“Green” Synthesis and Antioxidant Activity of Thermally Stable Gold Nanoparticles Encapsulated in Carbon Nanosheets
Abstract
Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Apple Extract Preparation
2.3. Pectin-Capped AuNP Preparation
2.4. Citrate-Capped AuNP Preparation
2.5. Preparation of AuNPs Encapsulated in Carbon Nanosheets
2.6. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Teimuri-Mofrad, R.; Hadi, R.; Tahmasebi, B.; Farhoudian, S.; Mehravar, M.; Nasiri, R. Green synthesis of gold nanoparticles using plant extract: Mini-review. Nanochem. Res 2017, 2, 8–19. [Google Scholar]
- Madhusudhan, A.; Reddy, G.B.; Krishana, I.M. Chapter 4 Green Synthesis of Gold Nanoparticles by Using Natural Gums. Nanomaterials and Plant Potential; Husen, A., Iqbal, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 111–134. [Google Scholar]
- Vijayakumar, S. Eco-friendly synthesis of gold nanoparticles using fruit extracts and in vitro anticancer studies. J. Saudi Chem. Soc. 2019, 23, 753–761. [Google Scholar] [CrossRef]
- Devendiran, R.M.; Chinnaiyan, S.K.; Yadav, N.K.; Moorthy, G.K.; Ramanathan, G.; Singaravelu, S.; Sivagnanam, U.T.; Perumal, P.T. Green synthesis of folic acid-conjugated gold nanoparticles with pectin as reducing/stabilizing agent for cancer theranostics. RSC Adv. 2016, 6, 29757–29768. [Google Scholar] [CrossRef]
- Rimal Isaac, R.S.; Sakthivel, G.; Murthy, C.H. Green Synthesis of Gold and Silver Nanoparticles Using Averrhoa bilimbi Fruit Extract. J. Nanotechnol. 2013, 2013, 6. [Google Scholar] [CrossRef]
- Lee, K.X.; Shameli, K.; Miyake, M.; Kuwano, N.; Ahmad Khairudin, N.B.B.; Mohamad, S.E.B.; Yew, Y.P. Green Synthesis of Gold Nanoparticles Using Aqueous Extract of Garcinia mangostana Fruit Peels. J. Nanomater. 2016, 2016, 7. [Google Scholar] [CrossRef]
- Sujitha, M.V.; Kannan, S. Green synthesis of gold nanoparticles using Citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) aqueous extract and its characterization. Spectrochim. Acta A 2013, 102, 15–23. [Google Scholar] [CrossRef]
- Sett, A.; Gadewar, M.; Sharma, P.; Deka, M.; Bora, U. Green synthesis of gold nanoparticles using aqueous extract of Dillenia indica. Adv. Nat. Sci. Nanosci. Nanotechnol. 2016, 7, 025005. [Google Scholar] [CrossRef]
- Ramírez Castro, J.; García Hernández, L.; Ramírez Ortega, P.A.; Arenas Islas, D. Green synthesis of gold nanoparticles (AuNPs) by Cupressus goveniana extract. ECS Transact. 2018, 84, 207–215. [Google Scholar] [CrossRef]
- Vijaya Kumar, P.; Mary Jelastin Kala, S.; Prakash, K.S. Green synthesis of gold nanoparticles using Croton Caudatus Geisel leaf extract and their biological studies. Mater. Lett. 2019, 236, 19–22. [Google Scholar] [CrossRef]
- Shabestariana, H.; Homayouni-Tabrizib, M.; Soltanic, M.; Namvard, F.; Azizif, S.; Mohamadd, R.; Shabestarianb, H. Green Synthesis of Gold Nanoparticles Using Sumac Aqueous Extract and Their Antioxidant Activity. Mater. Res. 2017, 20, 264–270. [Google Scholar] [CrossRef]
- Lal, S.; Nayak, P.L. Green synthesis of gold nanoparticles using various extract of plants and spices. IJSID 2012, 2, 325–350. [Google Scholar]
- Anjana, P.M.; Bindhu, M.R.; Rakhi, R.B. Green synthesized gold nanoparticle dispersed porous carbon composites for electrochemical energy storage. Mater. Sci. Energy Tech. 2019, 2, 389–395. [Google Scholar] [CrossRef]
- Patra, J.K.; Baek, K.-H. Novel green synthesis of gold nanoparticles using Citrullus lanatus rind and investigation of proteasome inhibitory activity, antibacterial, and antioxidant potential. Int. J. Nanomed. 2015, 10, 7253–7264. [Google Scholar]
- Darabdhara, G.; Das, M.R.; Singh, S.P.; Rengan, A.K.; Szunerits, S.; Boukherroub, R. Green one-pot synthesis of gold nanoparticles using Sansevieria roxburghiana leaf extract for the catalytic degradation of toxic organic pollutants. Mater. Res. Bull. 2019, 117, 18–27. [Google Scholar]
- Bogireddy, N.K.R.; Pal, U.; Martinez Gomezc, L.; Agarwal, V. Size controlled green synthesis of gold nanoparticles using Coffea arabica seed extract and their catalytic performance in 4-nitrophenol reduction. RSC Adv. 2018, 8, 24819. [Google Scholar] [CrossRef]
- Aljabali, A.A.A.; Akkam, Y.; Al-Zoubi, M.S.; Al-Batayneh, K.M.; Al-Trad, B.; Alrob, O.A.; Alkilany, A.M.; Benamara, M.; Evans, D.J. Synthesis of Gold Nanoparticles Using Leaf Extract of Ziziphus zizyphus and their Antimicrobial Activity. Nanomaterials 2018, 8, 174. [Google Scholar] [CrossRef] [PubMed]
- Golmoraj, V.E.; Khoshayand, M.R.; Amini, M.; Moghadamd, K.M.; Amin, G.; Shahverdi, A.R. The surface chemistry and stability of gold nanoparticles prepared using methanol extract of Eucalyptus camaldulensis. J. Exp. Nanosci. 2010, 6, 200–208. [Google Scholar] [CrossRef]
- Thirumalraj, B.; Rajkumar, C.; Chen, S.-M.; Palanisamy, S. One-Pot Green Synthesis of Graphene Nanosheets Encapsulated Gold Nanoparticles for Sensitive and Selective Detection of Dopamine. Sci. Rep. 2017, 7, 412213. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Mohanta, B. Microwave-assisted green synthesis of Gold nanoparticles and its catalytic activity. Int. J. Nano Dimens. 2019, 10, 359–367. [Google Scholar]
- Liu, Y.; Kim, S.; Kim, Y.J.; Perumalsamy, H.; Lee, S.; Hwang, E.; Yi, T.-H. Green synthesis of gold nanoparticles using Euphrasia officinalis leaf extract to inhibit lipopolysaccharide-induced inflammation through NF-κB and JAK/STAT pathways in RAW 264.7 macrophages. Int. J. Nanomed. 2019, 14, 2945–2959. [Google Scholar] [CrossRef]
- Wang, A.; Ng, H.P.; Xu, Y.; Li, Y.; Zheng, Y.; Yu, J.; Han, F.; Peng, F.; Fu, L. Gold Nanoparticles: Synthesis, Stability Test, and Application for the Rice Growth. J. Nanomater. 2014, 2014, 6. [Google Scholar] [CrossRef]
- Vanitha Kumari, G.; JothiRajan, M.A.; Mathavan, T. Pectin functionalized gold nanoparticles towards singlet oxygen generation. Mater. Res. Express 2018, 5, 085027. [Google Scholar] [CrossRef]
- Veith, G.M.; Lupini, A.R.; Rashkeev, S.; Pennycook, S.J.; Mullins, D.R.; Schwartz, V.; Bridges, C.A.; Dudney, N.J. Thermal stability and catalytic activity of gold nanoparticles supported on silica. J. Catal. 2009, 262, 92–101. [Google Scholar] [CrossRef]
- Masoud, N.; Partsch, T.; de Jong, K.P.; de Jongh, P.E. Thermal stability of oxide-supported gold nanoparticles. Gold Bull. 2019, 52, 105–114. [Google Scholar] [CrossRef]
- Liu, X.; Wang, A.; Yang, X.; Zhang, T.; Mou, C.-Y.; Su, D.-S.; Li, J. Synthesis of Thermally Stable and Highly Active Bimetallic Au-Ag Nanoparticles on Inert Supports. Chem. Mater. 2009, 21, 410–418. [Google Scholar] [CrossRef]
- Kim, M.; Shhn, K.; Na, H.B.; Hyeon, T. Synthesis of Nanorattles Composed of Gold Nanoparticles Encapsulated in Mesoporous Carbon and Polymer Shells. Nano Lett. 2002, 2, 1383–1387. [Google Scholar] [CrossRef]
- Goncalves, G.; Marques, P.A.A.P.; Granadeiro, C.M.; Nogueira, H.I.S.; Singh, M.K.; Gracio, J. Urface Modification of Graphene Nanosheets with Gold Nanoparticles: The Role of Oxygen Moieties at Graphene Surface on Gold Nucleation and Growth. Chem. Mater. 2009, 21, 4796–4802. [Google Scholar] [CrossRef]
- Xu, D.; Lv, H.; Liu, B. Encapsulation of Metal Nanoparticle Catalysts within Mesoporous Zeolites and Their Enhanced Catalytic Performances: A Review. Front. Chem. 2018, 6, 550. [Google Scholar] [CrossRef]
- Xu, C.; Yang, D.; Mei, L.; Lu, B.; Chen, L.; Li, Q.; Zhu, H.; Wang, T. Encapsulating Gold Nanoparticles or Nanorods in Graphene Oxide Shells as a Novel Gene Vector. ACS Appl. Mater. Interfaces 2013, 5, 2715–2724. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, R.; Han, L.; Tu, B.; Zhao, D. One-pot synthesis of thermally stable gold@mesoporous silica core–shell nanospheres with catalytic activity. Nano Res. 2013, 6, 871–879. [Google Scholar] [CrossRef]
- Kang, J.; Kim, Y.; Kim, H.; Hu, X.; Saito, N.; Choi, J.-H.; Lee, M.-H. In-situ one-step synthesis of carbon-encapsulated naked magnetic metal nanoparticles conduced with additional reductants and agents. Sci. Rep. 2016, 6, 38652. [Google Scholar] [CrossRef] [PubMed]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Gerhauser, C. Cancer chemopreventive potential of apples, apple juice, and apple components. Planta Med. 2008, 13, 1608–1624. [Google Scholar] [CrossRef] [PubMed]
- Bajpai, V.K.; Kamle, M.; Shukla, S.; Mahato, D.K.; Chandra, P.; Hwang, S.K.; Kumar, P.; Huh, Y.S.; Han, Y.-K. Prospects of using nanotechnology for food preservation, safety, and security. J. Food Drug Anal. 2018, 26, 1201–1214. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, H.-W.; Wang, J.-Y.; Hsiao, V.K.S.; Chu, C.-C. “Green” Synthesis and Antioxidant Activity of Thermally Stable Gold Nanoparticles Encapsulated in Carbon Nanosheets. Appl. Sci. 2020, 10, 2272. https://doi.org/10.3390/app10072272
Lin H-W, Wang J-Y, Hsiao VKS, Chu C-C. “Green” Synthesis and Antioxidant Activity of Thermally Stable Gold Nanoparticles Encapsulated in Carbon Nanosheets. Applied Sciences. 2020; 10(7):2272. https://doi.org/10.3390/app10072272
Chicago/Turabian StyleLin, Hui-Wen, Jia-Yi Wang, Vincent K. S. Hsiao, and Chih-Chien Chu. 2020. "“Green” Synthesis and Antioxidant Activity of Thermally Stable Gold Nanoparticles Encapsulated in Carbon Nanosheets" Applied Sciences 10, no. 7: 2272. https://doi.org/10.3390/app10072272
APA StyleLin, H.-W., Wang, J.-Y., Hsiao, V. K. S., & Chu, C.-C. (2020). “Green” Synthesis and Antioxidant Activity of Thermally Stable Gold Nanoparticles Encapsulated in Carbon Nanosheets. Applied Sciences, 10(7), 2272. https://doi.org/10.3390/app10072272