# Reciprocating Compressor Multi-Fault Classification Using Symbolic Dynamics and Complex Correlation Measure

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

- Novel application in PHM of the Complex Correlation Measure (CCM) derived from the Poincaré plot of the vibration signal for extracting useful features for accurate classification of multi-fault in valves and roller bearings.
- Novel application of Symbolic Dynamics (SD) for classification of multi-fault of valves and roller bearings.
- Accurate classification of 13 different combined fault conditions (multi-fault scenario) of valves and roller bearing.
- Accurate classification of 17 fault conditions of valves in a reciprocating compressor.
- Comparison of three different set of features extracted from vibration signal for classifying the set of multi-fault previously mentioned.
- Comparison of two high performance Random Forest (RF) models applied to the problem of multi-fault classification of valves and roller bearings in a reciprocating compressor.

## 2. Poincaré Plot and Their Features

#### 2.1. Poincaré Plot

#### 2.2. Symbolic Dynamics

#### 2.3. Complex Correlation Measure

## 3. Random Forest

#### 3.1. Ensemble Bagged Trees

#### 3.2. Ensemble Subspace k-Nearest Neighbors

## 4. Experimental Test-Bed

#### 4.1. Reciprocating Compressor

#### 4.2. Dataset Vibration Signal Acquisition

## 5. Feature Extraction

#### 5.1. Symbolic Dynamics

#### 5.2. Complex Correlation Measure

#### 5.3. Statistical Features

## 6. Multi-Fault Classification

#### Parameters Selection

## 7. Results

## 8. Discussion

## 9. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## Abbreviations

PHM | Prognostics and Health Management |

SVM | Support Vector Machines |

LSTM | Long Short-Term Memory model |

CCM | Complex Correlation Measure |

RF | Random Forest |

CART | Classification And Regression Tree |

OOB | Out of the Bag |

EDM | Electrical Discharge Machining |

SD | Symbolic Dynamics |

EBT | Ensemble Bagged Tree |

k-NN | k-Nearest Neighbors |

ESK | Ensemble Subspace k-NN |

## References

- Liu, Y.; Duan, L.; Yuan, Z.; Wang, N.; Zhao, J. An Intelligent Fault Diagnosis Method for Reciprocating Compressors Based on LMD and SDAE. Sensors
**2019**, 19, 1041. [Google Scholar] [CrossRef] [PubMed][Green Version] - Wang, Y.; Gao, A.; Zheng, S.; Peng, X. Experimental investigation of the fault diagnosis of typical faults in reciprocating compressor valves. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
**2016**, 230, 2285–2299. [Google Scholar] [CrossRef] - Aravinth, S.; Sugumaran, V. Air compressor fault diagnosis through statistical feature extraction and random forest classifier. Prog. Ind. Ecol. Int. J.
**2018**, 12, 192–205. [Google Scholar] [CrossRef] - Pichler, K.; Lughofer, E.; Pichler, M.; Buchegger, T.; Klement, E.P.; Huschenbett, M. Fault detection in reciprocating compressor valves under varying load conditions. Mech. Syst. Signal Process.
**2016**, 70, 104–119. [Google Scholar] [CrossRef] - Khan, S.; Yairi, T. A review on the application of deep learning in system health management. Mech. Syst. Signal Process.
**2018**, 107, 241–265. [Google Scholar] [CrossRef] - Wang, H.; Dong, F.; Zhou, X.; Wang, H.; Zhu, X.; Song, L.; Guo, Q. Fault Diagnosis of Reciprocating Compressor Using Component Estimating Empirical Mode Decomposition and De-Dimension Template With Double-Loop Correction Algorithm. IEEE Access
**2019**, 7, 90630–90639. [Google Scholar] [CrossRef] - Lei, N.; Tang, Y.; Lei, Y. A fault diagnosis approach of reciprocating compressor gas valve based on local mean decomposition and autoregressive-generalized autoregressive conditional heteroscedasticity model. J. Vibroeng.
**2016**, 18, 838–848. [Google Scholar] - Li, Y.; Wang, J.; Zhao, H.; Song, M.; Ou, L. Fault Diagnosis Method Based on Modified Multiscale Entropy and Global Distance Evaluation for the Valve Fault of a Reciprocating Compressor. Stroj. Vestn./J. Mech. Eng.
**2019**, 65, 123–135. [Google Scholar] [CrossRef][Green Version] - Han, L.; Jiang, K.; Wang, Q.; Wang, X.; Zhou, Y. Quantitative Evaluation on Valve Leakage of Reciprocating Compressor Using System Characteristic Diagnosis Method. Appl. Sci.
**2020**, 10, 1946. [Google Scholar] [CrossRef][Green Version] - Guerra, C.J.; Kolodziej, J.R. A data-driven approach for condition monitoring of reciprocating compressor valves. J. Eng. Gas Turbines Power
**2014**, 136, 1–13. [Google Scholar] [CrossRef] - Cui, H.; Zhang, L.; Kang, R.; Lan, X. Research on fault diagnosis for reciprocating compressor valve using information entropy and SVM method. J. Loss Prev. Process. Ind.
**2009**, 22, 864–867. [Google Scholar] [CrossRef] - Qin, Q.; Jiang, Z.N.; Feng, K.; He, W. A novel scheme for fault detection of reciprocating compressor valves based on basis pursuit, wave matching and support vector machine. Measurement
**2012**, 45, 897–908. [Google Scholar] [CrossRef] - Xiao, S.; Liu, S.; Jiang, F.; Song, M.; Cheng, S. Nonlinear dynamic response of reciprocating compressor system with rub-impact fault caused by subsidence. J. Vib. Control.
**2019**, 25, 1737–1751. [Google Scholar] [CrossRef] - Xiao, S.; Zhang, H.; Liu, S.; Jiang, F.; Song, M. Dynamic behavior analysis of reciprocating compressor with subsidence fault considering flexible piston rod. J. Mech. Sci. Technol.
**2018**, 32, 4103–4124. [Google Scholar] [CrossRef] - Tufillaro, N.B.; Abbott, T.; Reilly, J. An Experimental Approach to Nonlinear Dynamics and Chaos; Addison-Wesley: Redwood City, CA, USA, 1992. [Google Scholar]
- Tucker, W. Computing accurate Poincaré maps. Phys. D Nonlinear Phenom.
**2002**, 171, 127–137. [Google Scholar] [CrossRef] - Soleimani, A.; Khadem, S. Early fault detection of rotating machinery through chaotic vibration feature extraction of experimental data sets. Chaos Solitons Fractals
**2015**, 78, 61–75. [Google Scholar] [CrossRef] - Trendafilova, I.; Manoach, E. Vibration-based damage detection in plates by using time series analysis. Mech. Syst. Signal Process.
**2008**, 22, 1092–1106. [Google Scholar] [CrossRef][Green Version] - Grebogi, C.; Ott, E.; Yorke, J.A. Chaos, strange attractors, and fractal basin boundaries in nonlinear dynamics. Science
**1987**, 238, 632–638. [Google Scholar] [CrossRef][Green Version] - Cabrera, D.; Guamán, A.; Zhang, S.; Cerrada, M.; Sánchez, R.V.; Cevallos, J.; Long, J.; Li, C. Bayesian approach and time series dimensionality reduction to LSTM-based model-building for fault diagnosis of a reciprocating compressor. Neurocomputing
**2020**, 380, 51–66. [Google Scholar] [CrossRef] - Alligood, K.T.; Sauer, T.D.; Yorke, J.A. Chaos: An Introduction to Dynamical Systems; Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Wu, S.T.; Campos, S.P.; de Aguiar, M.A. Scientific visualization of Poincarémaps. Comput. Graph.
**1998**, 22, 209–216. [Google Scholar] [CrossRef] - Brennan, M.; Palaniswami, M.; Kamen, P. Do existing measures of Poincare plot geometry reflect nonlinear features of heart rate variability? IEEE Trans. Biomed. Eng.
**2001**, 48, 1342–1347. [Google Scholar] [CrossRef] [PubMed] - Lorenz, E.N. Deterministic nonperiodic flow. J. Atmos. Sci.
**1963**, 20, 130–141. [Google Scholar] [CrossRef][Green Version] - Rao, C.; Sarkar, S.; Ray, A.; Yasar, M. Comparative evaluation of symbolic dynamic filtering for detection of anomaly patterns. In Proceedings of the 2008 American Control Conference, Seattle, WA, USA, 11–13 June 2008; pp. 3052–3057. [Google Scholar]
- Medina, R.; Macancela, J.C.; Lucero, P.; Cabrera, D.; Cerrada, M.; Sánchez, R.V.; Vásquez, R.E. Vibration signal analysis using symbolic dynamics for gearbox fault diagnosis. Int. J. Adv. Manuf. Technol.
**2019**, 104, 2195–2214. [Google Scholar] [CrossRef] - Du, Q.; Faber, V.; Gunzburger, M. Centroidal Voronoi tessellations: Applications and algorithms. SIAM Rev.
**1999**, 41, 637–676. [Google Scholar] [CrossRef][Green Version] - Thäle, C. A first attempt to fractal mosaics. In Proceedings of the European Congress of Stereology and Image Analysis (ECS10), Milan, Italy, 22–26 June 2009; pp. 342–348. [Google Scholar]
- Lind, D.; Marcus, B.; Douglas, L.; Brian, M. An Introduction to Symbolic Dynamics and Coding; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Karmakar, C.K.; Khandoker, A.H.; Gubbi, J.; Palaniswami, M. Complex Correlation Measure: A novel descriptor for Poincaré plot. Biomed. Eng. Online
**2009**, 8, 17. [Google Scholar] [CrossRef] [PubMed][Green Version] - Breiman, L. Random forests. Mach. Learn.
**2001**, 45, 5–32. [Google Scholar] [CrossRef][Green Version] - Stine, R. An introduction to bootstrap methods: Examples and ideas. Sociol. Methods Res.
**1989**, 18, 243–291. [Google Scholar] [CrossRef] - Efron, B.; Tibshirani, R.J. An Introduction to the Bootstrap; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar]
- Strobl, C.; Boulesteix, A.L.; Augustin, T. Unbiased split selection for classification trees based on the Gini index. Comput. Stat. Data Anal.
**2007**, 52, 483–501. [Google Scholar] [CrossRef][Green Version] - Qin, X.; Li, Q.; Dong, X.; Lv, S. The fault diagnosis of rolling bearing based on ensemble empirical mode decomposition and random forest. Shock Vib.
**2017**, 2017, 2623081. [Google Scholar] [CrossRef] - Ho, T.K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell.
**1998**, 20, 832–844. [Google Scholar] - Gul, A.; Perperoglou, A.; Khan, Z.; Mahmoud, O.; Miftahuddin, M.; Adler, W.; Lausen, B. Ensemble of a subset of kNN classifiers. Adv. Data Anal. Classif.
**2018**, 12, 827–840. [Google Scholar] [CrossRef] [PubMed][Green Version] - Breiman, L. Bagging predictors. Mach. Learn.
**1996**, 24, 123–140. [Google Scholar] [CrossRef][Green Version] - Sánchez, R.V.; Lucero, P.; Vásquez, R.E.; Cerrada, M.; Macancela, J.C.; Cabrera, D. Feature ranking for multi-fault diagnosis of rotating machinery by using random forest and KNN. J. Intell. Fuzzy Syst.
**2018**, 34, 3463–3473. [Google Scholar] [CrossRef] - Jelinek, H.F.; Khandoker, A.H.; Quintana, D.; Imam, M.H.; Kemp, A. Complex correlation measure as a sensitive indicator of risk for sudden cardiac death in patients with depression. In Proceedings of the 2011 Computing in Cardiology, Hangzhou, China, 18–21 September 2011; pp. 809–812. [Google Scholar]

**Figure 2.**The Lorenz attractor is shown in terms of the phase-space trajectories as well as their intersection with a surface for obtaining the Poincaré map.

**Figure 3.**Poincaré map corresponding to the intersection of the phase space with the surface $\Sigma $.

**Figure 4.**Bi-dimensional representation of Lorenz model. (

**a**) Time evolution of $x\left(t\right)$. (

**b**) Time evolution of $y\left(t\right)$. (

**c**) Time evolution of $z\left(t\right)$. (

**d**) Poincaré plot for $x\left(t\right)$. The lag used for the Poincaré plot is $\tau =20$.

**Figure 5.**Poincaré plot showing a fragment of component $x\left(t\right)$ of Lorenz model including the set of symbols assigned.

**Figure 6.**Feature extraction using the symbolic dynamics calculated from the Poincaré plot. (

**a**) Poincaré plot from the Lorenz model constructed with the $x\left(t\right)$ component. The twelve angular regions are overlapped, and a single symbol is assigned to each of points included in the region (

**b**) Histogram calculated from the Poincaré plot for the Lorenz model. The histogram represents the set of features useful for fault classification.

**Figure 7.**Poincaré plot showing the triangles for calculating CCM. The Poincaré plot is considering a lag $\tau $.

**Figure 14.**The Poincaré plot is subdivided into 24 angular regions and each region is represented by a symbol.

**Figure 17.**CCM for a vibration signal of the healthy class (blue) and for the faulty class P2 (red). The calculation considers a variation of $\tau $ between 1 and 50.

Label | Valve, 2S–DV | Bearings, B1 |
---|---|---|

P1 | Healthy | Healthy |

P2 | Valve seat wear | Inner race crack |

P3 | Corrosion of valve plate | Inner race crack |

P4 | Fracture of valve plate | Inner race crack |

P5 | Broken Spring | Inner race crack |

P6 | Valve seat wear | Roller element crack |

P7 | Corrosion of valve plate | Roller element crack |

P8 | Fracture of valve plate | Roller element crack |

P9 | Broken Spring | Roller element crack |

P10 | Valve seat wear | Outer race crack |

P11 | Corrosion of valve plate | Outer race crack |

P12 | Fracture of valve plate | Outer race crack |

P13 | Broken Spring | Outer race crack |

**Table 2.**Percent accuracy for each of features types and models calculated for each vibration signal.

Features | Model | A1 | A2 | A3 |
---|---|---|---|---|

Statistical | EBT | 100 | 100 | 100 |

ESK | 100 | 100 | 100 | |

SD | EBT | 100 | 100 | 100 |

ESK | 100 | 100 | 100 | |

CCM | EBT | 99.4 | 96.8 | 94.2 |

ESK | 100 | 100 | 99.4 |

**Table 3.**Results for the EBT model using features extracted from signals recorded with the accelerometer A3.

Fault Condition | Sensitivity | Specificity | F1-Score |
---|---|---|---|

P1 | 0.92 | 1.00 | 0.96 |

P2 | 1.00 | 1.00 | 1.00 |

P3 | 1.00 | 1.00 | 1.00 |

P4 | 1.00 | 0.99 | 0.96 |

P5 | 1.00 | 0.99 | 0.96 |

P6 | 0.92 | 1.00 | 0.96 |

P7 | 0.92 | 0.99 | 0.92 |

P8 | 0.85 | 0.99 | 0.88 |

P9 | 1.00 | 0.99 | 0.96 |

P10 | 1.00 | 1.00 | 1.00 |

P11 | 1.00 | 1.00 | 1.00 |

P12 | 0.79 | 0.99 | 0.85 |

P13 | 0.90 | 0.98 | 0.82 |

**Table 4.**Percent accuracy for each of features types and models calculated over the dataset of valve faults in [20].

Features | Model | A1 | A2 | A3 | A4 |
---|---|---|---|---|---|

Statistical | EBT | 73.2 | 83.5 | 73.4 | 74.4 |

ESK | 52.6 | 61.7 | 57.2 | 49.0 | |

SD | EBT | 100 | 100 | 100 | 100 |

ESK | 100 | 100 | 100 | 100 | |

CCM | EBT | 91.7 | 98.7 | 95.3 | 97.9 |

ESK | 97.8 | 99.8 | 97.8 | 99.5 |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Cerrada, M.; Macancela, J.-C.; Cabrera, D.; Estupiñan, E.; Sánchez, R.-V.; Medina, R. Reciprocating Compressor Multi-Fault Classification Using Symbolic Dynamics and Complex Correlation Measure. *Appl. Sci.* **2020**, *10*, 2512.
https://doi.org/10.3390/app10072512

**AMA Style**

Cerrada M, Macancela J-C, Cabrera D, Estupiñan E, Sánchez R-V, Medina R. Reciprocating Compressor Multi-Fault Classification Using Symbolic Dynamics and Complex Correlation Measure. *Applied Sciences*. 2020; 10(7):2512.
https://doi.org/10.3390/app10072512

**Chicago/Turabian Style**

Cerrada, Mariela, Jean-Carlo Macancela, Diego Cabrera, Edgar Estupiñan, René-Vinicio Sánchez, and Ruben Medina. 2020. "Reciprocating Compressor Multi-Fault Classification Using Symbolic Dynamics and Complex Correlation Measure" *Applied Sciences* 10, no. 7: 2512.
https://doi.org/10.3390/app10072512