Applications of Electrical Resistivity Surveys in Solving Selected Geotechnical and Environmental Problems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of the Test Sites
2.2. In Situ Investigations
2.3. Laboratory Investigations
3. Results and Discussion
3.1. Influence of Degree of Saturation and Porosity on Electrical Resistivity—Laboratory Investigations
3.2. Assessment of Saturation Degree and Porosity—In Situ Investigations
3.3. Surface Resistivity Measurements—Recognition of Subsoil and Hydrotechnical Structures
4. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Wisen, R.; Dahlin, T.; Auken, E. Resistivity imaging as a tool in shallow site investigation–a case study. In Proceedings of the 2nd International Conference on Site Characterization (ISC-2), Porto, Portugal, 20–22 September 2004; Viana de Fonseca & Mayne: Rotterdam, The Netherlands, 2004; pp. 607–613. [Google Scholar]
- Reynolds, J.M. An Introduction to Applied and Environmental Geophysics; John Wiley and Sons Ltd.: New York, NY, USA, 2011. [Google Scholar]
- Long, M.; Donohue, S.; L’Heureux, J.-S.; Solberg, I.-L.; Rønning, J.S.; Limacher, R.; O’Connor, P.; Sauvin, G.; Rømoen, M.; Lecomte, I. Relationship between electrical resistivity and basic geotechnical parameters for marine clays. Can. Geotech. J. 2012, 49, 1158–1168. [Google Scholar] [CrossRef] [Green Version]
- Kowalczyk, S.; Zawrzykraj, P.; Mieszkowski, R. Application of electrical resistivity tomography in assessing complex soil conditions. Geol. Q. 2015, 59, 367–372. [Google Scholar] [CrossRef]
- Zahody, A.A.P.; Eaton, G.P.; Mabey, D.R. Electrical methods in US Geological Survey. In Ch. 2: Application of Surface Geophysics to Ground–Water Investigations; USGS Publications: Reston, VA, USA, 1974. [Google Scholar]
- Giang, N.V.; Duan, N.B.; Thanh, L.N.; Hida, N. Geophysical Techniques to Aquifer Locating and Monitoring for Industrial Zones in North Hanoi, Vietnam. Acta Geophys. 2013, 61, 1573–1597. [Google Scholar] [CrossRef]
- Trappe, J.; Kneisel, C. Geophysical and Sedimentological Investigations of Peatlands for the Assessment of Lithology and Subsurface Water Pathways. Geosciences 2019, 9, 118. [Google Scholar] [CrossRef] [Green Version]
- Stopiński, W. Bedrock monitoring by means of the electric resistivity method during the construction and operation of the Czorsztyn-Niedzica dam. Acta Geophys. Pol. 2003, 51, 215–256. [Google Scholar]
- Niederleithinger, E.; Weller, A.; Lewis, R.; Stoetzner, U. Evaluation of geophysical techniques for river embankment investigation. In Geotechnical and Geophysical Site Characterization–Huang and Mayne; Taylor and Francis Group: Abingdon-on-Thames, UK, 2008; pp. 909–914. [Google Scholar]
- Al-Fares, W.; Asfahani, J. Evaluation of the leakage origin in Abu Baara earthen dam using electrical resistivity tomography, northwestern Syria. Geofis. Int. 2018, 57, 223–237. [Google Scholar]
- Ikard, S.J.; Revil, A.; Schmutz, M.; Karaoulis, M.; Jardani, A.; Mooney, M. Characterization of focused seepage through an earthfill dam using geoelectrical methods. Ground Water 2014, 52, 952–965. [Google Scholar] [CrossRef]
- Archie, G.E. The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions of the American Institute of Mining and Metallurgical Engineers. Trans. AIME 1942, 146, 54–61. [Google Scholar] [CrossRef]
- Atkins, E.R.; Smith, G.H. The significance of particle shape in formation resistivity factor–porosity relationships. J. Pet. Technol. 1961, 13, 285–291. [Google Scholar] [CrossRef]
- Jackson, P.D.; Taylor Smith, D.; Stanford, P.N. Resistivity–porosity–particle shape relationships for marine sands. Geophysics 1978, 43, 1250–1268. [Google Scholar] [CrossRef]
- Abu-Hassanein, Z.S.; Benson, C.H.; Boltz, L.R. Electrical resistivity of compacted clays. J. Geotech. Eng. 1996, 122, 397–406. [Google Scholar] [CrossRef]
- McCarter, W.J.; Blewett, J.; Chrisp, T.M.; Starss, G. Electrical property measurements using a modified hydraulic oedometer. Can. Geotech. J. 2006, 42, 655–662. [Google Scholar] [CrossRef]
- Waxman, M.H.; Smits, L.J.M. Electrical Conductivities in Oil-Bearing Shaly Sands. Soc. Pet. Eng. J. 1968, 8, 107–122. [Google Scholar] [CrossRef]
- Kalinski, R.J.; Kelly, W.E. Estimating Water Content of Soils from Electrical Resistivity. Geotech. Test. J. ASTM 1993, 16, 323–329. [Google Scholar]
- Fukue, M.; Minato, T.; Matsumoto, M.; Horibe, H.; Taya, N. Use of a resistivity cone detecting contaminated soil layers. Eng. Geol. 2001, 60, 361–369. [Google Scholar] [CrossRef]
- Rinaldi, V.A.; Cuestas, G.A. Ohmic Conductivity of Compacted Silty Clay. J. Geotech. Environ. Eng. 2002, 128, 824–835. [Google Scholar] [CrossRef]
- Samouelian, A.; Cousin, I.; Tabbagh, A.; Bruand, A.; Richard, G. Electrical resistivity survey in soil science. Soil Tillage Res. 2005, 83, 173–193. [Google Scholar] [CrossRef] [Green Version]
- Batayneh, A.T. 2D electrical imaging of an LNAPL contamination, Al Amiriya Fuel Station, Jordan. J. Appl. Sci. 2005, 5, 52–59. [Google Scholar]
- Mondelli, G.; Giacheti, H.L.; Elis, V.R. The use of resistivity for detecting MSW contamination plumes in a tropical soil site. In Proceedings of the 6th International Congress on Environmental Geotechnics, New Delhi, India, 8–12 November 2010; Mc Graw Hill: New York, NY, USA, 2010; pp. 1544–1549. [Google Scholar]
- De Carlo, L.; Perri, M.T.; Caputo, M.C.; Deiana, R.; Vurro, M.; Cassiani, G. Characterization of a dismissed landfill via electrical resistivity tomography and mise-à-la-masse method. J. Appl. Geophys. 2013, 98, 1–10. [Google Scholar] [CrossRef]
- Lech, M.; Fronczyk, J.; Radziemska, M.; Sieczka, A.; Garbulewski, K.; Koda, E.; Lechowicz, Z. Monitoring of total dissolved solids on agricultural lands using electrical conductivity measurements. Appl. Ecol. Environ. Res. 2016, 14, 285–295. [Google Scholar] [CrossRef]
- Koda, E.; Tkaczyk, A.; Lech, M.; Osinski, P. Application of Electrical Resistivity Data Sets for the Evaluation of the Pollution Concentration Level within Landfill Subsoil. Appl. Sci. 2017, 7, 262. [Google Scholar] [CrossRef]
- Friedman, S.P. Soil properties influencing apparent electrical conductivity: A review. Comput. Electron. Agric. 2005, 46, 45–70. [Google Scholar] [CrossRef]
- Asfahani, J.; Zakhem, B.A. Geoelectrical and hydrochemical investigations for characterizing the salt water intrusion in the Khanasser valley, northern Syria. Acta Geophys. 2013, 61, 422–444. [Google Scholar] [CrossRef]
- Greggio, N.; Giambastiani, B.M.S.; Balugani, E.; Amaini, C.; Antonellini, M. High-Resolution Electrical Resistivity Tomography (ERT) to Characterize the Spatial Extension of Freshwater Lenses in a Salinized Coastal Aquifer. Water 2018, 10, 1067. [Google Scholar] [CrossRef] [Green Version]
- Campanella, R.G.; Weemees, I. Development and use of an electrical resistivity cone for groundwater contamination studies. Can. Geotech. J. 1990, 27, 557–567. [Google Scholar] [CrossRef]
- Rice, A. The Seismic Cone Penetrometer. Master’s Thesis, Department of Civil Engineering, University of British Columbia, Vancouver, BC, Canada, 1984. [Google Scholar]
- Robertson, P.K.; Campanella, R.G.; Gillespie, D.; Greig, J. Use of Piezometer Cone Data. In Proceedings of the American Society of Civil. Engineers, ASCE, In-Situ 86 Specialty Conference, New York, NY, USA, 23–25 June 1986; pp. 1263–1280. [Google Scholar]
- Kowalczyk, S.; Zawrzykraj, P.; Maślakowski, M. Application of the electrical resistivity method in assessing soil for the foundation of bridge structures: A case study from the Warsaw environs, Poland. Acta Geodyn. Geomater. 2017, 14, 221–234. [Google Scholar] [CrossRef] [Green Version]
- Dahlin, T.; Garin, H.; Palm, M. Combined Resistivity Imaging and RCPT for Geotechnical Preinvestigation; Procs NGM: Ystad, Sweden, 2004; pp. 1–9. [Google Scholar]
- Skutnik, Z.; Bajda, M.; Lech, M. Applications of RCPTU and SCPTU with Other Geophysical Test Methods in Geotechnical Practice; Hicks, M., Pisanò, F., Peuchen, J., Eds.; RC Press: London, UK, 2018. [Google Scholar]
- Rabarijoely, S. A New Approach to the Determination of Mineral and Organic Soil Types Based on Dilatometer Tests (DMT). Appl. Sci. 2018, 8, 2249. [Google Scholar] [CrossRef] [Green Version]
- Chu, Y.; Liu, S.; Cai, G.; Bian, H. Evaluation of Free Swelling of Expansive Soil Using Four-Electrode Resistivity Cone. In Proceedings of the China-Europe Conference on Geotechnical Engineering, Springer Series in Geomechanics and Geoengineering, Vienna, Austria, 13–16 August 2018; Wu, W., Yu, H.S., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 685–688. [Google Scholar]
- Lowrie, W. Fundamentals of Geophysics, 2nd ed.; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Pfannkuch, H.O. On the correlation of electrical conductivity properties of porous system with viscous flow transport coefficients. In Proceedings of the IAHR First International Symposium on Fundamentals of Transport Phenomena in Porous Media, Haifa, Israel, 23–28 February 1969; pp. 37–47. [Google Scholar]
- Loke, M.H.; Chambers, J.E.; Rucker, D.F.; Kuras, O.; Wilkinson, P.B. Recent developments in the direct-current geoelectrical imaging method. J. Appl. Geophys. 2013, 95, 135–158. [Google Scholar] [CrossRef]
- Keller, G.V.; Frischknecht, F.C. Electrical Methods in Geophysical Prospecting; Pergamon Press: Oxford, UK, 1966. [Google Scholar]
- Buryakovsky, L.A. Petrophysics: Fundamentals of the Petrophysics of Oil and Gas Reservoirs; Scrivener Publication: Beverly, MA, USA, 2012. [Google Scholar]
- Bahuguna, R.M.; Pabla, S.S.; Lal, M.; Raj, H. Impact on Estimation of Water Saturation Values Using Laboratory Determined ‘a’, ‘m’& ‘n’ Parameters-A Case Study. In Proceedings of the 6th International Conference & Exposition on Petroleum Geophysics, Kolkata, India, 4–6 December 2006. [Google Scholar]
- Schön, J. Physical Properties of Rocks: A Workbook; Elsevier: San Diego, CA, USA, 2011. [Google Scholar]
- Lech, M. The Use of Electrical Resistivity Method to Recognize Ground Water Flow Conditions. Ph.D. Thesis, Department of Geotechnical Engineering, Warsaw University of Life Sciences, Warsaw, Poland, 2006. (In Polish). [Google Scholar]
- Nabawy, B.S. Impacts of the pore- and petro-fabrics on porosity exponent and lithology factor of Archie’s equation for carbonate rocks. J. Afr. Earth Sci. 2015, 108, 101–114. [Google Scholar] [CrossRef]
- Torstensson, B.A. A new system for Groundwater Monitoring. Groundwater Monitoring Review. Groundw. Monit. Remediat. 1984, 4, 131–138. [Google Scholar] [CrossRef]
- Skutnik, Z.; Bajda, M.; Lech, M. The selection of sealing technologies of the subsoil and hydrotechnical structures and quality assurance. Open Eng. 2020, 9, 420–427. [Google Scholar] [CrossRef]
- Wójcik, E.; Trzciński, J.; Łądkiewicz-Krochmal, K. Microstructural changes of expansive clays during dehydration caused by suction pressure—A case study of Miocene to Pliocene clays from Warsaw (Poland). Acta Geol. Pol. 2019, 69, 465–488. [Google Scholar]
- Mieszkowski, R.; Kowalczyk, S.; Barański, M.; Szczepański, T. The use of geophysical methods to identify the roof of cohesive soils and the designation of zones of suffusion relaxation in the body of an earth dam. (in Polish). Zeszyty Nauk. Inst. Gospod. Surowcami Miner. Energią PAN 2014, 86, 167–180. [Google Scholar]
Soil | Effective Size d50 [mm] | [-] | R2 [-] |
---|---|---|---|
Fine sand (FSa) | 0.22 | 1.63 | 0.93 |
Medium sand (MSa) | 0.40 | 1.61 | 0.93 |
Coarse sand (CSa) | 0.80 | 1.53 | 0.95 |
Soil | Effective Size d50 [mm] | m [-] | R2 [-] |
---|---|---|---|
Fine sand (FSa) | 0.22 | 1.39 | 0.86 |
Medium sand (MSa) | 0.40 | 1.41 | 0.89 |
Coarse sand (CSa) | 0.80 | 1.45 | 0.91 |
Depth [m] | Soil | Groundwater Conductivity [mS/m] |
---|---|---|
3.5 | MSa | 161.3 |
4.0 | MSa | 147.1 |
4.8 | Cl | 261.8 |
6.2 | Cl | 274.0 |
7.2 | Cl | 270.3 |
7.6 | Cl | 290.7 |
9.4 | Cl | 308.6 |
11.6 | siCl | 224.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lech, M.; Skutnik, Z.; Bajda, M.; Markowska-Lech, K. Applications of Electrical Resistivity Surveys in Solving Selected Geotechnical and Environmental Problems. Appl. Sci. 2020, 10, 2263. https://doi.org/10.3390/app10072263
Lech M, Skutnik Z, Bajda M, Markowska-Lech K. Applications of Electrical Resistivity Surveys in Solving Selected Geotechnical and Environmental Problems. Applied Sciences. 2020; 10(7):2263. https://doi.org/10.3390/app10072263
Chicago/Turabian StyleLech, Mariusz, Zdzisław Skutnik, Marek Bajda, and Katarzyna Markowska-Lech. 2020. "Applications of Electrical Resistivity Surveys in Solving Selected Geotechnical and Environmental Problems" Applied Sciences 10, no. 7: 2263. https://doi.org/10.3390/app10072263
APA StyleLech, M., Skutnik, Z., Bajda, M., & Markowska-Lech, K. (2020). Applications of Electrical Resistivity Surveys in Solving Selected Geotechnical and Environmental Problems. Applied Sciences, 10(7), 2263. https://doi.org/10.3390/app10072263