Stability of Multiple Seasonal Holt-Winters Models Applied to Hourly Electricity Demand in Spain
Abstract
:1. Introduction
2. Related Work
3. Materials and Methods
- At least 3 sets of data for each season of the year.
- At least there must be sets in different years, to check the repeatability of the process in similar situations in a matter of period of the year, including holidays nearby.
- The data has not been filtered or the special days were altered.
4. Results
4.1. Double Seasonal Models
4.2. Triple Seasonal Models
5. Discussion of the Results
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Martínez-Ramos, J.L.; Troncoso, A.; Riquelme-Santos, J.; Gómez-Expósito, A. Short-term hydro-thermal coordination based on interior point nonlinear programming and genetic algorithms. In Proceedings of the IEEE Porto Power Tech Conference, Porto, Portugal, 10–13 September 2001; pp. 1–6. [Google Scholar]
- Hobbs, B.F. Analysis of the value for unit commitment of improved load forecasts. IEEE Trans. Power Syst. 1999, 14, 1342–1348. [Google Scholar] [CrossRef]
- Hong, T. Crystal Ball Lessons in Predictive Analytics. Energybiz 2015, 12, 35–37. [Google Scholar]
- Weron, R. Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Weron, R. Electricity price forecasting: A review of the state-of-the-art with a look into the future. Int. J. Forecast. 2014, 30, 1030–1081. [Google Scholar] [CrossRef] [Green Version]
- Troncoso, A.; Riquelme-Santos, J.M.; Gómez-Expósito, A.; Martínez-Ramos, J.L.; Riquelme, J.C. Electricity Market Price Forecasting Based on Weighted Nearest Neighbors Techniques. IEEE Trans. Power Syst. 2007, 22, 1294–1301. [Google Scholar]
- Chatfield, C.; Mohammad, Y. Holt-Winters Forecasting: Some Practical Issues. J. R. Stat. Soc. Ser. D (The Statistician) 1988, 37, 129–140. [Google Scholar] [CrossRef]
- Gardner, E.S. Exponential smoothing: The state of the art—Part II. Int. J. Forecast. 2006, 22, 637–666. [Google Scholar] [CrossRef]
- Taylor, J.W. Short-term electricity demand forecasting using double seasonal exponential smoothing. J. Oper. Res. Soc. 2003, 54, 799–805. [Google Scholar] [CrossRef]
- Taylor, J.W. Triple seasonal methods for short-term electricity demand forecasting. Eur. J. Oper. Res. 2010, 204, 139–152. [Google Scholar] [CrossRef] [Green Version]
- Taylor, J.W. An evaluation of methods for very short-term load forecasting using minute-by-minute British data. Int. J. Forecast. 2008, 24, 645–658. [Google Scholar] [CrossRef]
- Taylor, J.W.; Espasa, A. Energy forecasting. Int. J. Forecast. 2008, 24, 561–565. [Google Scholar] [CrossRef]
- García-Díaz, J.; Trull, O. Competitive Models for the Spanish Short-Term Electricity Demand Forecasting. In Proceedings of the International Conference on Time Series and Forecasting, Granada, Spain, 27–29 June 2016; pp. 217–231. [Google Scholar]
- Trull, O.; García-Díaz, J.C.; Troncoso, A. Initialization Methods for Multiple Seasonal Holt–Winters Forecasting Models. Mathematics 2020, 8, 268. [Google Scholar] [CrossRef] [Green Version]
- Makridakis, S.; Wheelwright, S.; Hyndman, R. Forecasting: Methods and Applications; John Willey and Sons: Hoboken, NJ, USA, 1998. [Google Scholar]
- Trull, O.; García-Díaz, J.C.; Troncoso, A. Application of Discrete-Interval Moving Seasonalities to Spanish Electricity Demand Forecasting during Easter. Energies 2019, 12, 1083. [Google Scholar] [CrossRef] [Green Version]
- López, M.; Sans, C.; Valero, S.; Senabre, C. Classification of Special Days in Short-Term Load Forecasting: The Spanish Case Study. Energies 2019, 12, 1253. [Google Scholar] [CrossRef] [Green Version]
- Arora, S.; Taylor, J. Short-term forecasting of anomalous load using rule-based triple seasonal methods. IEEE Trans. Power Syst. 2013, 28, 3235–3242. [Google Scholar] [CrossRef] [Green Version]
- David, A.K.; Wen, F. Strategic bidding in competitive electricity markets: a literature survey. In Proceedings of the 2000 Power Engineering Society Summer Meeting (Cat. No. 00CH37134), Seattle, WA, USA, 16–20 July 2000; Volume 4, pp. 2168–2173. [Google Scholar]
- Barroso, L.A.; Cavalcanti, T.H.; Giesbertz, P.; Purchala, K. Classification of electricity market models worldwide. In Proceedings of the International Symposium CIGRE/IEEE PES, San Antonio, TX, USA, 5–7 October 2005; pp. 9–16. [Google Scholar]
- Roldán-Fernández, J.; Gómez-Quiles, C.; Merre, A.; Burgos-Payán, M.; Riquelme-Santos, J.M. Cross-border energy exchange and renewable premiums: The case of the Iberian system. Energies 2018, 11, 3277. [Google Scholar] [CrossRef] [Green Version]
- Domínguez, E.F.; Bernat, J.X. Restructuring and generation of electrical energy in the Iberian Peninsula. Energy Policy 2007, 35, 5117–5129. [Google Scholar] [CrossRef]
- Cancelo, J.R.; Espasa, A.; Grafe, R. Forecasting the electricity load from one day to one week ahead for the Spanish system operator. Int. J. Forecast. 2008, 24, 588–602. [Google Scholar] [CrossRef] [Green Version]
- López, M.; Valero, S.; Senabre, C. Short-term load forecasting of multiregion systems using mixed effects models. In Proceedings of the 2017 14th International Conference on the European Energy Market (EEM), Dresden, Germany, 6–9 June 2017; pp. 1–5. [Google Scholar]
- Talavera-Llames, R.; Pérez-Chacón, R.; Troncoso, A.; Martínez-Álvarez, F. Big data time series forecasting based on nearest neighbours distributed computing with Spark. Knowl. Based Syst. 2018, 161, 12–25. [Google Scholar] [CrossRef]
- Bedi, J.; Toshniwal, D. Deep learning framework to forecast electricity demand. Appl. Energy 2019, 238, 1312–1326. [Google Scholar] [CrossRef]
- Torres, J.F.; Troncoso, A.; Koprinska, I.; Wang, Z.; Martínez-Álvarez, F. Big data solar power forecasting based on deep learning and multiple data sources. Appl. Energy 2019, 238, 1312–1326. [Google Scholar] [CrossRef]
- Yang, Y.; Hong, W.; Li, S. Deep ensemble learning based probabilistic load forecasting in smart grids. Energy 2019, 189, 116324. [Google Scholar] [CrossRef]
- Galicia, A.; Talavera-Llames, R.; Troncoso, A.; Koprinska, I.; Martínez-Álvarez, F. Multi-step forecasting for big data time series based on ensemble learning. Knowl. Based Syst. 2019, 163, 830–841. [Google Scholar] [CrossRef]
- Jiang, W.; Wu, X.; Gong, Y.; Yu, W.; Zhong, X. Holt–Winters smoothing enhanced by fruit fly optimization algorithm to forecast monthly electricity consumption. Energy 2020, 193, 116779. [Google Scholar] [CrossRef]
- Holt, C.C. Forecasting seasonals and trends by exponentially weighted moving averages. Int. J. Forecast. 2004, 20, 5–10. [Google Scholar] [CrossRef]
- Bowerman, B.L.; O’Connell, R.; Koehler, A. Forecasting, Time Series, and Regression: An Applied Approach, 4th ed.; Thomson Brooks/Cole: Belmont, CA, USA, 2005. [Google Scholar]
- Makridakis, S.; Hibon, M. Exponential smoothing: The effect of initial values and loss functions on postsample forecasting accuracy. Int. J. Forecast. 1991, 7, 317–330. [Google Scholar] [CrossRef]
- Archibald, B.C. Parameter space of the Holt–Winters’ model. Int. J. Forecast. 1990, 6, 199–210. [Google Scholar] [CrossRef]
- Lawton, R. How should additive Holt–Winters estimates be corrected? Int. J. Forecast. 1998, 14, 393–403. [Google Scholar] [CrossRef]
- Barnett, S.; Cameron, R.G. Introduction to Mathematical Control Theory, 2nd ed.; Oxford University Press: Oxford, UK, 1985. [Google Scholar]
- Harvey, A.C. Forecasting, Structural Time Series Models and the Kalman Filter; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Hyndman, R.J.; Akram, M.; Archibald, B.C. Invertibility Conditions for Exponential Smoothing Models; Monash University, Department of Econometrics and Business Statistics: Monash, Australia, 2003. [Google Scholar]
- Hyndman, R.J.; Akram, M.; Archibald, B.C. The admissible parameter space for exponential smoothing models. Ann. Inst. Stat. Math. 2008, 60, 407–426. [Google Scholar] [CrossRef]
- Osman, A.F.; King, M.L. Stability and Forecastability Characteristics of Exponential Smoothing with Regressors Methods. In Proceedings of the Regional Conference on Science, Technology and Social Sciences (RCSTSS 2016), Penang, Malaysia, 4–6 December 2016; pp. 1029–1038. [Google Scholar]
- Hyndman, R.J.; Kostenko, A.V. Minimum sample size requirements for seasonal forecasting models. Foresight 2007, 6, 12–15. [Google Scholar]
- Bermúdez, J. Exponential smoothing with covariates applied to electricity demand forecast. Eur. J. Ind. Eng. 2013, 7, 333–349. [Google Scholar] [CrossRef]
- Troncoso, A.; Riquelme-Santos, J.M.; Riquelme, J.; Gómez-Expósito, A.; Martínez-Ramos, J.L. Time-Series Prediction: Application to the Short-Term Electric Energy Demand. Lecture Notes Comput. Sci. 2004, 3040, 577–586. [Google Scholar]
- Rana, M.; Koprinska, I. Forecasting electricity load with advanced wavelet neural networks. Neurocomputing 2016, 182. [Google Scholar] [CrossRef]
- Nelder, J.A.; Mead, R. A Simplex Method for Function Minimization. Comput. J. 1965, 7, 308–313. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Koehler, A.B. Another look at measures of forecast accuracy. Int. J. Forecast. 2006, 22, 679–688. [Google Scholar] [CrossRef] [Green Version]
- Tofallis, C. A better measure of relative prediction accuracy for model selection and model estimation. J. Oper. Res. Soc. 2015, 66, 1352–1362. [Google Scholar] [CrossRef] [Green Version]
Seasonality | None | Additive | Multip. | None | Additive | Multip. | |
---|---|---|---|---|---|---|---|
Trend | Normal | AR(1) Adjusted | |||||
None | NNL | NAL | NML | NNC | NAC | NMC | |
Additive | ANL | AAL | AML | ANC | AAC | AMC | |
Damped additive | dNL | dAL | dML | dNC | dAC | dMC | |
Multiplicative | MNL | MAL | DML | MNC | MAC | MMC | |
Damped multiplicative | DNL | DML | DML | DMC | DAC | DMC |
Year | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | Mean |
---|---|---|---|---|---|---|---|---|---|---|---|
2.4755 | 3.3322 | 2.8705 | 2.5367 | 2.6761 | 2.2657 | 2.5447 | 2.4527 | 2.6741 | 2.6238 | 2.6963 | |
2.4644 | 3.2576 | 2.8389 | 2.4974 | 2.5697 | 2.2284 | 2.4225 | 2.4131 | 2.7129 | 2.6972 | 2.6521 | |
2.4402 | 3.3052 | 2.8227 | 2.5120 | 2.5927 | 2.2272 | 2.5114 | 2.4397 | 2.6361 | 2.6189 | 2.6571 | |
2.4028 | 3.1723 | 2.8047 | 2.4720 | 2.5209 | 2.2190 | 2.3866 | 2.4164 | 2.6447 | 2.5585 | 2.6034 | |
2.4483 | 3.3217 | 2.8034 | 2.5183 | 2.6054 | 2.2351 | 2.4846 | 2.4279 | 2.6399 | 2.6296 | 2.6601 | |
2.4119 | 3.1572 | 2.8087 | 2.4519 | 2.5267 | 2.2045 | 2.4077 | 2.4117 | 2.6330 | 2.6184 | 2.6026 | |
2.4722 | 3.3320 | 2.8427 | 2.5260 | 2.6059 | 2.2430 | 2.5031 | 2.4420 | 2.6520 | 2.6325 | 2.6746 | |
2.4462 | 3.1844 | 2.8538 | 2.4670 | 2.5681 | 2.2444 | 2.4787 | 2.5781 | 2.7370 | 2.7615 | 2.6531 | |
2.4434 | 3.3208 | 2.8131 | 2.4970 | 2.5932 | 2.2258 | 2.4869 | 2.4256 | 2.6497 | 2.6216 | 2.6552 | |
2.4061 | 3.1339 | 2.8043 | 2.4196 | 2.5126 | 2.1720 | 2.4407 | 2.3999 | 2.6366 | 2.5810 | 2.5872 |
mean | Dev. | mean | Dev. | mean | Dev. | mean | Dev. | ||
---|---|---|---|---|---|---|---|---|---|
2009 | |||||||||
Autumn | 0.0647 | 0.0398 | 0.3003 | 0.0588 | 0.2660 | 0.0795 | 0.8716 | 0.0487 | |
Spring | 0.0099 | 0.0074 | 0.3762 | 0.1326 | 0.1668 | 0.0316 | 0.9480 | 0.0245 | |
Summer | 0.0502 | 0.0288 | 0.2407 | 0.0870 | 0.2044 | 0.0637 | 0.8938 | 0.0420 | |
Winter | 0.6009 | 0.4141 | 0.4240 | 0.2209 | 0.6386 | 0.3875 | 0.6615 | 0.1899 | |
Total | 0.1623 | 0.2982 | 0.3331 | 0.1457 | 0.3048 | 0.2548 | 0.8522 | 0.1390 | |
2010 | |||||||||
Autumn | 0.0805 | 0.0610 | 0.2890 | 0.0281 | 0.2152 | 0.0422 | 0.9011 | 0.0446 | |
Spring | 0.0230 | 0.0195 | 0.3029 | 0.1101 | 0.2188 | 0.0505 | 0.9353 | 0.0163 | |
Summer | 0.0528 | 0.0075 | 0.2468 | 0.0921 | 0.2518 | 0.0685 | 0.8769 | 0.0279 | |
Winter | 0.3968 | 0.4766 | 0.3148 | 0.1564 | 0.5331 | 0.4268 | 0.7537 | 0.2124 | |
Total | 0.1000 | 0.2056 | 0.2863 | 0.0950 | 0.2696 | 0.1868 | 0.8850 | 0.0966 | |
2011 | |||||||||
Autumn | 0.0235 | 0.0723 | 0.3017 | 0.0441 | 0.2351 | 0.0839 | 0.9413 | 0.0552 | |
Spring | 0.0291 | 0.0238 | 0.3366 | 0.1435 | 0.1973 | 0.0495 | 0.9095 | 0.0448 | |
Summer | 0.0804 | 0.0515 | 0.2123 | 0.0563 | 0.2228 | 0.0822 | 0.8846 | 0.0582 | |
Winter | 0.1821 | 0.3913 | 0.2925 | 0.0575 | 0.4878 | 0.3039 | 0.8618 | 0.1942 | |
Total | 0.0624 | 0.1528 | 0.2874 | 0.0971 | 0.2573 | 0.1566 | 0.9063 | 0.0865 | |
2012 | |||||||||
Autumn | 0.0529 | 0.0456 | 0.3375 | 0.0452 | 0.2340 | 0.0691 | 0.9088 | 0.0480 | |
Spring | 0.0244 | 0.0367 | 0.3382 | 0.1281 | 0.2057 | 0.0478 | 0.9430 | 0.0542 | |
Summer | 0.1005 | 0.0434 | 0.2259 | 0.0662 | 0.2083 | 0.0373 | 0.8445 | 0.0208 | |
Winter | 0.4701 | 0.4720 | 0.3858 | 0.2204 | 0.6269 | 0.4147 | 0.6781 | 0.2440 | |
Total | 0.1264 | 0.2415 | 0.3179 | 0.1263 | 0.2852 | 0.2258 | 0.8638 | 0.1358 | |
2013 | |||||||||
Autumn | 0.0429 | 0.0175 | 0.3259 | 0.0798 | 0.2420 | 0.0793 | 0.8560 | 0.0574 | |
Spring | 0.0182 | 0.0187 | 0.3160 | 0.1168 | 0.1683 | 0.0606 | 0.9365 | 0.0389 | |
Summer | 0.0170 | 0.0187 | 0.2218 | 0.0824 | 0.2306 | 0.0708 | 0.9240 | 0.0541 | |
Winter | 0.5574 | 0.4954 | 0.5706 | 0.3562 | 0.7178 | 0.3904 | 0.6341 | 0.2710 | |
Total | 0.1244 | 0.2932 | 0.3407 | 0.2067 | 0.2992 | 0.2681 | 0.8657 | 0.1650 | |
2014 | |||||||||
Autumn | 0.0676 | 0.0362 | 0.3823 | 0.0496 | 0.2369 | 0.0866 | 0.7644 | 0.1494 | |
Spring | 0.0221 | 0.0205 | 0.3568 | 0.1677 | 0.1965 | 0.0130 | 0.9376 | 0.0361 | |
Summer | 0.0139 | 0.0238 | 0.1954 | 0.1014 | 0.2385 | 0.0363 | 0.9537 | 0.0148 | |
Winter | 0.3812 | 0.4967 | 0.3156 | 0.1955 | 0.4692 | 0.4601 | 0.7007 | 0.1910 | |
Total | 0.1212 | 0.2652 | 0.3125 | 0.1414 | 0.2853 | 0.2296 | 0.8391 | 0.1547 | |
2015 | |||||||||
Autumn | 0.0021 | 0.0021 | 0.3123 | 0.0285 | 0.2428 | 0.0314 | 0.9474 | 0.0133 | |
Spring | 0.0440 | 0.0386 | 0.3507 | 0.1349 | 0.1673 | 0.0215 | 0.9199 | 0.0360 | |
Summer | 0.0314 | 0.0330 | 0.2616 | 0.1234 | 0.2486 | 0.1469 | 0.9278 | 0.0539 | |
Winter | 0.3722 | 0.4874 | 0.3429 | 0.2105 | 0.4552 | 0.4718 | 0.6810 | 0.2140 | |
Total | 0.1124 | 0.2616 | 0.3169 | 0.1250 | 0.2785 | 0.2390 | 0.8690 | 0.1486 | |
2016 | |||||||||
Autumn | 0.0443 | 0.0082 | 0.3238 | 0.0165 | 0.2390 | 0.0273 | 0.9209 | 0.0068 | |
Spring | 0.0553 | 0.0437 | 0.3345 | 0.1226 | 0.2279 | 0.0868 | 0.8508 | 0.1155 | |
Summer | 0.0755 | 0.0304 | 0.2021 | 0.0764 | 0.2380 | 0.0832 | 0.8876 | 0.0036 | |
Winter | 0.3290 | 0.5173 | 0.2690 | 0.1228 | 0.4970 | 0.4370 | 0.7450 | 0.2567 | |
Total | 0.1260 | 0.2536 | 0.2824 | 0.0980 | 0.3005 | 0.2270 | 0.8511 | 0.1385 | |
2017 | |||||||||
Autumn | 0.0273 | 0.0206 | 0.3193 | 0.0416 | 0.2226 | 0.0298 | 0.9324 | 0.0348 | |
Spring | 0.0188 | 0.0182 | 0.3501 | 0.1970 | 0.2208 | 0.0481 | 0.9483 | 0.0277 | |
Summer | 0.0494 | 0.0021 | 0.3012 | 0.0305 | 0.2127 | 0.0419 | 0.9225 | 0.0085 | |
Winter | 0.3347 | 0.5109 | 0.3765 | 0.2708 | 0.4963 | 0.4366 | 0.7259 | 0.2737 | |
Total | 0.1075 | 0.2579 | 0.3368 | 0.1476 | 0.2881 | 0.2266 | 0.8823 | 0.1516 |
mean | Dev. | mean | Dev | mean | Dev. | mean | Dev. | mean | Dev. | mean | Dev. | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2011 | |||||||||||||
Autumn | 0.0008 | 0.0009 | 0.0001 | 0.0000 | 0.3081 | 0.0004 | 0.2296 | 0.0019 | 0.0783 | 0.0306 | 0.9469 | 0.0019 | |
Spring | 0.0006 | 0.0008 | 0.0001 | 0.0000 | 0.3137 | 0.0069 | 0.2377 | 0.0183 | 0.0480 | 0.0502 | 0.9463 | 0.0012 | |
Summer | 0.0001 | 0.0000 | 0.0001 | 0.0000 | 0.3193 | 0.0094 | 0.2265 | 0.0087 | 0.0718 | 0.0635 | 0.9477 | 0.0014 | |
Winter | 0.0001 | 0.0000 | 0.0001 | 0.0000 | 0.3064 | 0.0044 | 0.2144 | 0.0146 | 0.1612 | 0.0038 | 0.9466 | 0.0004 | |
Total | 0.0003 | 0.0005 | 0.0001 | 0.0000 | 0.3128 | 0.0081 | 0.2267 | 0.0149 | 0.0892 | 0.0604 | 0.9466 | 0.0014 | |
2012 | |||||||||||||
Autumn | 0.0001 | 0.0000 | 0.0001 | 0.0000 | 0.3132 | 0.0113 | 0.2446 | 0.0082 | 0.0483 | 0.0682 | 0.9498 | 0.0016 | |
Spring | 0.0008 | 0.0009 | 0.0001 | 0.0000 | 0.3032 | 0.0045 | 0.2277 | 0.0018 | 0.0886 | 0.0221 | 0.9438 | 0.0008 | |
Summer | 0.0007 | 0.0013 | 0.0001 | 0.0000 | 0.3190 | 0.0090 | 0.2340 | 0.0139 | 0.0684 | 0.0487 | 0.9442 | 0.0017 | |
Winter | 0.0004 | 0.0005 | 0.0001 | 0.0000 | 0.3259 | 0.0101 | 0.2404 | 0.0215 | 0.0826 | 0.0386 | 0.9446 | 0.0016 | |
Total | 0.0005 | 0.0008 | 0.0001 | 0.0000 | 0.3158 | 0.0116 | 0.2344 | 0.0138 | 0.0735 | 0.0405 | 0.9458 | 0.0026 | |
2013 | |||||||||||||
Autumn | 0.0001 | 0.000 | 0.0001 | 0.0000 | 0.3185 | 0.0079 | 0.2348 | 0.0122 | 0.0802 | 0.0154 | 0.9510 | 0.0003 | |
Spring | 0.0001 | 0.0000 | 0.0001 | 0.0000 | 0.3038 | 0.0046 | 0.2280 | 0.0075 | 0.0885 | 0.0328 | 0.9534 | 0.0017 | |
Summer | 0.0001 | 0.0000 | 0.0001 | 0.0000 | 0.3147 | 0.0030 | 0.2214 | 0.0060 | 0.1017 | 0.0259 | 0.9515 | 0.0011 | |
Winter | 0.0001 | 0.0000 | 0.0001 | 0.0000 | 0.3179 | 0.0133 | 0.2292 | 0.0020 | 0.1481 | 0.0571 | 0.9522 | 0.0014 | |
Total | 0.0001 | 0.0000 | 0.0001 | 0.0000 | 0.3134 | 0.0090 | 0.2272 | 0.0080 | 0.1064 | 0.0416 | 0.9523 | 0.0014 | |
2014 | |||||||||||||
Autumn | 0.0001 | 0.0000 | 0.0001 | 0.0000 | 0.3178 | 0.0100 | 0.2452 | 0.0077 | 0.0467 | 0.0462 | 0.9437 | 0.0005 | |
Spring | 0.0001 | 0.0000 | 0.0001 | 0.0000 | 0.3145 | 0.0029 | 0.2251 | 0.0072 | 0.0893 | 0.0126 | 0.9419 | 0.0004 | |
Summer | 0.0001 | 0.0000 | 0.0001 | 0.0000 | 0.3235 | 0.0130 | 0.2352 | 0.0094 | 0.0557 | 0.0517 | 0.9429 | 0.0018 | |
Winter | 0.0001 | 0.0000 | 0.0001 | 0.0000 | 0.3244 | 0.0032 | 0.2318 | 0.0028 | 0.1003 | 0.0515 | 0.9446 | 0.0022 | |
Total | 0.0001 | 0.0000 | 0.0001 | 0.0000 | 0.3240 | 0.0084 | 0.2343 | 0.0098 | 0.0731 | 0.0439 | 0.9433 | 0.0016 | |
2015 | |||||||||||||
Autumn | 0.0001 | 0.0000 | 0.0001 | 0.0000 | 0.2984 | 0.0095 | 0.2258 | 0.0106 | 0.0983 | 0.0204 | 0.9426 | 0.0014 | |
Spring | 0.0001 | 0.0000 | 0.0001 | 0.0000 | 0.3050 | 0.0040 | 0.2279 | 0.0042 | 0.0403 | 0.0147 | 0.9421 | 0.0014 | |
Summer | 0.0007 | 0.0010 | 0.0001 | 0.0000 | 0.3134 | 0.0055 | 0.2250 | 0.0127 | 0.0596 | 0.0523 | 0.9411 | 0.0027 | |
Winter | 0.0001 | 0.0000 | 0.0001 | 0.0000 | 0.3160 | 0.0068 | 0.2117 | 0.0074 | 0.1377 | 0.0303 | 0.9403 | 0.0003 | |
Total | 0.0002 | 0.0005 | 0.0001 | 0.0000 | 0.3082 | 0.0092 | 0.2224 | 0.0103 | 0.0840 | 0.0481 | 0.9415 | 0.0017 | |
2016 | |||||||||||||
Autumn | 0.0001 | — | 0.0001 | — | 0.3263 | — | 0.2246 | — | 0.0399 | — | 0.9470 | — | |
Spring | 0.0001 | 0.0000 | 0.00010 | 0.0000 | 0.3035 | 0.0067 | 0.2262 | 0.0096 | 0.0757 | 0.0273 | 0.9453 | 0.0015 | |
Summer | 0.0001 | 0.0000 | 0.0001 | 0.0000 | 0.3112 | 0.0065 | 0.2232 | 0.0055 | 0.0881 | 0.0344 | 0.9457 | 0.0022 | |
Winter | 0.0001 | 0.0000 | 0.0001 | 0.0000 | 0.3089 | 0.0040 | 0.2171 | 0.0025 | 0.1301 | 0.0381 | 0.9430 | 0.0008 | |
Total | 0.0002 | 0.0005 | 0.0001 | 0.0000 | 0.3134 | 0.0097 | 0.2281 | 0.0115 | 0.0862 | 0.0462 | 0.9456 | 0.0038 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trull, Ó.; García-Díaz, J.C.; Troncoso, A. Stability of Multiple Seasonal Holt-Winters Models Applied to Hourly Electricity Demand in Spain. Appl. Sci. 2020, 10, 2630. https://doi.org/10.3390/app10072630
Trull Ó, García-Díaz JC, Troncoso A. Stability of Multiple Seasonal Holt-Winters Models Applied to Hourly Electricity Demand in Spain. Applied Sciences. 2020; 10(7):2630. https://doi.org/10.3390/app10072630
Chicago/Turabian StyleTrull, Óscar, J. Carlos García-Díaz, and Alicia Troncoso. 2020. "Stability of Multiple Seasonal Holt-Winters Models Applied to Hourly Electricity Demand in Spain" Applied Sciences 10, no. 7: 2630. https://doi.org/10.3390/app10072630
APA StyleTrull, Ó., García-Díaz, J. C., & Troncoso, A. (2020). Stability of Multiple Seasonal Holt-Winters Models Applied to Hourly Electricity Demand in Spain. Applied Sciences, 10(7), 2630. https://doi.org/10.3390/app10072630