Castration-Resistant Prostate Cancer Outcome Prediction Using Phased Long Short-Term Memory with Irregularly Sampled Serial Data
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Ethics
2.3. Methods
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, R.; Miller, K.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin. 2018, 68, 7–30. [Google Scholar] [CrossRef]
- Jung, K.-W.; Won, Y.-J.; Kong, H.-J.; Lee, E.S. Cancer statistics in korea: Incidence, mortality, survival, and prevalence in 2016. Cancer Res. Treat. 2019, 51, 417–430. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Rho, M.J.; Park, Y.H.; Jung, C.K.; Chong, Y.; Kim, C.-S.; Go, H.; Jeon, S.S.; Kang, M.; Lee, H.J. Promise clip project: A retrospective, multicenter study for prostate cancer that integrates clinical, imaging and pathology data. Appl. Sci. 2019, 9, 2982. [Google Scholar] [CrossRef]
- Koh, H.; Kattan, M.W.; Scardino, P.T.; Suyama, K.; Maru, N.; Slawin, K.; Wheeler, T.M.; Ohori, M. A nomogram to predict seminal vesicle invasion by the extent and location of cancer in systematic biopsy results. J. Urol. 2003, 170, 1203–1208. [Google Scholar] [CrossRef] [PubMed]
- Omlin, A.; Pezaro, C.; Mukherji, D.; Cassidy, A.M.; Sandhu, S.; Bianchini, D.; Olmos, D.; Ferraldeschi, R.; Maier, G.; Thompson, E. Improved survival in a cohort of trial participants with metastatic castration-resistant prostate cancer demonstrates the need for updated prognostic nomograms. Eur. Urol. 2013, 64, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Hirasawa, Y.; Nakashima, J.; Sugihara, T.; Takizawa, I.; Gondo, T.; Nakagami, Y.; Horiguchi, Y.; Ohno, Y.; Namiki, K.; Ohori, M. Development of a nomogram for predicting severe neutropenia associated with docetaxel-based chemotherapy in patients with castration-resistant prostate cancer. Clin. Genitourin. Cancer 2017, 15, 176–181. [Google Scholar] [CrossRef]
- Mun, S.; Park, J.; Dritschilo, A.; Collins, S.; Suy, S.; Choi, I.; Rho, M. The prostate clinical outlook (pco) classifier application for predicting biochemical recurrences in patients treated by stereotactic body radiation therapy (sbrt). Appl. Sci. 2018, 8, 1620. [Google Scholar] [CrossRef]
- Fakoor, R.; Ladhak, F.; Nazi, A.; Huber, M. Using deep learning to enhance cancer diagnosis and classification. In Proceedings of the International Conference on Machine Learning, Atlanta, GA, USA, 17–19 June 2013. [Google Scholar]
- Liu, S.; Zheng, H.; Feng, Y.; Li, W. Prostate cancer diagnosis using deep learning with 3d multiparametric MRI. arXiv 2017, arXiv:1703.04078. [Google Scholar]
- Litjens, G.; Sánchez, C.I.; Timofeeva, N.; Hermsen, M.; Nagtegaal, I.; Kovacs, I.; Hulsbergen-Van De Kaa, C.; Bult, P.; Van Ginneken, B.; Van Der Laak, J. Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Sci. Rep. 2016, 6, 26286. [Google Scholar] [CrossRef]
- Wang, X.; Yang, W.; Weinreb, J.; Han, J.; Li, Q.; Kong, X.; Yan, Y.; Ke, Z.; Luo, B.; Liu, T. Searching for prostate cancer by fully automated magnetic resonance imaging classification: Deep learning versus non-deep learning. Sci. Rep. 2017, 7, 15415. [Google Scholar] [CrossRef]
- He, B.; Xiao, D.; Hu, Q.; Jia, F. Automatic magnetic resonance image prostate segmentation based on adaptive feature learning probability boosting tree initialization and cnn-asm refinement. IEEE Access 2017, 6, 2005–2015. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Park, H.-G.; Kim, C.-H.; Prakash, D.; Madusanka, N.; So, J.-H.; Cho, N.-H.; Choi, H.-K. Quantitative analysis of benign and malignant tumors in histopathology: Predicting prostate cancer grading using svm. Appl. Sci. 2019, 9, 2969. [Google Scholar] [CrossRef]
- Neil, D.; Pfeiffer, M.; Liu, S.-C. Phased lstm: Accelerating recurrent network training for long or event-based sequences Advances in neural information processing systems. arXiv 2016, arXiv:1610.09513. [Google Scholar]
- Bianchini, D.; Lorente, D.; Rodriguez-Vida, A.; Omlin, A.; Pezaro, C.; Ferraldeschi, R.; Zivi, A.; Attard, G.; Chowdhury, S.; De Bono, J.S. Antitumour activity of enzalutamide (mdv3100) in patients with metastatic castration-resistant prostate cancer (crpc) pre-treated with docetaxel and abiraterone. Eur. J. Cancer 2014, 50, 78–84. [Google Scholar] [CrossRef]
- Miyoshi, Y.; Sakamoto, S.; Kawahara, T.; Uemura, K.; Yokomizo, Y.; Uemura, H. Correlation between automated bone scan index change after cabazitaxel and survival among men with castration-resistant prostate cancer. Urol. Int. 2019, 103, 279–284. [Google Scholar] [CrossRef]
- Attard, G.; Reid, A.H.; A’Hern, R.; Parker, C.; Oommen, N.B.; Folkerd, E.; Messiou, C.; Molife, L.R.; Maier, G.; Thompson, E. Selective inhibition of cyp17 with abiraterone acetate is highly active in the treatment of castration-resistant prostate cancer. J. Clin. Oncol. 2009, 27, 3742. [Google Scholar] [CrossRef]
- Penson, D.F.; Armstrong, A.J.; Concepcion, R.; Agarwal, N.; Olsson, C.; Karsh, L.; Dunshee, C.; Wang, F.; Wu, K.; Krivoshik, A. Enzalutamide versus bicalutamide in castration-resistant prostate cancer: The strive trial. J. Clin. Oncol. 2016, 34, 2098–2106. [Google Scholar] [CrossRef]
- Parker, C.; Heinrich, D.; OSullivan, J.; Fossa, S.; Chodacki, A.; Demkow, T.; Cross, A.; Bolstad, B.; Garcia-Vargas, J.; Sartor, O. Overall survival benefit of radium-223 chloride (alpharadin) in the treatment of patients with symptomatic bone metastases in castration-resistant prostate cancer (crpc): A phase iii randomized trial (alsympca). Eur. J. Cancer 2011, 47, 3. [Google Scholar] [CrossRef]
- McHugh, M.L. The chi-square test of independence. Biochem. Med. Biochem. Med. 2013, 23, 143–149. [Google Scholar] [CrossRef]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. Smote: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Wang, J.; Xu, M.; Wang, H.; Zhang, J. Classification of imbalanced data by using the smote algorithm and locally linear embedding. In Proceedings of the 2006 8th international Conference on Signal Processing, Guilin, China, 16–20 November 2006. [Google Scholar]
- Jeatrakul, P.; Wong, K.W.; Fung, C.C. Classification of imbalanced data by combining the complementary neural network and smote algorithm. In Proceedings of the International Conference on Neural Information Processing, Sydney, Australia, 22–25 November 2010; pp. 152–159. [Google Scholar]
- Ditzler, G.; Polikar, R.; Chawla, N. An incremental learning algorithm for non-stationary environments and class imbalance. In Proceedings of the 2010 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 2997–3000. [Google Scholar]
- Torgo, L.; Ribeiro, R.P.; Pfahringer, B.; Branco, P. Smote for regression. In Proceedings of the Portuguese Conference on Artificial Intelligence, Azores, Portugal, 9–12 September 2013; pp. 378–389. [Google Scholar]
- Boyce, M.S.; Vernier, P.R.; Nielsen, S.E.; Schmiegelow, F.K. Evaluating resource selection functions. Ecol. Model. 2002, 157, 281–300. [Google Scholar] [CrossRef]
- Jia, Y.; Martín, A.; Ashish, A.; Paul, B.; Eugene, B.; Zhifeng, C.; Craig, C.; Greg, S.C.; Andy, D.; Jeffrey, D.; et al. Tensorflow: Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available online: http://tensorflow.org/ (accessed on 1 October 2019).
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Elishmereni, M.; Kheifetz, Y.; Shukrun, I.; Bevan, G.H.; Nandy, D.; McKenzie, K.M.; Kohli, M.; Agur, Z. Predicting time to castration resistance in hormone sensitive prostate cancer by a personalization algorithm based on a mechanistic model integrating patient data. Prostate 2016, 76, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Humphreys, M.R.; Fernandes, K.A.; Sridhar, S.S. Impact of age at diagnosis on outcomes in men with castrate-resistant prostate cancer (crpc). J. Cancer 2013, 4, 304. [Google Scholar] [CrossRef]
- Angulo, J.C.; Andrés, G.; Ashour, N.; Sánchez-Chapado, M.; López, J.I.; Ropero, S. Development of castration resistant prostate cancer can be predicted by a DNA hypermethylation profile. J. Urol. 2016, 195, 619–626. [Google Scholar] [CrossRef]
Category | Non-Castration-Resistant Prostate Cancer (CRPC) Medication | CRPC Medication | p-Value (chi-Squared Test) |
---|---|---|---|
Number of cases (n = 1592 cases) | 1584 | 8 | |
Age at diagnosis (%) | 0.253 | ||
<40 | 1 (0.1) | 0 (0.0) | |
40–44 | 3 (0.2) | 0 (0.0) | |
45–49 | 16 (1.0) | 0 (0.0) | |
50–54 | 54 (3.4) | 0 (0.0) | |
55–59 | 165 (10.4) | 2 (25.0) | |
60–64 | 303 (19.1) | 1 (12.5) | |
65–69 | 461 (29.1) | 0 (0.0) | |
70–74 | 429 (27.1) | 2 (25.0) | |
75–80 | 146 (9.2) | 3 (37.5) | |
80–84 | 6 (0.4) | 0 (0.0) | |
Mean | 63.64 | 66.5 | |
T-stage (%) | 0.008 | ||
T1 | 1 (0.1) | 0 (0.0) | |
T1a | 7 (0.4) | 0 (0.0) | |
T1c | 3 (0.2) | 0 (0.0) | |
T2 | 100 (6.3) | 0 (0.0) | |
T2a | 141 (8.9) | 0 (0.0) | |
T2b | 56 (3.5) | 0 (0.0) | |
T2c | 746 (47.1) | 0 (0.0) | |
T3 | 4 (0.3) | 0 (0.0) | |
T3a | 312 (19.7) | 3 (37.5) | |
T3b | 195 (12.3) | 4 (50.0) | |
T3c | 1 (0.1) | 0 (0.0) | |
T4 | 14 (0.9) | 1 (12.5) | |
Tx | 4 (0.3) | 0 (0.0) | |
N-stage (%) | 0.305 | ||
N0 | 379 (23.9) | 3 (37.5) | |
N1 | 68 (4.3) | 1 (12.5) | |
Nx | 1137 (71.8) | 4 (50.0) | |
M-stage (%) | 0.422 | ||
M0 | 304 (19.2) | 3 (37.5) | |
M1 | 3 (0.2) | 0 (0.0) | |
Mx | 1277 (80.6) | 5 (62.5) |
Running Result: 10 Epochs to Determine Early Stop | Running Result: Determine 4 Epochs for Preventing Overfitting | ||||||
---|---|---|---|---|---|---|---|
Category | Epoch (10) | Loss | Accuracy | Category | Epoch (4) | Loss | Accuracy |
120-day model | 1 | 0.6892 | 0.5743 | 120-day model | 1 | 0.6889 | 0.5168 |
2 | 0.6722 | 0.5549 | 2 | 0.6705 | 0.6954 | ||
3 | 0.5841 | 0.7257 | 3 | 0.5720 | 0.7756 | ||
4 | 0.4445 | 0.8073 | 4 | 0.3924 | 0.8391 | ||
5 | 0.2879 | 0.8957 | |||||
6 | 0.1943 | 0.9379 | |||||
7 | 0.1496 | 0.9560 | |||||
8 | 0.1428 | 0.9615 | |||||
9 | 0.1341 | 0.9637 | |||||
10 | 0.1140 | 0.9701 | |||||
360-day model | 1 | 0.6848 | 0.5698 | 360-day model | 1 | 0.6882 | 0.4932 |
2 | 0.5190 | 0.7969 | 2 | 0.5423 | 0.8196 | ||
3 | 0.2708 | 0.9021 | 3 | 0.3228 | 0.8930 | ||
4 | 0.2302 | 0.9180 | 4 | 0.2388 | 0.9288 | ||
5 | 0.1519 | 0.9569 | |||||
6 | 0.1065 | 0.9719 | |||||
7 | 0.1060 | 0.9742 | |||||
8 | 0.0861 | 0.9764 | |||||
9 | 0.0749 | 0.9837 | |||||
10 | 0.0942 | 0.9782 |
10-Fold Cross Validation | 120-Day Model | 360-Day Model | ||
---|---|---|---|---|
Loss | Accuracy | Loss | Accuracy | |
1 | 0.1067 | 0.9778 | 0.2015 | 0.9937 |
2 | 0.0596 | 0.9810 | 0.0548 | 0.9873 |
3 | 0.0750 | 0.9778 | 0.1027 | 0.9714 |
4 | 0.1263 | 0.9587 | 0.1008 | 0.9778 |
5 | 0.2235 | 0.9841 | 0.0897 | 0.9746 |
6 | 0.1063 | 0.9714 | 0.1090 | 0.9746 |
7 | 0.1342 | 0.9905 | 0.0859 | 0.9683 |
8 | 0.2189 | 0.9937 | 0.0930 | 0.9746 |
9 | 0.0863 | 0.9810 | 0.1290 | 0.9651 |
10 | 0.1190 | 0.9651 | 0.0744 | 0.9810 |
Average | 0.1256 | 0.9781 | 0.1041 | 0.9768 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.; Rho, M.J.; Moon, H.W.; Lee, J.Y. Castration-Resistant Prostate Cancer Outcome Prediction Using Phased Long Short-Term Memory with Irregularly Sampled Serial Data. Appl. Sci. 2020, 10, 2000. https://doi.org/10.3390/app10062000
Park J, Rho MJ, Moon HW, Lee JY. Castration-Resistant Prostate Cancer Outcome Prediction Using Phased Long Short-Term Memory with Irregularly Sampled Serial Data. Applied Sciences. 2020; 10(6):2000. https://doi.org/10.3390/app10062000
Chicago/Turabian StylePark, Jihwan, Mi Jung Rho, Hyong Woo Moon, and Ji Youl Lee. 2020. "Castration-Resistant Prostate Cancer Outcome Prediction Using Phased Long Short-Term Memory with Irregularly Sampled Serial Data" Applied Sciences 10, no. 6: 2000. https://doi.org/10.3390/app10062000
APA StylePark, J., Rho, M. J., Moon, H. W., & Lee, J. Y. (2020). Castration-Resistant Prostate Cancer Outcome Prediction Using Phased Long Short-Term Memory with Irregularly Sampled Serial Data. Applied Sciences, 10(6), 2000. https://doi.org/10.3390/app10062000