Expression of Insulin Receptor and c-MET Is Associated with Clinicopathologic Characteristics and Molecular Subtypes in Premenopausal Breast Cancer Patients
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients and Tumor Samples
2.2. Immunohistochemistry
2.3. Evaluation of Immunostaining
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Expression of IR and c-MET in Breast Cancer Tissues and Association with Clinicopathologic Characteristics
3.3. Correlation between IR and c-MET Expression with Clinicopathologic Characteristics Based on Menopausal Status
3.4. Expression of IR and c-MET among Breast Cancer Molecular Subtypes
3.5. Survival Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hynes, N.E.; Watson, C.J. Mammary gland growth factors: Roles in normal development and in cancer. Cold Spring Harb. Perspect. Biol. 2010, 2, a003186. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D.R.; Wu, Y.M.; Lin, S.F. The protein tyrosine kinase family of the human genome. Oncogene 2000, 19, 5548–5557. [Google Scholar] [CrossRef] [PubMed]
- Sangwan, V.; Park, M. Receptor tyrosine kinases: Role in cancer progression. Curr. Oncol. 2006, 13, 191–193. [Google Scholar] [PubMed]
- Favoni, R.E.; de Cupis, A. The role of polypeptide growth factors in human carcinomas: New targets for a novel pharmacological approach. Pharmacol. Rev. 2000, 52, 179–206. [Google Scholar]
- Malaguarnera, R.; Belfiore, A. The insulin receptor: A new target for cancer therapy. Front. Endocrinol. 2011, 2, 93. [Google Scholar] [CrossRef]
- Clayton, p.E.; Banerjee, I.; Murray, P.G.; Renehan, A.G. Growth hormone, the insulin-like growth factor axis, insulin and cancer risk. Nat. Rev. Endocrinol. 2011, 7, 11–24. [Google Scholar] [CrossRef]
- Fox, E.M.; Miller, T.W.; Balko, J.M.; Kuba, M.G.; Sanchez, V.; Smith, R.A.; Liu, S.; Gonzalez-Angulo, A.M.; Mills, G.B.; Ye, F.; et al. A kinome-wide screen identifies the insulin/IGF-I receptor pathway as a mechanism of escape from hormone dependence in breast cancer. Cancer Res. 2011, 71, 6773–6784. [Google Scholar] [CrossRef]
- Belfiore, A.; Frasca, F. IGF and insulin receptor signaling in breast cancer. J. Mammary Gland. Biol. Neoplasia. 2008, 13, 381–406. [Google Scholar] [CrossRef]
- Kalla Singh, S.; Brito, C.; Tan, Q.W.; De Leon, M.; De Leon, D. Differential expression and signaling activation of insulin receptor isoforms A and B: A link between breast cancer and diabetes. Growth Factors 2011, 29, 278–289. [Google Scholar] [CrossRef][Green Version]
- Papa, V.; Pezzino, V.; Costantino, A.; Belfiore, A.; Giuffrida, D.; Frittitta, L.; Vannelli, G.B.; Brand, R.; Goldfine, I.D.; Vigneri, R. Elevated insulin receptor content in human breast cancer. J. Clin. Investig. 1990, 86, 1503–1510. [Google Scholar] [CrossRef]
- Ligibel, J.A.; Strickler, H.D. Obesity and its impact on breast cancer: Tumor incidence, recurrence, survival, and possible interventions. Am. Soc. Clin. Oncol. Educ. Book. 2013, 33, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Novosyadlyy, R.; Lann, D.E.; Vijayakumar, A.; Rowzee, A.; Lazzarino, D.A.; Fierz, Y.; Carboni, J.M.; Gottardis, M.M.; Pennisi, P.A.; Molinolo, A.A.; et al. Insulin-mediated acceleration of breast cancer development and progression in a nonobese model of type 2 diabetes. Cancer Res. 2010, 70, 741–751. [Google Scholar] [CrossRef] [PubMed]
- Kaaks, R.; Lukanova, A. Effects of weight control and physical activity in cancer prevention: Role of endogenous hormone metabolism. Ann. N. Y. Acad. Sci. 2002, 963, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Strickler, H.D.; Wylie-Rosett, J.; Rohan, T.; Hoover, D.R.; Smoller, S.; Burk, R.D.; Yu, H. The relation of type 2 diabetes and cancer. Diabetes Technol. Ther. 2001, 3, 263–274. [Google Scholar] [CrossRef]
- Vigneri, P.; Frasca, F.; Sciacca, L.; Pandini, G.; Vigneri, R. Diabetes and cancer. Endocr. Relat. Cancer 2009, 16, 1103–1123. [Google Scholar] [CrossRef]
- Vigneri, P.; Frasca, F.; Sciacca, L.; Frittitta, L.; Vigneri, R. Obesity and cancer. Nutr. Metab. Cardiovasc. Dis. 2006, 16, 1–7. [Google Scholar] [CrossRef]
- Sharma, P.; Kumar, S. S961, a biosynthetic insulin receptor antagonist, downregulates insulin receptor expression & suppresses the growth of breast cancer cells. Indian J. Med Res. 2018, 147, 545–551. [Google Scholar] [CrossRef]
- Dowling, R.J.; Niraula, S.; Chang, M.C.; Done, S.J.; Ennis, M.; McCready, D.R.; Leong, W.L.; Escallon, J.M.; Reedijk, M.; Goodwin, P.J.; et al. Changes in insulin receptor signaling underlie neoadjuvant metformin administration in breast cancer: A prospective window of opportunity neoadjuvant study. Breast Cancer Res. 2015, 17, 32. [Google Scholar] [CrossRef]
- Gastaldi, S.; Comoglio, P.M.; Trusolino, L. The Met oncogene and basal-like breast cancer: Another culprit to watch out for? Breast Cancer Res. 2010, 12, 208. [Google Scholar] [CrossRef]
- Sattler, M.; Salgia, R. c-Met and hepatocyte growth factor: Potential as novel targets in cancer therapy. Curr. Oncol. Rep. 2007, 9, 102–108. [Google Scholar] [CrossRef]
- Gonzalez-Angulo, A.M.; Chen, H.; Karuturi, M.S.; Chavez-MacGregor, M.; Tsavachidis, S.; Meric-Bernstam, F.; Do, K.A.; Hortobagyi, G.N.; Thompson, P.A.; Mills, G.B.; et al. Frequency of mesenchymal-epithelial transition factor gene (MET) and the catalytic subunit of phosphoinositide-3-kinase (PIK3CA) copy number elevation and correlation with outcome in patients with early stage breast cancer. Cancer 2013, 119, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Ponzo, M.G.; Lesurf, R.; Petkiewicz, S.; O’Malley, F.P.; Pinnaduwage, D.; Andrulis, I.L.; Bull, S.B.; Chughtai, N.; Zuo, D.; Souleimanova, M.; et al. Met induces mammary tumors with diverse histologies and is associated with poor outcome and human basal breast cancer. Proc. Natl. Acad. Sci. USA 2009, 106, 12903–12908. [Google Scholar] [CrossRef] [PubMed]
- Ho-Yen, C.M.; Green, A.R.; Rakha, E.A.; Brentnall, A.R.; Ellis, I.O.; Kermorgant, S.; Jones, J.L. C-Met in invasive breast cancer: Is there a relationship with the basal-like subtype? Cancer 2014, 120, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Fafalios, A.; Ma, J.; Tan, X.; Stoops, J.; Luo, J.; Defrances, M.C.; Zarnegar, R. A hepatocyte growth factor receptor (Met)-insulin receptor hybrid governs hepatic glucose metabolism. Nat. Med. 2011, 17, 1577–1584. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Obesity: Preventing and Managing the Global Epidemic; Technical Report for a WHO Consulation (WHO Technical Report Series 894); WHO: Geneva, Switzerland, 2000. [Google Scholar]
- Edge, S.; Byrd, D.R.; Compton, C.C.; Fritz, A.G.; Greene, F.; Trotti, A. AJCC Cancer Staging Handbook from the AJCC Cancer Stagnig Manual, 7th ed.; Springer: New York, NY, USA, 2010. [Google Scholar]
- Rakha, E.A.; Reis-Filho, J.S.; Baehner, F.; Dabbs, D.J.; Decker, T.; Eusebi, V.; Fox, S.B.; Ichihara, S.; Jacquemier, J.; Lakhani, S.R.; et al. Breast cancer prognostic classification in the molecular era: The role of histological grade. Breast Cancer Res. 2010, 12, 207. [Google Scholar] [CrossRef]
- Stark, A.; Stahl, M.S.; Kirchner, H.L.; Krum, S.; Prichard, J.; Evans, J. Body mass index at the time of diagnosis and the risk of advanced stages and poorly differentiated cancers of the breast: Findings from a case-series study. Int. J. Obes. 2010, 34, 1381–1386. [Google Scholar] [CrossRef]
- Spitale, A.; Mazzola, P.; Soldini, D.; Mazzucchelli, L.; Bordoni, A. Breast cancer classification according to immunohistochemical markers: Clinicopathologic features and short-term survival analysis in a population-based study from the South of Switzerland. Ann. Oncol. 2009, 20, 628–635. [Google Scholar] [CrossRef]
- Remmele, W.; Stegner, H.E. Recommendation for uniform definition of an immunoreactive score (IRS) for immunohistochemical estrogen receptor detection (ER-ICA) in breast cancer tissue. Pathologe 1987, 8, 138–140. [Google Scholar]
- Fedchenko, N.; Reifenrath, J. Different approaches for interpretation and reporting of immunohistochemistry analysis results in the bone tissue—A review. Diagn. Pathol. 2014, 9, 221. [Google Scholar] [CrossRef]
- Ademuyiwa, F.O.; Groman, A.; O’Connor, T.; Ambrosone, C.; Watroba, N.; Edge, S.B. Impact of body mass index on clinical outcomes in triple-negative breast cancer. Cancer 2011, 117, 4132–4140. [Google Scholar] [CrossRef]
- Vona-Davis, L.; Rose, D.P.; Hazard, H.; Howard-McNatt, M.; Adkins, F.; Partin, J.; Hobbs, G. Triple-negative breast cancer and obesity in a rural Appalachian population. Cancer Epidemiol. Biomark. Prev. 2008, 17, 3319–3324. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.H.; Gao, H.F.; Wang, Y.; Liu, F.; Tian, X.F.; Zhang, Y. Overexpression of Gli1 in cancer interstitial tissues predicts early relapse after radical operation of breast cancer. Chinese J. Cancer Res. = Chung-kuo yen cheng yen chiu 2012, 24, 263–274. [Google Scholar] [CrossRef]
- Ten Haaf, A.; Bektas, N.; von Serenyi, S.; Losen, I.; Arweiler, E.C.; Hartmann, A.; Knuchel, R.; Dahl, E. Expression of the glioma-associated oncogene homolog (GLI) 1 in human breast cancer is associated with unfavourable overall survival. BMC Cancer 2009, 9, 298. [Google Scholar] [CrossRef]
- Dai, L.; Qi, Y.; Chen, J.; Kaczorowski, D.; Di, W.; Wang, W.; Xia, P. Sphingosine kinase (SphK) 1 and SphK2 play equivalent roles in mediating insulin’s mitogenic action. Mol. Endocrinol. 2014, 28, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Sciacca, L.; Costantino, A.; Pandini, G.; Mineo, R.; Frasca, F.; Scalia, P.; Sbraccia, P.; Goldfine, I.D.; Vigneri, R.; Belfiore, A. Insulin receptor activation by IGF-II in breast cancers: Evidence for a new autocrine/paracrine mechanism. Oncogene 1999, 18, 2471–2479. [Google Scholar] [CrossRef] [PubMed]
- Bjorner, S.; Rosendahl, A.H.; Simonsson, M.; Markkula, A.; Jirstrom, K.; Borgquist, S.; Rose, C.; Ingvar, C.; Jernstrom, H. Combined and individual tumor-specific expression of insulin-like growth factor-I receptor, insulin receptor and phospho-insulin-like growth factor-I receptor/insulin receptor in primary breast cancer: Implications for prognosis in different treatment groups. Oncotarget 2017, 8, 9093–9107. [Google Scholar] [CrossRef]
- Pan, F.; Hong, L.Q. Insulin promotes proliferation and migration of breast cancer cells through the extracellular regulated kinase pathway. Asian Pac. J. Cancer Prev. 2014, 15, 6349–6352. [Google Scholar] [CrossRef]
- Fox, E.M.; Kuba, M.G.; Miller, T.W.; Davies, B.R.; Arteaga, C.L. Autocrine IGF-I/insulin receptor axis compensates for inhibition of AKT in ER-positive breast cancer cells with resistance to estrogen deprivation. Breast Cancer Res. 2013, 15, R55. [Google Scholar] [CrossRef]
- Belfiore, A.; Malaguarnera, R. Insulin receptor and cancer. Endocr. Relat. Cancer 2011, 18, R125–R147. [Google Scholar] [CrossRef]
- Cianfrocca, M.; Goldstein, L.J. Prognostic and predictive factors in early-stage breast cancer. Oncologist 2004, 9, 606–616. [Google Scholar] [CrossRef]
- Mulligan, A.M.; O’Malley, F.P.; Ennis, M.; Fantus, I.G.; Goodwin, P.J. Insulin receptor is an independent predictor of a favorable outcome in early stage breast cancer. Breast Cancer Res. Treat. 2007, 106, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Aljada, A.; Saleh, A.M.; Al-Aqeel, S.M.; Shamsa, H.B.; Al-Bawab, A.; Al Dubayee, M.; Ahmed, A.A. Quantification of insulin receptor mRNA splice variants as a diagnostic tumor marker in breast cancer. Cancer Biomark.: Sect. Dis. Markers 2015, 15, 653–661. [Google Scholar] [CrossRef] [PubMed]
- Sierra, J.R.; Tsao, M.S. c-MET as a potential therapeutic target and biomarker in cancer. Adv. Med Oncol. 2011, 3, S21–S35. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, R.E.; Salgia, R. MET molecular mechanisms and therapies in lung cancer. Cell Adhes. Migr. 2010, 4, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Mo, H.N.; Liu, P. Targeting MET in cancer therapy. Chronic Dis. Transl. Med. 2017, 3, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.; Yang, X.; Tian, W.; Guo, S.; Huang, W.; Zhao, W. Increased Expression of c-Met is Associated with Chemotherapy-Resistant Breast Cancer and Poor Clinical Outcome. Med Sci. Monit. Int. Med. J. Exp. Clin. Res. 2018, 24, 8239–8249. [Google Scholar] [CrossRef]
- Zhang, Y.; Xia, M.; Jin, K.; Wang, S.; Wei, H.; Fan, C.; Wu, Y.; Li, X.; Li, X.; Li, G.; et al. Function of the c-Met receptor tyrosine kinase in carcinogenesis and associated therapeutic opportunities. Mol. Cancer 2018, 17, 45. [Google Scholar] [CrossRef]
- Ho-Yen, C.M.; Jones, J.L.; Kermorgant, S. The clinical and functional significance of c-Met in breast cancer: A review. Breast Cancer Res. 2015, 17, 52. [Google Scholar] [CrossRef]
- Wang, M.; Liang, L.; Lei, X.; Multani, A.; Meric-Bernstam, F.; Tripathy, D.; Wu, Y.; Chen, H.; Zhang, H. Evaluation of cMET aberration by immunohistochemistry and fluorescence in situ hybridization (FISH) in triple negative breast cancers. Ann. Diagn. Pathol. 2018, 35, 69–76. [Google Scholar] [CrossRef]
- Lengyel, E.; Prechtel, D.; Resau, J.H.; Gauger, K.; Welk, A.; Lindemann, K.; Salanti, G.; Richter, T.; Knudsen, B.; Vande Woude, G.F.; et al. C-Met overexpression in node-positive breast cancer identifies patients with poor clinical outcome independent of Her2/neu. Int. J. Cancer 2005, 113, 678–682. [Google Scholar] [CrossRef]
- Nakopoulou, L.; Gakiopoulou, H.; Keramopoulos, A.; Giannopoulou, I.; Athanassiadou, P.; Mavrommatis, J.; Davaris, P.S. c-met tyrosine kinase receptor expression is associated with abnormal beta-catenin expression and favourable prognostic factors in invasive breast carcinoma. Histopathology 2000, 36, 313–325. [Google Scholar] [CrossRef] [PubMed]
- Baccelli, I.; Stenzinger, A.; Vogel, V.; Pfitzner, B.M.; Klein, C.; Wallwiener, M.; Scharpff, M.; Saini, M.; Holland-Letz, T.; Sinn, H.P.; et al. Co-expression of MET and CD47 is a novel prognosticator for survival of luminal breast cancer patients. Oncotarget 2014, 5, 8147–8160. [Google Scholar] [CrossRef] [PubMed]
- Zagouri, F.; Bago-Horvath, Z.; Rossler, F.; Brandstetter, A.; Bartsch, R.; Papadimitriou, C.A.; Dimitrakakis, C.; Tsigginou, A.; Papaspyrou, I.; Giannos, A.; et al. High MET expression is an adverse prognostic factor in patients with triple-negative breast cancer. Br. J. Cancer 2013, 108, 1100–1105. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Jiao, X.; Zou, H.; Li, K. Prognostic significance of c-Met in breast cancer: A meta-analysis of 6010 cases. Diagn. Pathol. 2015, 10, 62. [Google Scholar] [CrossRef]
- Litzenburger, B.C.; Creighton, C.J.; Tsimelzon, A.; Chan, B.T.; Hilsenbeck, S.G.; Wang, T.; Carboni, J.M.; Gottardis, M.M.; Huang, F.; Chang, J.C.; et al. High IGF-IR activity in triple-negative breast cancer cell lines and tumorgrafts correlates with sensitivity to anti-IGF-IR therapy. Clin. Cancer Res. 2011, 17, 2314–2327. [Google Scholar] [CrossRef]
- Schwartz, G.K.; Dickson, M.A.; LoRusso, P.M.; Sausville, E.A.; Maekawa, Y.; Watanabe, Y.; Kashima, N.; Nakashima, D.; Akinaga, S. Preclinical and first-in-human phase I studies of KW-2450, an oral tyrosine kinase inhibitor with insulin-like growth factor receptor-1/insulin receptor selectivity. Cancer Sci. 2016, 107, 499–506. [Google Scholar] [CrossRef]
- Hou, X.; Huang, F.; Macedo, L.F.; Harrington, S.C.; Reeves, K.A.; Greer, A.; Finckenstein, F.G.; Brodie, A.; Gottardis, M.M.; Carboni, J.M.; et al. Dual IGF-1R/InsR inhibitor BMS-754807 synergizes with hormonal agents in treatment of estrogen-dependent breast cancer. Cancer Res. 2011, 71, 7597–7607. [Google Scholar] [CrossRef]
- Chan, J.Y.; Hackel, B.J.; Yee, D. Targeting Insulin Receptor in Breast Cancer Using Small Engineered Protein Scaffolds. Mol. Cancer Ther. 2017, 16, 1324–1334. [Google Scholar] [CrossRef]
- Chia, S.K.; Ellard, S.L.; Mates, M.; Welch, S.; Mihalcioiu, C.; Miller, W.H., Jr.; Gelmon, K.; Lohrisch, C.; Kumar, V.; Taylor, S.; et al. A phase-I study of lapatinib in combination with foretinib, a c-MET, AXL and vascular endothelial growth factor receptor inhibitor, in human epidermal growth factor receptor 2 (HER-2)-positive metastatic breast cancer. Breast Cancer Res. 2017, 19, 54. [Google Scholar] [CrossRef]
- Tolaney, S.M.; Ziehr, D.R.; Guo, H.; Ng, M.R.; Barry, W.T.; Higgins, M.J.; Isakoff, S.J.; Brock, J.E.; Ivanova, E.V.; Paweletz, C.P.; et al. Phase II and Biomarker Study of Cabozantinib in Metastatic Triple-Negative Breast Cancer Patients. Oncologist 2017, 22, 25–32. [Google Scholar] [CrossRef]
Characteristics | n (%) |
---|---|
Age, years | |
<45 | 26 (36.6) |
45–60 | 33 (46.5) |
>60 | 12 (16.9) |
BMI, kg/m2 | |
Normal | 16 (22.5) |
Overweight | 25 (35.2) |
Obese | 30 (42.3) |
Marital status | |
Single | 8 (11.3) |
Married | 63 (88.7) |
Menopausal status | |
Premenopausal | 37 (52.1) |
Postmenopausal | 30 (42.3) |
Unknown | 4 (5.6) |
Family history of breast cancer | |
Absent | 49 (69.0) |
Present | 14 (19.7) |
Unknown | 8 (11.3) |
Smoking | |
Never smoker | 61 (85.9) |
Past smoker | 3 (4.2) |
Current smoker | 6 (8.5) |
Unknown | 1 (1.4) |
Alcohol intake | |
Never | 66 (93.0) |
Unknown | 5 (7.0) |
HRT use | |
No | 60 (84.5) |
Yes | 1 (1.4) |
Unknown | 10 (14.1) |
Site of disease | |
Right | 35 (49.3) |
Left | 33 (46.5) |
Bilateral | 3 (4.2) |
Tumor size | |
<2 cm | 6 (8.5) |
≥2 cm | 59 (83.1) |
Unknown | 6 (8.5) |
Lymph nodes | |
Negative | 24 (33.8) |
Positive | 39 (54.9) |
Unknown | 8 (11.3) |
Stage | |
I | 3 (4.2) |
II | 30 (42.3) |
III | 24 (33.8) |
IV | 11 (15.5) |
Unknown | 3 (4.2) |
Grade | |
I | 5 (7.0) |
II | 14 (19.7) |
III | 50 (70.4) |
Unknown | 2 (2.8) |
Histologic type | |
IDC | 58 (81.7) |
ILC | 11 (15.5) |
Other | 2 (2.8) |
LVI | |
Unidentified | 28 (39.4) |
Identified | 37 (52.1) |
Unknown | 6 (8.5) |
ER | |
Positive | 23 (32.4) |
Negative | 48 (67.6) |
PR | |
Positive | 19 (26.8) |
Negative | 52 (73.2) |
HER2 | |
Positive | 19 (26.8) |
Negative | 52 (73.2) |
Molecular subtype | |
Luminal | 23 (32.4) |
HER2–positive | 19 (26.8) |
Triple–negative | 29 (40.8) |
Surgery | |
Mastectomy | 60 (84.5) |
Wide local excision | 11 (15.5) |
Adjuvant chemotherapy | |
Yes | 59 (83.1) |
No | 4 (5.6) |
Unknown | 8 (11.3) |
Parameter | IR [n (%)] | p-Value | |
---|---|---|---|
Low (n = 53) | High (n = 15) | ||
Age, years | 0.341 | ||
<50 | 28 (73.7%) | 10 (26.3%) | |
≥50 | 25 (83.3%) | 5 (16.7%) | |
Menopausal status | 0.195 | ||
Premenopausal | 26 (72.2%) | 10 (27.8%) | |
Postmenopausal | 24 (85.7%) | 4 (14.3%) | |
BMI, kg/m2 | 0.533 | ||
Non-obese | 33 (80.5%) | 8 (19.5%) | |
Obese | 20 (74.1%) | 7 (25.9%) | |
Grade | 0.017 * | ||
I/II | 11 (57.9%) | 8 (42.1%) | |
III | 40 (85.1%) | 7 (14.9%) | |
Stage | 0.635 | ||
Early (I and II) | 26 (81.3%) | 6 (18.8%) | |
Advanced (III and IV) | 26 (76.5%) | 8 (23.5%) | |
Lymph nodes | 0.571 | ||
Negative | 18 (75.0%) | 6 (25.0%) | |
Positive | 30 (81.1%) | 7 (18.9%) | |
ER | 0.015 * | ||
Positive | 14 (60.9%) | 9 (39.1%) | |
Negative | 39 (86.7%) | 6 (13.3%) | |
PR | 0.067 | ||
Positive | 12 (63.2%) | 7 (36.8%) | |
Negative | 41 (83.7%) | 8 (16.3%) | |
HER2 | 0.081 | ||
Positive | 15 (93.8%) | 1 (6.3%) | |
Negative | 39 (73.1%) | 14 (26.9%) | |
LVI | 0.244 | ||
Unidentified | 19 (70.4%) | 8 (29.6%) | |
Identified | 29 (82.9%) | 6 (17.1%) |
Parameter | c-MET [n (%)] | p-Value | |
---|---|---|---|
Low (n = 19) | High (n = 52) | ||
Age, years | 0.064 | ||
<50 | 7 (17.9%) | 32 (82.1%) | |
≥50 | 12 (37.5%) | 20 (62.5%) | |
Menopausal status | 0.057 | ||
Premenopausal | 7 (18.9%) | 30 (81.1%) | |
Postmenopausal | 12 (40.0%) | 18 (60.0%) | |
Body mass index (BMI), kg/m2 | 0.271 | ||
Non-obese | 13 (31.7%) | 28 (68.3%) | |
Obese | 6 (20.0%) | 24 (80.0%) | |
Grade | 0.979 | ||
I/II | 5 (26.3%) | 14 (73.7%) | |
III | 13 (26.0%) | 37 (74.0%) | |
Stage | 0.327 | ||
Early (I and II) | 10 (30.3%) | 23 (69.7%) | |
Advanced (III and IV) | 7 (20.0%) | 28 (80.0%) | |
Lymph nodes | 0.373 | ||
Negative | 8 (33.3%) | 16 (66.7%) | |
Positive | 9 (23.1%) | 30 (76.9%) | |
ER | 0.929 | ||
Positive | 6 (26.1%) | 17 (73.9%) | |
Negative | 13 (27.1%) | 35 (72.9%) | |
PR | 0.959 | ||
Positive | 5 (26.3%) | 14 (73.7%) | |
Negative | 14 (26.9%) | 38 (73.1%) | |
HER2 | 0.511 | ||
Positive | 4 (21.1%) | 15 (78.9%) | |
Negative | 15 (28.8%) | 37 (71.2%) | |
LVI | 0.700 | ||
Unidentified | 8 (28.6%) | 20 (71.4%) | |
Identified | 9 (24.3%) | 28 (75.7%) |
Parameter | IR Score | c-MET Score | ||
---|---|---|---|---|
rho | p-Value | rho | p-Value | |
Age, years | 0.054 | 0.659 | −0.103 | 0.394 |
BMI, kg/m2 | 0.155 | 0.207 | 0.001 | 0.991 |
Tumor size, cm | 0.029 | 0.823 | 0.129 | 0.306 |
Lymph nodes | 0.199 | 0.130 | 0.151 | 0.244 |
IR score | ------ | ------ | 0.458 | <0.001 * |
c-MET score | 0.458 | <0.001 * | ------ | ------ |
Parameter | Premenopausal (n = 37) | Postmenopausal (n = 30) | ||
---|---|---|---|---|
IR Score | p-Value | IR Score | p-Value | |
Median (IQR) | Median (IQR) | |||
Grade | 0.025 * | 0.978 | ||
I/II | 8.0 (4.0–12.0) | 3.0 (2.0–8.0) | ||
III | 4.0 (2.0–6.0) | 3.5 (3.0–4.0) | ||
Stage | 0.686 | 0.085 | ||
Early (I/II) | 4.0 (2.0–8.0) | 3.0 (1.0–4.0) | ||
Advanced (III/IV) | 4.0 (3.0–7.5) | 3.5 (3.0–5.0) | ||
Lymph nodes | 0.944 | 0.085 | ||
Negative | 4.0 (2.0–8.0) | 2.5 (2.0–3.75) | ||
Positive | 4.0 (3.0–6.5) | 3.5 (3.0–4.0) | ||
ER | 0.030 * | 0.376 | ||
Positive | 4.0 (4.0–12.0) | 3.5 (2.75–8.0) | ||
Negative | 4.0 (2.0–6.0) | 3.0 (2.0–4.00) | ||
PR | 0.015 * | 0.404 | ||
Positive | 6.0 (4.0–12.0) | 3.5 (3.0–7.0) | ||
Negative | 3.5 (2.0–6.0) | 3.0 (2.0–4.0) | ||
HER2 | 0.429 | 0.198 | ||
Positive | 6.0 (2.5–9.0) | 4.0 (3.0–4.0) | ||
Negative | 4.0 (2.0–8.0) | 3.0 (2.0–4.0) | ||
LVI | 0.986 | 0.834 | ||
Unidentified | 4.0 (1.0–12.0) | 3.0 (2.0–4.0) | ||
Identified | 4.0 (3.0–6.0) | 3.0 (3.0–4.0) |
Parameter | Premenopausal (n = 37) | Postmenopausal (n = 30) | ||
---|---|---|---|---|
c-MET Score | p-Value | c-MET Score | p-Value | |
Median (IQR) | Median (IQR) | |||
Grade | 0.404 | 0.780 | ||
I/II | 8.0 (8.0–12.0) | 7.0 (3.75–9.0) | ||
III | 8.0 (7.5–12.0) | 8.0 (3.75–8.0) | ||
Stage | 0.911 | 0.143 | ||
Early (I/II) | 8.0 (8.0–12.0) | 7.0 (3.0–8.0) | ||
Advanced (III/IV) | 8.0 (8.0–11.0) | 8.0 (6.0–8.0) | ||
Lymph nodes | 0.569 | 0.143 | ||
Negative | 8.0 (8.0–12.0) | 8.0 (5.0–8.0) | ||
Positive | 8.0 (8.0–9.0) | 5.0 (3.0–8.0) | ||
ER | 0.007 * | 0.317 | ||
Positive | 12.0 (8.0–12.0) | 5.0 (3.0–9.0) | ||
Negative | 8.0 (6.0–8.0) | 8.0 (6.0–8.0) | ||
PR | 0.024 * | 0.372 | ||
Positive | 10.0 (8.0–12.0) | 5.0 (3.0–11.0) | ||
Negative | 8.0 (6.0–8.0) | 8.0 (5.5–8.0) | ||
HER2 | 0.117 | 0.083 | ||
Positive | 7.0 (3.75–9.0) | 8.0 (8.0–8.0) | ||
Negative | 8.0 (8.0–12.0) | 6.0 (3.0–8.0) | ||
LVI | 0.956 | 0.238 | ||
Unidentified | 8.0 (8.0–11.0) | 8.0 (3.0–8.0) | ||
Identified | 8.0 (8.0–12.0) | 8.0 (4.0–8.0) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayoub, N.M.; Yaghan, R.J.; Al-Mohtaseb, A.H.; Aldaoud, N.; Matalka, I.I.; Elhassan, M.E. Expression of Insulin Receptor and c-MET Is Associated with Clinicopathologic Characteristics and Molecular Subtypes in Premenopausal Breast Cancer Patients. Appl. Sci. 2020, 10, 1614. https://doi.org/10.3390/app10051614
Ayoub NM, Yaghan RJ, Al-Mohtaseb AH, Aldaoud N, Matalka II, Elhassan ME. Expression of Insulin Receptor and c-MET Is Associated with Clinicopathologic Characteristics and Molecular Subtypes in Premenopausal Breast Cancer Patients. Applied Sciences. 2020; 10(5):1614. https://doi.org/10.3390/app10051614
Chicago/Turabian StyleAyoub, Nehad M., Rami J. Yaghan, Alia H. Al-Mohtaseb, Najla Aldaoud, Ismail I. Matalka, and Muwada E. Elhassan. 2020. "Expression of Insulin Receptor and c-MET Is Associated with Clinicopathologic Characteristics and Molecular Subtypes in Premenopausal Breast Cancer Patients" Applied Sciences 10, no. 5: 1614. https://doi.org/10.3390/app10051614
APA StyleAyoub, N. M., Yaghan, R. J., Al-Mohtaseb, A. H., Aldaoud, N., Matalka, I. I., & Elhassan, M. E. (2020). Expression of Insulin Receptor and c-MET Is Associated with Clinicopathologic Characteristics and Molecular Subtypes in Premenopausal Breast Cancer Patients. Applied Sciences, 10(5), 1614. https://doi.org/10.3390/app10051614