Bioactive Glass as a Nanoporous Drug Delivery System for Teicoplanin
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of B-Doped Mesoporous Bioactive Glass
2.2. Characterization of B-Doped Mesoporous Bioactive Glass
2.3. In Vitro Ion Release Test
2.4. Brunauer–Emmett–Teller (BET) Analysis
2.5. Teicoplanin Release Test
2.6. Statistical Analysis
3. Results and Discussion
3.1. Characterization of B-Doped Mesoporous Bioactive Glass
3.2. In Vitro Ion Release Test of B-Doped Mesoporous Bioactive Glass
3.3. Brunauer–Emmett–Teller (BET) Analysis
3.4. Teicoplanin Release Test
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhou, Y.; Wu, C.; Chang, J. Bioceramics to regulate stem cells and their microenvironment for tissue regeneration. Mater. Today 2019, 24, 41–56. [Google Scholar] [CrossRef]
- Vale, A.C.; Pereira, P.R.; Barbosa, A.M.; Torrado, E.; Alves, N.M. Optimization of silver-containing bioglass nanoparticles envisaging biomedical applications. Mater. Sci. Eng. C 2019, 94, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Boraei, S.B.A.; Nourmohammadi, J.; Mahdavi, F.S.; Yus, J.; Ferrandez-Montero, A.; Sanchez-Herencia, A.J.; Gonzalez, Z.; Ferrari, B. Effect of SrR delivery in the biomarkers of bone regeneration during the in vitro degradation of HNT/GN coatings prepared by EPD. Colloids Surf. B Biointerfaces 2020, 190, 110944. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.; Ruszler, P. Effects of dietary boron on poultry bone strength. Trans. ASAE 1995, 38, 167–170. [Google Scholar] [CrossRef]
- Rodrigues, C.; Naasani, L.I.S.; Zanatelli, C.; Paim, T.C.; Azevedo, J.G.; de Lima, J.C.; da Cruz Fernandes, M.; Buchner, S.; Wink, M.R. Bioglass 45S5: Structural characterization of short range order and analysis of biocompatibility with adipose-derived mesenchymal stromal cells in vitro and in vivo. Mater. Sci. Eng. C 2019, 103, 109781. [Google Scholar] [CrossRef]
- Shyong, Y.-J.; Chang, K.-C.; Lin, F.-H. Calcium phosphate particles stimulate exosome secretion from phagocytes for the enhancement of drug delivery. Colloids Surf. B Biointerfaces 2018, 171, 391–397. [Google Scholar] [CrossRef]
- Das, P.; Jana, N.R. Length-Controlled Synthesis of Calcium Phosphate Nanorod and Nanowire and Application in Intracellular Protein Delivery. ACS Appl. Mater. Interfaces 2016, 8, 8710–8720. [Google Scholar] [CrossRef]
- Shyong, Y.-J.; Wang, M.-H.; Kuo, L.-W.; Su, C.-F.; Kuo, W.-T.; Chang, K.-C.; Lin, F.-H. Mesoporous hydroxyapatite as a carrier of olanzapine for long-acting antidepression treatment in rats with induced depression. J. Control. Release 2017, 255, 62–72. [Google Scholar] [CrossRef]
- Wu, C.; Chang, J. Multifunctional mesoporous bioactive glasses for effective delivery of therapeutic ions and drug/growth factors. J. Control. Release 2014, 193, 282–295. [Google Scholar] [CrossRef]
- Balasubramanian, P.; Buettner, T.; Pacheco, V.M.; Boccaccini, A.R. Boron-containing bioactive glasses in bone and soft tissue engineering. J. Eur. Ceram. Soc. 2018, 38, 855–869. [Google Scholar] [CrossRef]
- Lu, X.; Kolzow, J.; Chen, R.R.; Du, J. Effect of solution condition on hydroxyapatite formation in evaluating bioactivity of B2O3 containing 45S5 bioactive glasses. Bioact. Mater. 2019, 4, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Prasad, S.S.; Datta, S.; Adarsh, T.; Diwan, P.; Annapurna, K.; Kundu, B.; Biswas, K. Effect of boron oxide addition on structural, thermal, in vitro bioactivity and antibacterial properties of bioactive glasses in the base S53P4 composition. J. Non Cryst. Solids 2018, 498, 204–215. [Google Scholar] [CrossRef]
- Wu, C.; Miron, R.; Sculean, A.; Kaskel, S.; Doert, T.; Schulze, R.; Zhang, Y. Proliferation, differentiation and gene expression of osteoblasts in boron-containing associated with dexamethasone deliver from mesoporous bioactive glass scaffolds. Biomaterials 2011, 32, 7068–7078. [Google Scholar] [CrossRef] [PubMed]
- Deilmann, L.; Winter, O.; Cerrutti, B.; Bradtmüller, H.; Herzig, C.; Limbeck, A.; Lahayne, O.; Hellmich, C.; Eckert, H.; Eder, D. Effect of boron incorporation on the bioactivity, structure, and mechanical properties of ordered mesoporous bioactive glasses. J. Mater. Chem. B 2020, 8, 1456–1465. [Google Scholar] [CrossRef] [Green Version]
- Marrubini, G.; Tengattini, S.; Colombo, R.; Bianchi, D.; Carlotti, F.; Orlandini, S.; Terreni, M.; Temporini, C.; Massolini, G. A new MS compatible HPLC-UV method for Teicoplanin drug substance and related impurities, part 1: Development and validation studies. J. Pharm. Biomed. Anal. 2019, 162, 185–191. [Google Scholar] [CrossRef]
- Jung, J.; Lee, K.; Oh, J.; Choi, R.; Woo, H.I.; Park, H.-D.; Kang, C.-I.; Kim, Y.-J.; Lee, S.-Y. Therapeutic drug monitoring of teicoplanin using an LC–MS/MS method: Analysis of 421 measurements in a naturalistic clinical setting. J. Pharm. Biomed. Anal. 2019, 167, 161–165. [Google Scholar] [CrossRef]
- Jia, W.-T.; Zhang, X.; Zhang, C.-Q.; Liu, X.; Huang, W.-H.; Rahaman, M.N.; Day, D.E. Elution characteristics of teicoplanin-loaded biodegradable borate glass/chitosan composite. Int. J. Pharm. 2010, 387, 184–186. [Google Scholar] [CrossRef]
- Huang, C.-L.; Fang, W.; Chen, I.H.; Hung, T.-Y. Manufacture and biomimetic mineral deposition of nanoscale bioactive glasses with mesoporous structures using sol-gel methods. Ceram. Int. 2018, 44, 17224–17229. [Google Scholar] [CrossRef]
- Chen, I.-H.; Lian, M.-J.; Fang, W.; Huang, B.-R.; Liu, T.-H.; Chen, J.-A.; Huang, C.-L.; Lee, T.-M. In Vitro Properties for Bioceramics Composed of Silica and Titanium Oxide Composites. Appl. Sci. 2019, 9, 66. [Google Scholar] [CrossRef] [Green Version]
- Ji, L.; Qiao, W.; Huang, K.; Zhang, Y.; Wu, H.; Miao, S.; Liu, H.; Dong, Y.; Zhu, A.; Qiu, D. Synthesis of nanosized 58S bioactive glass particles by a three-dimensional ordered macroporous carbon template. Mater. Sci. Eng. C 2017, 75, 590–595. [Google Scholar] [CrossRef]
- Kokubo, T.; Takadama, H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006, 27, 2907–2915. [Google Scholar] [CrossRef] [PubMed]
- Vernè, E.; Ferraris, S.; Cassinelli, C.; Boccaccini, A.R. Surface functionalization of Bioglass® with alkaline phosphatase. Surf. Coat. Technol. 2015, 264, 132–139. [Google Scholar] [CrossRef]
- Hilonga, A.; Kim, J.-K.; Sarawade, P.B.; Quang, D.V.; Shao, G.N.; Elineema, G.; Kim, H.T. BET study of silver-doped silica based on an inexpensive method. Mater. Lett. 2012, 80, 168–170. [Google Scholar] [CrossRef]
- Passoni, M.H.; Salgado, H.R.N. Development and validation of a new and rapid HPLC for determination of lyophilized teicoplanin. Anal. Methods 2012, 4, 1560–1564. [Google Scholar] [CrossRef] [Green Version]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef] [Green Version]
- Balamurugan, A.; Balossier, G.; Kannan, S.; Michel, J.; Rebelo, A.H.S.; Ferreira, J.M.F. Development and in vitro characterization of sol–gel derived CaO–P2O5–SiO2–ZnO bioglass. Acta Biomater. 2007, 3, 255–262. [Google Scholar] [CrossRef]
- Singh, B.N.; Veeresh, V.; Mallick, S.P.; Jain, Y.; Sinha, S.; Rastogi, A.; Srivastava, P. Design and evaluation of chitosan/chondroitin sulfate/nano-bioglass based composite scaffold for bone tissue engineering. Int. J. Biol. Macromol. 2019, 133, 817–830. [Google Scholar] [CrossRef]
- Pourhashem, S.; Afshar, A. Double layer bioglass-silica coatings on 316L stainless steel by sol–gel method. Ceram. Int. 2014, 40 Pt A, 993–1000. [Google Scholar] [CrossRef]
- Qiao, Z.-A.; Huo, Q.-S. Synthetic Chemistry of the Inorganic Ordered Porous Materials. In Modern Inorganic Synthetic Chemistry; Elsevier: Amsterdam, The Netherlands, 2017; pp. 389–428. [Google Scholar]
- Yu, C.; Zhuang, J.; Dong, L.; Cheng, K.; Weng, W. Effect of hierarchical pore structure on ALP expression of MC3T3-E1 cells on bioglass films. Colloids Surf. B Biointerfaces 2017, 156, 213–220. [Google Scholar] [CrossRef]
- Magallanes-Perdomo, M.; Meille, S.; Chenal, J.-M.; Pacard, E.; Chevalier, J. Bioactivity modulation of Bioglass® powder by thermal treatment. J. Eur. Ceram. Soc. 2012, 32, 2765–2775. [Google Scholar] [CrossRef]
- Antoci, V., Jr.; Adams, C.S.; Hickok, N.J.; Shapiro, I.M.; Parvizi, J. Antibiotics for local delivery systems cause skeletal cell toxicity in vitro. Clin. Orthop. Relat. Res. 2007, 462, 200–206. [Google Scholar] [CrossRef] [PubMed]
Samples | Average Size (nm) | PDI |
---|---|---|
BG | 436.23 ± 23.27 | 0.51 ± 0.01 |
BG_B25 | 347.60 ± 99.93 | 0.50 ± 0.03 |
BG_B50 | 556.60 ± 58.84 | 0.53 ± 0.02 |
BG_B75 | 431.57 ± 18.60 | 0.43 ± 0.04 |
BG_B100 | 361.93 ± 17.15 | 0.42 ± 0.02 |
Samples | BG | BG_B100 |
---|---|---|
Average pore size (nm) | 19.43 | 20.68 |
BET surface area (m2/g) | 23.95 | 49.42 |
Total pore volume (cm3/g) | 0.12 | 0.26 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.-L.; Fang, W.; Huang, B.-R.; Wang, Y.-H.; Dong, G.-C.; Lee, T.-M. Bioactive Glass as a Nanoporous Drug Delivery System for Teicoplanin. Appl. Sci. 2020, 10, 2595. https://doi.org/10.3390/app10072595
Huang C-L, Fang W, Huang B-R, Wang Y-H, Dong G-C, Lee T-M. Bioactive Glass as a Nanoporous Drug Delivery System for Teicoplanin. Applied Sciences. 2020; 10(7):2595. https://doi.org/10.3390/app10072595
Chicago/Turabian StyleHuang, Chih-Ling, Wei Fang, Bo-Rui Huang, Yan-Hsiung Wang, Guo-Chung Dong, and Tzer-Min Lee. 2020. "Bioactive Glass as a Nanoporous Drug Delivery System for Teicoplanin" Applied Sciences 10, no. 7: 2595. https://doi.org/10.3390/app10072595
APA StyleHuang, C.-L., Fang, W., Huang, B.-R., Wang, Y.-H., Dong, G.-C., & Lee, T.-M. (2020). Bioactive Glass as a Nanoporous Drug Delivery System for Teicoplanin. Applied Sciences, 10(7), 2595. https://doi.org/10.3390/app10072595