Examining and Adapting the Psychometric Properties of the Maslach Burnout Inventory-Health Services Survey (MBI-HSS) among Healthcare Professionals
Abstract
1. Introduction
2. Materials and Methods
3. Participants
4. Instrument
5. Procedure
6. Analysis of the Data
7. Results
7.1. Item Analysis
7.2. Assessment of Maslach Burnout Inventory-Human Services Survey (MBI-HSS) Constructs
7.3. Level of Burnout
8. Discussion
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Koutsimani, P.; Anthony, M.; Georganta, K. The relationship between burnout, depression and anxiety: A systematic review and meta-analysis. Front. Psychol. 2019, 10, 284. [Google Scholar] [CrossRef] [PubMed]
- Maslach, C.; Jackson, S.; Leiter, M. Maslach Burnout Inventory-Health Services Survey Manual, 4th ed.; Mind Garden Inc., Vendor Federal: Menlo Park, CA, USA, 2018. [Google Scholar]
- Galanakis, M.; Moraitou, M.; Garivaldis, F.J.; Stalikas, A. Factorial structure and psychometric properties of the Maslach Burnout Inventory-Health Services Survey (MBI) in Greek midwives. Eur. J. Psychol. 2009, 5, 52–70. [Google Scholar] [CrossRef]
- Loera, B.; Converso, D.; Viotti, S. Evaluating the psychometric properties of the Maslach Burnout Inventory-Health Services Survey -Human Services Survey (MBI-HSS) among Italian nurses: How many factors must a researcher consider? PLoS ONE 2014, 9, e114987. [Google Scholar] [CrossRef] [PubMed]
- Hamdan, A.B.; Alshammary, S.; Javison, S.; Tamani, J.; AlHarbi, M. Burnout among Healthcare Providers in a Comprehensive Cancer Center in Saudi Arabia. Cureus 2019, 11. [Google Scholar] [CrossRef] [PubMed]
- Squires, A.; Finlayson, C.; Gerchow, L.; Cimiotti, J.P.; Matthews, A.; Schwendimann, R.; Moreno-Casbas, M.T. Methodological considerations when translating “burnout”. Burn. Res. 2014, 1, 59–68. [Google Scholar] [CrossRef]
- Nori, P.; Bartash, R.; Cowman, K.; Dackis, M.; Pirofski, L.A. Is Burnout Infectious? Understanding Drivers of Burnout and Job Satisfaction among Academic Infectious Diseases Physicians. In Open Forum Infectious Diseases; Oxford University Press: New York, NY, USA, 2019; Volume 6. [Google Scholar]
- Mészáros, V.; Ádám, S.; Szabó, M.; Szigeti, R.; Urbán, R. The Bifactor Model of the Maslach Burnout Inventory-Health Services Survey –Human Services Survey (MBI-HSS)—An Alternative Measurement Model of Burnout. Stress Health 2014, 30, 82–88. [Google Scholar]
- Matejić, B.; Milenović, M.; Kisić Tepavčević, D.; Simić, D.; Pekmezović, T.; Worley, J.A. Psychometric properties of the serbian version of the Maslach Burnout Inventory-Health Services Survey -human services survey: A validation study among anesthesiologists from Belgrade Teaching Hospitals. Sci. World J. 2015. [Google Scholar] [CrossRef]
- Mazhar, S.B.; Gilani, S.; Khan, S. High burn out among doctors working in a tertiary care hospital; a wakeup call. JPMA J. Pak. Med Assoc. 2019, 69, 349–354. [Google Scholar]
- Shaikh, A.A.; Shaikh, A.; Kumar, R.; Tahir, A. Assessment of Burnout and its Factors Among Doctors Using the Abbreviated Maslach Burnout Inventory-Health Services Survey. Cureus 2019, 11. [Google Scholar] [CrossRef]
- Pisanti, R.; Lombardo, C.; Lucidi, F.; Violani, C.; Lazzari, D. Psychometric properties of the Maslach Burnout Inventory-Health Services Survey for Human Services among Italian nurses: A test of alternative models. J. Adv. Nurs. 2013, 69, 697–707. [Google Scholar] [CrossRef]
- Vanheule, S.; Rosseel, Y.; Vlerick, P. The factorial validity and measurement invariance of the Maslach Burnout Inventory-Health Services Survey for human services. Stress Health J. Int. Soc. Investig. Stress 2007, 23, 87–91. [Google Scholar] [CrossRef]
- Oh, S.H.; Lee, M. Examining the psychometric properties of the Maslach Burnout Inventory-Health Services Survey with a sample of child protective service workers in Korea. Child. Youth Serv. Rev. 2009, 31, 206–210. [Google Scholar] [CrossRef]
- Kanste, O.; Miettunen, J.; Kyngäs, H. Factor structure of the Maslach Burnout Inventory-Health Services Survey among Finnish nursing staff. Nurs. Health Sci. 2006, 8, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Iwanicki, E.F.; Schwab, R.L. A cross validation study of the Maslach Burnout Inventory-Health Services Survey. Educ. Psychol. Meas. 1981, 41, 1167–1174. [Google Scholar] [CrossRef]
- Densten, I.L. Re-thinking burnout. J. Organ. Behav. Int. J. Ind. Occup. Organ. Psychol. Behav. 2001, 22, 833–847. [Google Scholar] [CrossRef]
- Trigo, T.R.; de Freitas, C.C.; Wang, Y.P.; Ribeiro, F.G.; de Lucia, M.C.S.; Siqueira, J.O.; Fraguas, R. The Influence of Depression on the Psychometric Properties of the Maslach Burnout Inventory-Health Services Survey –Human Services Survey: A Cross-Sectional Study with Nursing Assistants. Front. Psychiatry 2018, 9, 695. [Google Scholar] [CrossRef]
- Gil-Monte, P.R. Factorial validity of the Maslach Burnout Inventory-Health Services Survey (MBI-HSS) among Spanish professionals. Rev. Saúde Pública 2005, 39, 1–8. [Google Scholar] [CrossRef]
- Al-Omari, A.; Al Mutair, A.; Shamsan, A.; Al Mutairi, A. A Predicting Burnout Factors among Healthcare Providers at Private Hospitals in Saudi Arabia and United Arab Emirates: A Cross-Sectional Study. Appl. Sci. 2020, 10, 157. [Google Scholar] [CrossRef]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis: Pearson New International Edition; Pearson Higher Education: Harlow, UK, 2013. [Google Scholar]
- Sim, S.M.; Rasiah, R.I. Relationship between item difficulty and discrimination indices in true/false-type multiple choice questions of a para-clinical multidisciplinary paper. Ann. Acad. Med. Singap. 2006, 35, 67. [Google Scholar]
- Wu, M.L.; Tu, J.T. SPSS and Statistical Application Analysis; Wu-Nan: Taipei, Taiwan, 2006. [Google Scholar]
- George, D. SPSS for Windows Step by Step: A Simple Study Guide and Reference; Pearson Education India: Delhi, India, 2011. [Google Scholar]
- Gorsuch, R.L. Factor Analysis; Lawrence Erlbaum Associates, Inc.: Hillsdale, NJ, USA, 1983. [Google Scholar]
- Kline, P. An Easy Guide to Factor Analysis; Routledge: London, UK, 2014. [Google Scholar]
- Cattell, R. (Ed.) The Scientific Use of Factor Analysis in Behavioral and Life Sciences; Springer Science & Business Media: New York, NY, USA, 2012. [Google Scholar]
- Everitt, B.S. Multivariate analysis: The need for data, and other problems. Br. J. Psychiatry 1975, 126, 237–240. [Google Scholar] [CrossRef]
- Nunnally, J.C. Psychometric Theory, 2nd ed.; Mcgraw-Hill: Hillsdale, NJ, USA, 1978. [Google Scholar]
- Kline, R.B. Principles and Practice of Structural Equation Modeling; Guilford publications: New York, NY, USA, 2015. [Google Scholar]
- Weston, R.; Gore, P.A., Jr. A brief guide to structural equation modeling. Couns. Psychol. 2006, 34, 719–751. [Google Scholar] [CrossRef]
- Arbuckle, J. Amos 5.0 Update to the Amos User’s Guide; Marketing Department, SPSS Incorporated, Amos Development Corporation: Chicago, IL, USA, 2003. [Google Scholar]
- Richardsen, A.M.; Martinussen, M. The Maslach Burnout Inventory: Factorial validity and consistency across occupational groups in Norway. J. Occup. Organ. Psychol. 2004, 77, 377–384. [Google Scholar] [CrossRef]
- Lee, H.F.; Chien, T.W.; Yen, M. Examining factor structure of Maslach burnout inventory among nurses in Taiwan. J. Nurs. Manag. 2013, 21, 648–656. [Google Scholar] [CrossRef] [PubMed]
- Poghosyan, L.; Aiken, L.H.; Sloane, D.M. Factor structure of the Maslach burnout inventory: An analysis of data from large scale cross-sectional surveys of nurses from eight countries. Int. J. Nurs. Stud. 2009, 46, 894–902. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.S.K. Assessment of burnout for Chinese human service professionals: A study of factorial validity and invariance. J. Clin. Psychol. 1998, 54, 55–58. [Google Scholar] [CrossRef]
- Li, F. An Introduction to Amos and Its Uses in Scale Development: Graphics and Basic; Psychological Publishing Co., Ltd.: Taipei, Taiwan, 2007. [Google Scholar]
Total | CFA | EFA | ||||||
---|---|---|---|---|---|---|---|---|
Demographic | N | % | N | % | N | % | X2 | p Value * |
Gender | ||||||||
Male | 231 | 26.2% | 153 | 26.2% | 78 | 26.2% | <0.001 | 0.99 |
Female | 651 | 73.8% | 431 | 73.8% | 220 | 73.8% | ||
Profession | ||||||||
Physician | 115 | 13.1% | 80 | 13.7% | 35 | 11.8% | 5.38 | 0.14 |
Nurse | 612 | 69.6% | 392 | 67.2% | 220 | 74.3% | ||
Respiratory Therapist | 18 | 2.0% | 12 | 2.1% | 6 | 2.0% | ||
Others | 134 | 15.2% | 99 | 17.0% | 35 | 11.8% | ||
Nationality | ||||||||
Saudi | 84 | 9.9% | 55 | 9.7% | 29 | 10.3% | 0.08 | 0.78 |
Non-Saudi | 766 | 90.1% | 513 | 90.3% | 253 | 89.7% | ||
Experience | ||||||||
1 to 5 years | 405 | 46.6% | 264 | 45.9% | 141 | 47.8% | 0.70 | 0.70 |
6 to 10 years | 338 | 38.9% | 229 | 39.8% | 109 | 36.9% | ||
>10 years | 127 | 14.6% | 82 | 14.3% | 45 | 15.3% | ||
Marital Status | ||||||||
Single | 476 | 54.8% | 306 | 53.5% | 170 | 57.4% | 1.30 | 0.52 |
Married | 378 | 43.5% | 256 | 44.8% | 122 | 41.2% | ||
Divorced | 14 | 1.6% | 10 | 1.7% | 4 | 1.4% |
Item-Subscale Correlation | Sub-Scales α If Item Deleted | Item-Total Correlation | α If Item Deleted | Critical Ratio * | Skewness | Kurtosis | |
---|---|---|---|---|---|---|---|
EE (0.88) | |||||||
MBI 1 | 0.67 | 0.86 | 0.55 | 0.87 | 56.19 | −0.82 | −0.23 |
MBI 2 | 0.66 | 0.86 | 0.54 | 0.87 | 47.97 | −1.06 | 0.41 |
MBI 3 | 0.61 | 0.87 | 0.52 | 0.87 | 61.69 | −0.75 | −0.50 |
MBI 6 | 0.61 | 0.87 | 0.58 | 0.86 | 80.39 | −0.27 | −1.05 |
MBI 8 | 0.77 | 0.85 | 0.66 | 0.86 | 55.33 | −0.98 | 0.00 |
MBI 13 | 0.71 | 0.86 | 0.60 | 0.86 | 67.19 | −0.54 | −0.76 |
MBI 14 | 0.60 | 0.87 | 0.54 | 0.87 | 57.09 | −0.82 | −0.19 |
MBI 16 | 0.43 | 0.88 | 0.56 | 0.87 | 97.52 | 0.26 | −1.15 |
MBI 20 | 0.61 | 0.87 | 0.60 | 0.86 | 101.41 | −0.25 | −1.17 |
PA (0.79) | |||||||
MBI 4 | 0.48 | 0.77 | 0.26 | 0.87 | 52.80 | −0.92 | 0.32 |
MBI 7 | 0.58 | 0.75 | 0.34 | 0.87 | 51.69 | −0.98 | 0.53 |
MBI 9 | 0.57 | 0.75 | 0.32 | 0.87 | 53.59 | −0.85 | 0.39 |
MBI 12 | 0.39 | 0.78 | 0.11 | 0.88 | 54.78 | −0.20 | −0.38 |
MBI 17 | 0.50 | 0.76 | 0.28 | 0.87 | 53.96 | −0.41 | −0.47 |
MBI 18 | 0.38 | 0.78 | 0.46 | 0.87 | 55.11 | −0.38 | −0.51 |
MBI 19 | 0.50 | 0.76 | 0.26 | 0.87 | 56.31 | −0.68 | −0.03 |
MBI 21 | 0.57 | 0.75 | 0.33 | 0.87 | 52.13 | −0.60 | −0.19 |
DP (0.74) | |||||||
MBI 5 | 0.54 | 0.69 | 0.45 | 0.87 | 98.71 | 0.48 | −1.24 |
MBI 10 | 0.65 | 0.65 | 0.58 | 0.86 | 93.01 | −0.02 | −1.12 |
MBI 11 | 0.44 | 0.72 | 0.62 | 0.86 | 60.68 | −0.54 | −0.66 |
MBI 15 | 0.45 | 0.72 | 0.33 | 0.87 | 46.15 | 1.30 | 0.38 |
MBI 22 | 0.47 | 0.71 | 0.51 | 0.87 | 121.28 | −0.03 | −1.28 |
New Factor | |||
---|---|---|---|
Item (Origin Factor) | EE | PA | DP |
MBI 1 (EE) | 0.85 | ||
MBI 2 (EE) | 0.88 | ||
MBI 3 (EE) | 0.72 | ||
MBI 4 (PA) | 0.62 | ||
MBI 5 (DP) | 0.73 | ||
MBI 6 (EE) | 0.56 | ||
MBI 7 (PA) | 0.75 | ||
MBI 8 (EE) | 0.83 | ||
MBI 9 (PA) | 0.70 | ||
MBI 10 (DP) | 0.65 | ||
MBI 11 (DP) | 0.70 | ||
MBI 12 (PA) | 0.56 | ||
MBI 13 (EE) | 0.73 | ||
MBI 14 (EE) | 0.72 | ||
MBI 15 (DP) | 0.79 | ||
MBI 16 (EE) | 0.69 | ||
MBI 17 (PA) | 0.57 | ||
MBI 18 (PA) | |||
MBI 19 (PA) | 0.66 | ||
MBI 20 (EE) | 0.49 | 0.46 | |
MBI 21 (PA) | 0.71 | ||
MBI 22 (DP) | 0.55 | ||
Variance explained % | 33.47 | 14.11 | 8.71 |
Eigen value | 7.36 | 3.10 | 1.91 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Mutair, A.; Al Mutairi, A.; Chagla, H.; Alawam, K.; Alsalman, K.; Ali, A. Examining and Adapting the Psychometric Properties of the Maslach Burnout Inventory-Health Services Survey (MBI-HSS) among Healthcare Professionals. Appl. Sci. 2020, 10, 1890. https://doi.org/10.3390/app10051890
Al Mutair A, Al Mutairi A, Chagla H, Alawam K, Alsalman K, Ali A. Examining and Adapting the Psychometric Properties of the Maslach Burnout Inventory-Health Services Survey (MBI-HSS) among Healthcare Professionals. Applied Sciences. 2020; 10(5):1890. https://doi.org/10.3390/app10051890
Chicago/Turabian StyleAl Mutair, Abbas, Alya Al Mutairi, Hiba Chagla, Khalid Alawam, Khulud Alsalman, and Azeem Ali. 2020. "Examining and Adapting the Psychometric Properties of the Maslach Burnout Inventory-Health Services Survey (MBI-HSS) among Healthcare Professionals" Applied Sciences 10, no. 5: 1890. https://doi.org/10.3390/app10051890
APA StyleAl Mutair, A., Al Mutairi, A., Chagla, H., Alawam, K., Alsalman, K., & Ali, A. (2020). Examining and Adapting the Psychometric Properties of the Maslach Burnout Inventory-Health Services Survey (MBI-HSS) among Healthcare Professionals. Applied Sciences, 10(5), 1890. https://doi.org/10.3390/app10051890