Multi-modal Anterior Eye Imager Combining Ultra-High Resolution OCT and Microvascular Imaging for Structural and Functional Evaluation of the Human Eye
Abstract
:1. Introduction
2. Methods
2.1. Instrumentation
2.2. Microvascular Imaging Algorithms
3. Experiments and Results
3.1. Healthy Subject
3.2. Keratitis Patient
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Gipson, I.K. Age-related changes and diseases of the ocular surface and cornea. Investig. Ophthalmol. Vis. Sci. 2013, 54, 48–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mondino, B.J. Inflammatory diseases of the peripheral cornea. Ophthalmology 1988, 95, 463–472. [Google Scholar] [CrossRef]
- Song, X.; Xie, L.; Tan, X.; Wang, Z.; Yang, Y.; Yuan, Y.; Deng, Y.; Fu, S.; Xu, L.; Sun, X.; et al. A multi-center, cross-sectional study on the burden of infectious keratitis in China. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Austin, A.; Lietman, T.; Rose-Nussbaumer, J. Update on the management of infectious keratitis. Ophthalmology 2017, 124, 1678–1689. [Google Scholar] [CrossRef]
- Youlten, L.J.F. Inflammatory mediators and vascular events. In Inflammation; Springer: Berlin/Heidelberg, Germany, 1978; pp. 571–587. [Google Scholar]
- Abdulkhaleq, L.A.; Assi, M.A.; Abdullah, R.; Zamri-Saad, M.; Taufiq-Yap, Y.H.; Hezmee, M.N.M. The crucial roles of inflammatory mediators in inflammation: A review. Vet. World 2018, 11, 627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oatts, J.T.; Keenan, J.D.; Mannis, T.; Lietman, T.M.; Rose-Nussbaumer, J. multimodal assessment of corneal thinning using optical coherence tomography, scheimpflug imaging, pachymetry and slit lamp examination. Cornea 2017, 36, 425–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mantopoulos, D.; Cruzat, A.; Hamrah, P. In vivo imaging of corneal inflammation: New tools for clinical practice and research. Semin. Ophthalmol. 2010, 25, 178–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van den Berg, T.J.T.P. Intraocular light scatter, reflections, fluorescence and absorption: What we see in the slit lamp. Ophthalmic Physiol. Opt. 2018, 38, 6–25. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.; Jiang, H.; Mao, X.; Ke, B.; Yan, W.; Liu, C.; Cintrón-Colón, H.R.; Perez, V.L.; Wang, J. Slit-lamp photography and videography with high magnifications. Eye Contact Lens 2015, 41, 391. [Google Scholar] [CrossRef] [Green Version]
- Stanzel, T.P.; Devarajan, K.; Lwin, N.C.; Yam, G.H.; Schmetterer, L.; Mehta, J.S.; Ang, M. Comparison of optical coherence tomography angiography to indocyanine green angiography and slit lamp photography for corneal vascularization in an animal model. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Oliphant, H.; Kennedy, A.; Comyn, O.; Spalton, D.J.; Nanavaty, M.A. Commercial slit lamp anterior segment photography versus digital compact camera mounted on a standard slit lamp with an adapter. Curr. Eye Res. 2018, 43, 1290–1294. [Google Scholar] [CrossRef] [PubMed]
- Wilson, G.; Ren, H.; Laurent, J. Corneal epithelial fluorescein staining. J. Am. Optom. Assoc. 1995, 66, 435–441. [Google Scholar] [PubMed]
- Huang, D.; Swanson, E.A.; Lin, C.P.; Schuman, J.S.; Stinson, W.G.; Chang, W.; Hee, M.R.; Flotte, T.; Gregory, K.; Puliafito, C.A. Optical coherence tomography. Science 1991, 254, 1178–1181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adhi, M.; Duker, J.S. Optical coherence tomography—current and future applications. Curr. Opin. Ophthalmol. 2013, 24, 213. [Google Scholar] [CrossRef] [Green Version]
- Drexler, W.; Liu, M.; Kumar, A.; Kamali, T.; Unterhuber, A.; Leitgeb, R.A. Optical coherence tomography today: Speed, contrast, and multimodality. J. Biomed. Opt. 2014, 19, 071412. [Google Scholar] [CrossRef] [PubMed]
- Mazlin, V.; Xiao, P.; Dalimier, E.; Grieve, K.; Irsch, K.; Sahel, J.A.; Fink, M.; Boccara, A.C. In vivo high resolution human corneal imaging using full-field optical coherence tomography. Biomed. Opt. Express 2018, 9, 557–568. [Google Scholar] [CrossRef]
- Xiao, P.; Mazlin, V.; Grieve, K.; Sahel, J.A.; Fink, M.; Boccara, A.C. In vivo high-resolution human retinal imaging with wavefront-correctionless full-field OCT. Optica 2018, 5, 409–412. [Google Scholar] [CrossRef] [Green Version]
- Ang, M.; Baskaran, M.; Werkmeister, R.M.; Chua, J.; Schmidl, D.; Aranha Dos Santos, V.; Garhöfer, G.; Mehta, J.S.; Schmetterer, L. Anterior segment optical coherence tomography. Prog. Retin. Eye Res. 2018, 66, 132–156. [Google Scholar] [CrossRef]
- Nanji, A.A.; Sayyad, F.E.; Galor, A.; Dubovy, S.; Karp, C.L. High-resolution optical coherence tomography as an adjunctive tool in the diagnosis of corneal and conjunctival pathology. Ocul. Surf. 2015, 13, 226–235. [Google Scholar] [CrossRef] [Green Version]
- Yadav, R.; Lee, K.S.; Rolland, J.P.; Zavislan, J.M.; Aquavella, J.V.; Yoon, G. Micrometer axial resolution OCT for corneal imaging. Biomed. Opt. Express 2011, 2, 3037–3046. [Google Scholar] [CrossRef] [Green Version]
- Tan, B.; Hosseinaee, Z.; Han, L.; Kralj, O.; Sorbara, L.; Bizheva, K. 250 kHz, 1.5 µm resolution SD-OCT for in-vivo cellular imaging of the human cornea. Biomed. Opt. Express 2018, 9, 6569–6583. [Google Scholar] [CrossRef] [PubMed]
- Werkmeister, R.M.; Sapeta, S.; Schmidl, D.; Garhöfer, G.; Schmidinger, G.; Aranha Dos Santos, V.; Aschinger, G.C.; Baumgartner, I.; Pircher, N.; Schwarzhans, F.; et al. Ultrahigh-resolution OCT imaging of the human cornea. Biomed. Opt. Express 2017, 8, 1221–1239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Werkmeister, R.M.; Alex, A.; Kaya, S.; Unterhuber, A.; Hofer, B.; Riedl, J.; Bronhagl, M.; Vietauer, M.; Schmidl, D.; Schmoll, T.; et al. Measurement of tear film thickness using ultrahigh-resolution optical coherence tomography. Investig. Ophthalmol. Vis. Sci. 2013, 54, 5578–5583. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Shen, M.; Li, M.; Zhu, D.; Wang, M.R.; Wang, J. Anterior segment biometry during accommodation imaged with ultralong scan depth optical coherence tomography. Ophthalmology 2012, 119, 2479–2485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christopoulos, V.; Kagemann, L.; Wollstein, G.; Ishikawa, H.; Gabriele, M.L.; Wojtkowski, M.; Srinivasan, V.; Fujimoto, J.G.; Duker, J.S.; Dhaliwal, D.K.; et al. In Vivo Corneal High-Speed, Ultra–High-Resolution Optical Coherence Tomography. Arch. Ophthalmol. 2007, 125, 1027–1035. [Google Scholar] [CrossRef]
- Pantalon, A.; Pfister, M.; Aranha dos Santos, V.; Sapeta, S.; Unterhuber, A.; Pircher, N.; Schmidinger, G.; Garhöfer, G.; Schmidl, D.; Schmetterer, L.; et al. Ultrahigh-resolution anterior segment optical coherence tomography for analysis of corneal microarchitecture during wound healing. Acta Ophthalmol. 2019, 97, e761–e771. [Google Scholar] [CrossRef] [Green Version]
- Shousha, M.A.; Karp, C.L.; Perez, V.L.; Hoffmann, R.; Ventura, R.; Chang, V.; Dubovy, S.R.; Wang, J. Diagnosis and management of conjunctival and corneal intraepithelial neoplasia using ultra high-resolution optical coherence tomography. Ophthalmology 2011, 118, 1531–1537. [Google Scholar] [CrossRef]
- Brunner, M.; Romano, V.; Steger, B.; Vinciguerra, R.; Lawman, S.; Williams, B.; Hicks, N.; Czanner, G.; Zheng, Y.; Willoughby, C.E.; et al. Imaging of corneal neovascularization: Optical coherence tomography angiography and fluorescence angiography. Investig. Ophthalmol. Vis. Sci. 2018, 59, 1263–1269. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.D.; Devarajan, K.; Chua, J.; Schmetterer, L.; Mehta, J.S.; Ang, M. Optical coherence tomography angiography for the anterior segment. Eye Vis. 2019, 6, 4. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Zhong, J.; DeBuc, D.C.; Tao, A.; Xu, Z.; Lam, B.L.; Liu, C.; Wang, J. Functional slit lamp biomicroscopy for imaging bulbar conjunctival microvasculature in contact lens wearers. Microvasc. Res. 2014, 92, 62–71. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Yuan, J.; Jiang, H.; Yan, W.; Cintrón-Colón, H.R.; Perez, V.L.; DeBuc, D.C.; Feuer, W.J.; Wang, J. Vessel sampling and blood flow velocity distribution with vessel diameter for characterizing the human bulbar conjunctival microvasculature. Eye Contact Lens 2016, 42, 135. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Jiang, H.; Tao, A.; Wu, S.; Yan, W.; Yuan, J.; Liu, C.; DeBuc, D.C.; Wang, J. Measurement variability of the bulbar conjunctival microvasculature in healthy subjects using functional slit lamp biomicroscopy (FSLB). Microvasc. Res. 2015, 101, 15–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheung, A.T.W.; Hu, B.S.; Wong, S.A.; Chow, J.; Chan, M.S.; To, W.J.; Li, J.; Ramanujam, S.; Chen, P.C. Microvascular abnormalities in the bulbar conjunctiva of contact lens users. Clin. Hemorheol. Microcirc. 2012, 51, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Deng, Y.; Jiang, H.; Wang, J.; Zhong, J.; Li, S.; Peng, L.; Wang, B.; Yang, R.; Zhang, H.; et al. Microvascular abnormalities in dry eye patients. Microvasc. Res. 2018, 118, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Mujat, M.; Ferguson, R.D.; Patel, A.H.; Iftimia, N.; Lue, N.; Hammer, D.X. High resolution multimodal clinical ophthalmic imaging system. Opt. Express 2010, 18, 11607–11621. [Google Scholar] [CrossRef]
- Malone, J.D.; El-Haddad, M.T.; Bozic, I.; Tye, L.A.; Majeau, L.; Godbout, N.; Rollins, A.M.; Boudoux, C.; Joos, K.M.; Patel, S.N.; et al. Simultaneous multimodal ophthalmic imaging using swept-source spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography. Biomed. Opt. Express 2017, 8, 193–206. [Google Scholar] [CrossRef]
- Song, W.; Wei, Q.; Liu, T.; Kuai, D.; Burke, J.M.; Jiao, S.; Zhang, H.F. Integrating photoacoustic ophthalmoscopy with scanning laser ophthalmoscopy, optical coherence tomography, and fluorescein angiography for a multimodal retinal imaging platform. J. Biomed. Opt. 2012, 17, 061206. [Google Scholar] [CrossRef] [Green Version]
- Felberer, F.; Kroisamer, J.S.; Baumann, B.; Zotter, S.; Schmidt-Erfurth, U.; Hitzenberger, C.K.; Pircher, M. Adaptive optics SLO/OCT for 3D imaging of human photoreceptors in vivo. Biomed. Opt. Express 2014, 5, 439–456. [Google Scholar] [CrossRef] [Green Version]
- Zawadzki, R.J.; Zhang, P.; Zam, A.; Miller, E.B.; Goswami, M.; Wang, X.; Jonnal, R.S.; Lee, S.H.; Kim, D.Y.; Flannery, J.G.; et al. Adaptive-optics SLO imaging combined with widefield OCT and SLO enables precise 3D localization of fluorescent cells in the mouse retina. Biomed. Opt. Express 2015, 6, 2191–2210. [Google Scholar] [CrossRef] [Green Version]
- Stehouwer, M.; Verbraak, F.D.; de Vries, H.; Kok, P.H.; van Leeuwen, T.G. Fourier domain optical coherence tomography integrated into a slit lamp; a novel technique combining anterior and posterior segment OCT. Eye 2010, 24, 980–984. [Google Scholar] [CrossRef] [Green Version]
- Mueller, M.; Schulz-Wackerbarth, C.; Steven, P.; Lankenau, E.; Bonin, T.; Mueller, H.; Brueggemann, A.; Birngruber, R.; Grisanti, S.; Huettmann, G. Slit-lamp-adapted fourier-domain OCT for anterior and posterior segments: Preliminary results and comparison to time-domain OCT. Curr. Eye Res. 2010, 35, 722–732. [Google Scholar] [CrossRef] [PubMed]
- Schiano-Lomoriello, D.; Bono, V.; Abicca, I.; Savini, G. Repeatability of anterior segment measurements by optical coherence tomography combined with Placido disk corneal topography in eyes with keratoconus. Sci. Rep. 2020, 10, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Rabinowitz, Y.S.; Li, X.; Canedo, A.L.; Ambrósio, R., Jr.; Bykhovskaya, Y. Optical coherence tomography combined with videokeratography to differentiate mild keratoconus subtypes. J. Refract. Surg. 2014, 30, 80–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savini, G.; Barboni, P.; Carbonelli, M.; Hoffer, K.J. Repeatability of automatic measurements by a new Scheimpflug camera combined with Placido topography. J. Cataract Refract. Surg. 2011, 37, 1809–1816. [Google Scholar] [CrossRef] [PubMed]
- American National Standards Institute. American National Standard for Ophthalmics—Light Hazard Protection for Ophthalmic Instruments, ANSI Z80.36-2016; American National Standards Institute: New York, NY, USA, 2016. [Google Scholar]
- Atchison, D.; Smith, G. Optics of the Human Eye; Oxford: Butterworth-Heinemann, UK, 2000; Volume 35. [Google Scholar]
- Koutsiaris, A.G.; Tachmitzi, S.V.; Batis, N.; Kotoula, M.G.; Karabatsas, C.H.; Tsironi, E.; Chatzoulis, D.Z. Volume flow and wall shear stress quantification in the human conjunctival capillaries and post-capillary venules in vivo. Biorheology 2007, 44, 375–386. [Google Scholar]
- Hogarty, D.T.; Mackey, D.; Hewitt, A.W. Current state and future prospects of artificial intelligence in ophthalmology: A review. Clin. Exp. Ophthalmol. 2019, 47, 128–139. [Google Scholar] [CrossRef] [Green Version]
- Ting, D.S.W.; Pasquale, L.R.; Peng, L.; Campbell, J.P.; Lee, A.Y.; Raman, R.; Tan, G.S.W.; Schmetterer, L.; Keane, P.A.; Wong, T.Y. Artificial intelligence and deep learning in ophthalmology. Br. J. Ophthalmol. 2019, 103, 167–175. [Google Scholar] [CrossRef] [Green Version]
- Schmidt-Erfurth, U.; Sadeghipour, A.; Gerendas, B.S.; Waldstein, S.M.; Bogunović, H. Artificial intelligence in retina. Prog. Retin. Eye Res. 2018, 67, 1–29. [Google Scholar] [CrossRef]
Mono-fractal Dbox | Multi-fractal D0 | Mean Diameter D (μm) | Cross-sectional Area A(um2) | Axial Velocity Va (mm/s) | Cross-sectional Velocity Vs (mm/s) | Flow Rate Q(pl/s) | |
---|---|---|---|---|---|---|---|
Healthy Subject | 1.51 | 1.52 | 17.84 ± 1.52 | 251.40 ± 44.43 | 0.26 ± 0.07 | 0.18 ± 0.05 | 61.82 ± 22.29 |
Keratitis patient | 1.59 | 1.76 | 23.12 ± 1.00 | 419.68 ± 37.00 | 0.27 ± 0.06 | 0.18 ± 0.06 | 119.3 ± 42.17 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, P.; Duan, Z.; Wang, G.; Deng, Y.; Wang, Q.; Zhang, J.; Liang, S.; Yuan, J. Multi-modal Anterior Eye Imager Combining Ultra-High Resolution OCT and Microvascular Imaging for Structural and Functional Evaluation of the Human Eye. Appl. Sci. 2020, 10, 2545. https://doi.org/10.3390/app10072545
Xiao P, Duan Z, Wang G, Deng Y, Wang Q, Zhang J, Liang S, Yuan J. Multi-modal Anterior Eye Imager Combining Ultra-High Resolution OCT and Microvascular Imaging for Structural and Functional Evaluation of the Human Eye. Applied Sciences. 2020; 10(7):2545. https://doi.org/10.3390/app10072545
Chicago/Turabian StyleXiao, Peng, Zhengyu Duan, Gengyuan Wang, Yuqing Deng, Qian Wang, Jun Zhang, Shanshan Liang, and Jin Yuan. 2020. "Multi-modal Anterior Eye Imager Combining Ultra-High Resolution OCT and Microvascular Imaging for Structural and Functional Evaluation of the Human Eye" Applied Sciences 10, no. 7: 2545. https://doi.org/10.3390/app10072545
APA StyleXiao, P., Duan, Z., Wang, G., Deng, Y., Wang, Q., Zhang, J., Liang, S., & Yuan, J. (2020). Multi-modal Anterior Eye Imager Combining Ultra-High Resolution OCT and Microvascular Imaging for Structural and Functional Evaluation of the Human Eye. Applied Sciences, 10(7), 2545. https://doi.org/10.3390/app10072545