on Microwaves, Radar and Wireless Communications—MIKON 2012, Warsaw, Poland, 21–23 May 2012; pp. 271–275. [Google Scholar]
- Von Ortenberg, M. Substrate effects on the cyclotron resonance in surface layers of Silicon. Solid State Commun.
**1975**, 17, 1335–1338. [Google Scholar] [CrossRef] - Narozhyny, B.N.; Levchenko, A. Coulomb drag. Rev. Mod. Phys.
**2016**, 88, 025003. [Google Scholar] [CrossRef][Green Version] - Mikhailov, S.A. Plasma instability and amplification of electromagnetic waves in low-dimensional electron system. Phys. Rev. B
**1998**, 58, 1517–1532. [Google Scholar] [CrossRef][Green Version] - Mikhailov, S.A. Microwave-induced magnetotransport phenomena in two-dimensional electron systems: Importance of electrodynamic effects. Phys. Rev. B
**2004**, 70, 165311. [Google Scholar] [CrossRef][Green Version] - Eguiluz, A.; Lee, T.K.; Quinn, J.J.; Chiu, K.W. Interface excitations in metal-insulator-semiconductor structures. Phys. Rev. B
**1975**, 11, 4989–4993. [Google Scholar] [CrossRef] - Chaplik, A.V. Possible crystalization of charge carriers in low-dimensional inversion layers. Sov. Phys. JETP
**1972**, 35, 395–398. [Google Scholar] - Popov, V.V. Plasmon Excitation and Plasmonic Detection of Terahertz Radiation in the Grating-Gate Field-Effect-Transistor Structures. J. Infrared Mill. Terahz. Wave
**2011**, 32, 1178–1191. [Google Scholar] [CrossRef] - Zabolotnykh, A.A.; Volkov, V.A. Interaction of gated and ungated plasmons in two-dimensiona electron systems. Phys. Rev. B
**2019**, 99, 165304. [Google Scholar] [CrossRef][Green Version] - Bylinkin, A.; Totova, E.; Mikheev, V.; Zhukova, E.; Zhukov, S.; Belyanchikov, M.; Kashchenko, M.; Miakonkikh, A.; Svintsov, D. Tight-binding terahertz plasmon in chemical-vapor-deposited graphene. Phys. Rev. Appl.
**2019**, 11, 054017. [Google Scholar] [CrossRef][Green Version]

**Figure 1.**SEM photographs of the layered structure of the wafer A with one QW (

**top**) and the wafer B with two QWs (

**bottom**).

**Figure 2.**An electron microscope photography of etched sample (

**left**) with a corresponding AFM profile (

**right**); x and y coordinates describe, respectively, position of the tip of AFM in the plane of the sample and in the direction normal to this plane.

**Figure 3.**A dependence of the depth of etched grooves on their width at a constant time of etching equal to 60 s. Error bars show uncertainity given by measurements with the AFM.

**Figure 4.**Transmission spectra of samples from the wafer B. In the case of both etched and Au gratings, the period of the grating was equal to 8 $\mathsf{\mu}$m and $\alpha \approx 0.5$ (see Appendix A for a definition of $\alpha $). Vertical bars indicate the position of the CR. The wavelenght of radiation used is indicated in the figure.

**Figure 5.**Transmission spectra through samples from wafer B with Au gratings of the period equal to 8 $\mathsf{\mu}$m, 4 $\mathsf{\mu}$m and 2 $\mathsf{\mu}$m (bottom to top) and $\alpha \approx 0.5$. A reference unprocessed sample shows the position of the CR (indicated with a vertical bar). The wavelength of radiation was 118.8 $\mathsf{\mu}$m.

**Figure 6.**Influence of depth of grooves on transmission. The wavelenght of radiation was 118.8 $\mathsf{\mu}$m. Position of the CR in unprocessed sample is indicated with a vertical bar.

**Figure 7.**Influence of illumination with white light on transmission spectra on unprocessed sample and samples with Au and etched grating of the period equal to 8 $\mathsf{\mu}$m. The wavelenght of radiation was 118.8 $\mathsf{\mu}$m. The vertical bar shows position of the CR in unprocessed sample.

**Figure 8.**Transmission spectra of samples with etched grating of the period equal to 8 $\mathsf{\mu}$m: single and two quantum wells. The wavelenght of radiation was 118.8 $\mathsf{\mu}$m. The vertical bar indicated position of the CR in unprocessed sample.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Yavorskiy, D.; Szoła, M.; Karpierz, K.; Bożek, R.; Rudniewski, R.; Karczewski, G.; Wojtowicz, T.; Wróbel, J.; Łusakowski, J.
Grating Metamaterials Based on CdTe/CdMgTe Quantum Wells as Terahertz Detectors for High Magnetic Field Applications. *Appl. Sci.* **2020**, *10*, 2807.
https://doi.org/10.3390/app10082807

**AMA Style**

Yavorskiy D, Szoła M, Karpierz K, Bożek R, Rudniewski R, Karczewski G, Wojtowicz T, Wróbel J, Łusakowski J.
Grating Metamaterials Based on CdTe/CdMgTe Quantum Wells as Terahertz Detectors for High Magnetic Field Applications. *Applied Sciences*. 2020; 10(8):2807.
https://doi.org/10.3390/app10082807

**Chicago/Turabian Style**

Yavorskiy, Dmitriy, Maria Szoła, Krzysztof Karpierz, Rafał Bożek, Rafał Rudniewski, Grzegorz Karczewski, Tomasz Wojtowicz, Jerzy Wróbel, and Jerzy Łusakowski.
2020. "Grating Metamaterials Based on CdTe/CdMgTe Quantum Wells as Terahertz Detectors for High Magnetic Field Applications" *Applied Sciences* 10, no. 8: 2807.
https://doi.org/10.3390/app10082807