Multiparameter Fusion Decision Routing Algorithm for Energy-Constrained Wireless Sensor Networks
Abstract
:1. Introduction
1.1. Background and Motivation
1.2. Related Work
1.3. Contributions
2. System Model and Routing Evaluation Parameter
2.1. System Model and Relevant Definitions
2.2. Routing Evaluation Parameter
2.2.1. Energy Equilibrium Degree
2.2.2. Single-Hop Transmission Ratio
2.2.3. Effective Forward Rate
2.2.4. Cache Queue Index
2.2.5. Residual Energy Level Factor
3. Proposed Routing Optimization Algorithm
3.1. Principle and Implementation
3.1.1. Establishment of the Forward Neighbor Information Table
3.1.2. Calculation of the Routing Evaluation Parameters
3.1.3. Selection of the Next Hop
3.2. Routing Selection Strategy
3.3. Performance Analysis
3.3.1. Influence of the Adjustment Factor on the Network Performance
3.3.2. Simple Estimate of the Computational Time Complexity
4. Simulation Results and Analysis
4.1. Network Performance with Different Adjustment Factors
4.2. Comparison Algorithms
4.2.1. Classical Algorithm: Network Performance with the Numbers of Nodes
4.2.2. Recent Algorithm: Network Performance with the Numbers of Nodes
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Csáji, B.C.; Kemény, Z.; Pedone, G.; Andras, K.; Váncza, J. Wireless Multi-Sensor Networks for Smart Cities: A Prototype System with Statistical Data Analysis. IEEE Sens. J. 2017, 17, 7667–7676. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Lin, H.J. Design and Implementation of Smart Home Control Systems Based on Wireless Sensor Networks and Power Line Communications. IEEE Trans. Ind. Electron. 2015, 62, 4430–4442. [Google Scholar] [CrossRef]
- Yuan, Y.K.; Zhang, Y.; Wei, T.Y.; Yang, M.L.; Tan, Q.L. Review of key technologies and applications of intelligent transportation. Appl. Electron. Tech. 2015, 41, 9–12, 16. [Google Scholar] [CrossRef]
- Nafi, N.S.; Ahmed, K.; Datta, M.; Gregory, M.A. A novel software defined wireless sensor network based grid to vehicle load management system. In Proceedings of the 2016 10th International Conference on Signal Processing and Communication Systems (ICSPCS), Gold Coast, QLD, Australia, 19–21 December 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Hamouda, Y.E.M.; Msallam, M.M. Smart heterogeneous precision agriculture using wireless sensor network based on extended Kalman filter. Neural Comput. Appl. 2018, 1–17. [Google Scholar] [CrossRef]
- Moribe, T.; Okada, H.; Kobayashl, K.; Katayama, M. Combination of a wireless sensor network and drone using infrared thermometers for smart agriculture. In Proceedings of the 15th IEEE Annual Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, USA, 12–15 January 2018; pp. 1–5. [Google Scholar] [CrossRef]
- De, P.A.; Filho, R.H.; Rodrigues, J.; Oliveira, P. Infrastructure for Integration of Legacy Electrical Equipment into a Smart-Grid Using Wireless Sensor Networks. Sensors 2018, 18, 1312. [Google Scholar] [CrossRef] [Green Version]
- Queiroz, D.V.; Alencar, M.S.; Gomes, R.D.; Fonseca, I.E.; Benavente-Peces, C. Survey and Systematic Mapping of Industrial Wireless Sensor Networks. J. Netw. Comput. Appl. 2017, 97, 96–125. [Google Scholar] [CrossRef]
- Kassan, R.; Châtelet, E.; Soukieh, J. Reliability assessment of photovoltaic wireless sensor networks for forest fire propagation detection. Int. J. Model. Simul. 2018, 38, 50–65. [Google Scholar] [CrossRef]
- Sinulingga, E.; Siregar, B. Remote Monitoring of Post-eruption Volcano Environment Based-On Wireless Sensor Network (WSN): The Mount Sinabung Case. J. Phys. Conf. Ser. 2017, 801, 012084. [Google Scholar] [CrossRef]
- Lara, R.; Benítez, D.; Caamaño, A.; Zennaro, M.; Rojo-Álvarez, Z. On Real-Time Performance Evaluation of Volcano-Monitoring Systems with Wireless Sensor Networks. IEEE Sens. J. 2015, 15, 3514–3523. [Google Scholar] [CrossRef]
- Roy, S.; Nene, M.J. A security framework for military application on infrastructure based wireless sensor network. In Proceedings of the IEEE International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN), Kolkata, West Bengal, India, 20–22 November 2015; pp. 369–376. [Google Scholar] [CrossRef]
- Han, K.H.; Ko, Y.B.; Kim, J.H. A novel gradient approach for efficient data dissemination in wireless sensor networks. In Proceedings of the IEEE 60th Vehicular Technology Conference, Los Angeles, CA, USA, 26–29 September 2004; pp. 2979–2983. [Google Scholar] [CrossRef]
- Singh, S.; Woo, M.; Raghavendra, C.S. Power-aware Routing in Mobile Ad Hoc Networks. In Proceedings of the 4th Nnnual ACM/IEEE International Conference on Mobile Computing and Networking, Dallas, TX, USA, 25–30 October 1998; pp. 181–190. [Google Scholar] [CrossRef]
- Weng, C.C.; Chen, C.W.; Chen, P.Y.; Chang, K.C. Design of an energy-efficient cross-layer protocol for mobile ad hoc networks. IET Commun. 2013, 7, 217–228. [Google Scholar] [CrossRef]
- Zhang, M.X.; Wang, H.F.; Xiang, F.H.; Mao, J.L.; Zhang, C.L. Routing algorithm on dynamic adjustment of forward angle based on residual energy. J. Comput. Appl. 2016, 36, 77–80, 86. [Google Scholar]
- Tian, Y.F.; Wang, L.H. Routing algorithm for wireless sensor networks by considering residual energy and communication cost. J. Nanjing Univ. Sci. Technol. 2018, 42, 96–101. [Google Scholar] [CrossRef]
- Yuan, X.; Zhong, F.M.; Chen, Z.K.; Yang, D.L. Residual energy level based clustering routing protocol for wireless sensor networks. In Proceedings of the 6th International Conference on Electronics and Information Engineering, Dalian, China, 3 December 2015; p. 97940K. [Google Scholar] [CrossRef]
- Singh, J.; Singh, B.P.; Shaw, S. A new LEACH-based routing protocol for energy optimization in wireless sensor network. In Proceedings of the International Conference on Computer and Communication Technology (ICCCT), Allahabad, India, 26–28 September 2014; pp. 181–186. [Google Scholar] [CrossRef]
- Wang, N.; Zhou, Y.; Liu, J. An efficient routing algorithm to prolong network lifetime in wireless sensor networks. In Proceedings of the 10th International Conference on Communications and Networking in China (ChinaCom), Shanghai, China, 15–17 August 2015; pp. 322–325. [Google Scholar] [CrossRef]
- Sun, Y.; Dong, W.; Chen, Y. An Improved Routing Algorithm Based on Ant Colony Optimization in Wireless Sensor Networks. IEEE Commun. Lett. 2017, 21, 1317–1320. [Google Scholar] [CrossRef]
- Zhang, L.; Lim, A. Improving Lifetime in Maximum Residual Energy Routing With Increased Transmission Distance and Retransmission. In Proceedings of the International Conference on Communications, Circuits and Systems, Guilin, China, 25–28 June 2006; pp. 1438–1442. [Google Scholar] [CrossRef]
- Tranquang, V.; Miyoshi, T. A transmission range adjustment algorithm to avoid energy holes in wireless sensor networks. In Proceedings of the 8th Asia-Pacific Symposium on Information and Telecommunication Technologies, Kuching, Malaysia, 15–18 June 2010; pp. 1–6. [Google Scholar]
- Han, Z.; Wu, J.; Zhang, J.; Liu, L.; Tian, K. A General Self-Organized Tree-Based Energy-Balance Routing Protocol for Wireless Sensor Network. IEEE Trans. Nucl. Sci. 2014, 61, 732–740. [Google Scholar] [CrossRef]
- Abd, M.A.; Al-Rubeaai, S.F.M.; Singh, B.K.; Tepe, K.E.; Benlamri, R. Extending Wireless Sensor Network Lifetime With Global Energy Balance. IEEE Sens. J. 2015, 15, 5053–5063. [Google Scholar] [CrossRef]
- Li, G.Y.; Cao, Y.; Gao, X.; Tang, J. Energy balance routing protocol for wireless sensor networks based on fuzzy next-hop selection. Wuhan Univ. J. Nat. Sci. 2009, 14, 148–152. [Google Scholar] [CrossRef]
- Ekal, H.H.; Abdullah, J.; Jamil, A.; Audah, L.; Alias, R. Energy balance mechanism for improving the lifetime in dense centric Wireless Sensor Networks. In Proceedings of the 7th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, Canada, 13–15 October 2016; pp. 1–15. [Google Scholar] [CrossRef]
- Xian, Q.; Zhang, W.T. Energy-Balanced Distance-Based Routing Algorithm in Wireless Sensor Networks. Appl. Mech. Mater. 2014, 539, 229–233. [Google Scholar] [CrossRef]
- Mahfoudh, S.; Minet, P. Survey of Energy Efficient Strategies in Wireless Ad Hoc and Sensor Networks. In Proceedings of the 7th International Conference on Networking (ICN 2008), Cancun, Mexico, 13–18 April 2008; pp. 1–7. [Google Scholar] [CrossRef]
- Long, Z.H.; Gao, M.J. Survey on network lifetime research for wireless sensor networks. In Proceedings of the 2nd IEEE International Conference on Broadband Network and Multimedia Technology, Beijing, China, 18–20 October 2009; pp. 899–902. [Google Scholar] [CrossRef]
- Zawodniok, M.; Jagannathan, S. Predictive Congestion Control Protocol for Wireless Sensor Networks. IEEE Trans. Wirel. Commun. 2007, 6, 3955–3963. [Google Scholar] [CrossRef]
- Ding, W.; Tang, L.R.; Ji, S.Y. Optimizing routing based on congestion control for wireless sensor networks. Wirel. Netw. 2016, 22, 915–925. [Google Scholar] [CrossRef]
- Ding, W.; Tang, L.R.; Feng, S. Traffic-Aware and Energy-Efficient Routing Algorithm for Wireless Sensor Networks. Wireless Personal. Communication 2015, 85, 2669–2686. [Google Scholar] [CrossRef]
- Rezaee, A.A. A Fuzzy Congestion Control Protocol Based on Active Queue Management in Wireless Sensor Networks with Medical Applications. Wireless Personal. Communication 2018, 98, 815–842. [Google Scholar] [CrossRef]
- Tang, L.R.; Lu, Z.L.; Cai, J.Q.; Yan, J.Y. An Equilibrium Strategy-Based Routing Optimization Algorithm for Wireless Sensor Networks. Sensors 2018, 18, 3477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, L.R.; Liu, H.T.; Yan, J.Y. Gravitation Theory Based Routing Algorithm for Active Wireless Sensor Networks. Wireless Personal. Communication 2017, 97, 269–280. [Google Scholar] [CrossRef]
- Sun, Y.J.; Lin, C.L.; Jiang, H.F. An Energy Efficient Distributed Uneven Clustering Routing Algorithm for WSNs. Chin. J. Sens. Actuators 2015, 28, 1194–1200. [Google Scholar] [CrossRef]
- Jiang, H.F.; Qian, J.S.; Sun, Y.J.; Sun, R.K.; Li, J. Energy Cost Based Energy Optimized Routing Algorithm in WSN. Comput. Sci. 2012, 39, 73–76. [Google Scholar]
- Zhang, D.G.; Li, G.; Zheng, K.; Ming, X.C.; Pan, Z.H. An Energy-Balanced Routing Method Based on Forward-Aware Factor for Wireless Sensor Networks. IEEE Trans. Ind. Inform. 2014, 10, 766–773. [Google Scholar] [CrossRef]
Parameter | Value | Note |
---|---|---|
Network coverage | 100 m × 100 m | S |
Node number Battery initial energy | 100~300 nodes 0.5 J | N Eo |
Maximum communication radius Packet generation rate | 30 m One packet/round | R r |
Packet size | 1024 bits | dm |
Buffer size | 20 packets | Qm |
Adjustment factor Inequality aversion index | 0~20 2.5 | α ε |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, J.; Cai, J.; Lu, Z.; Tang, L.; Wu, R. Multiparameter Fusion Decision Routing Algorithm for Energy-Constrained Wireless Sensor Networks. Appl. Sci. 2020, 10, 2747. https://doi.org/10.3390/app10082747
Yan J, Cai J, Lu Z, Tang L, Wu R. Multiparameter Fusion Decision Routing Algorithm for Energy-Constrained Wireless Sensor Networks. Applied Sciences. 2020; 10(8):2747. https://doi.org/10.3390/app10082747
Chicago/Turabian StyleYan, Jiangyu, Jinqi Cai, Zhilin Lu, Liangrui Tang, and Runze Wu. 2020. "Multiparameter Fusion Decision Routing Algorithm for Energy-Constrained Wireless Sensor Networks" Applied Sciences 10, no. 8: 2747. https://doi.org/10.3390/app10082747
APA StyleYan, J., Cai, J., Lu, Z., Tang, L., & Wu, R. (2020). Multiparameter Fusion Decision Routing Algorithm for Energy-Constrained Wireless Sensor Networks. Applied Sciences, 10(8), 2747. https://doi.org/10.3390/app10082747