
applied  
sciences

Article

Expression of Insulin Receptor and c-MET Is
Associated with Clinicopathologic Characteristics
and Molecular Subtypes in Premenopausal Breast
Cancer Patients

Nehad M. Ayoub 1,* , Rami J. Yaghan 2 , Alia H. Al-Mohtaseb 3 , Najla Aldaoud 3 ,
Ismail I. Matalka 3 and Muwada E. Elhassan 3

1 Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology,
Irbid 22110, Jordan

2 Department of Surgery, College of Medicine and Medical Sciences, Arabian Gulf University,
Manama P.O. Box 26671, Bahrain; ramijy@agu.edu.bh

3 Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and
Technology, Irbid 22110, Jordan; ahmohtaseb@just.edu.jo (A.H.A.-M.); nhaldaoud2@just.edu.jo (N.A.);
Imatalka@just.edu.jo (I.I.M.); muwada.sir@gmail.com (M.E.E.)

* Correspondence: nmayoub@just.edu.jo; Tel.: +962-796-855-653

Received: 9 January 2020; Accepted: 24 February 2020; Published: 29 February 2020
����������
�������

Abstract: Receptor Tyrosine Kinases (RTKs) represent a class of transmembrane receptors known to
play an important role in cancer development and progression. In this study, the expression of insulin
receptor (IR) and the hepatocyte growth factor receptor (c-MET) was examined in breast cancer
patients. Immunohistochemistry for IR and c-MET was performed on 71 cases of invasive breast
cancer and expression scores were correlated with clinicopathologic characteristics and molecular
subtypes and further stratified based on a menopausal status. Expression of IR was significantly
associated with the tumor grade (p = 0.017) and estrogen receptor (ER) expression (p = 0.015). There
was a significant positive correlation between IR and c-MET expression scores (rho = 0.458, p < 0.001).
Among premenopausal cases, IR scores were significantly higher in patients with grade I/II disease
(p = 0.025), ER-positive (p = 0.030), and progesterone receptor (PR)-positive carcinoma (p = 0.015).
c-MET expression scores were significantly higher among premenopausal patients with ER-positive
(p = 0.007) and PR-positive carcinoma (p = 0.024). IR expression scores were significantly different
among molecular subtypes for all patients (p = 0.006) and among premenopausal cases (p = 0.035).
c-MET expression was statistically different among molecular subtypes for premenopausal patients
(p = 0.019). Survival analysis revealed that the expression status of IR and c-MET was not associated
with overall survival. Our findings support a favorable prognostic value for IR and c-MET expression
in premenopausal breast cancer patients.

Keywords: breast cancer; receptor tyrosine kinases; insulin receptor; c-MET; immunohistochemistry;
menopausal status

1. Introduction

Receptor tyrosine kinases (RTKs) are transmembrane receptors known to bind growth factors
mediating the integration and interpretation of diverse extracellular stimuli and functions [1].
Historically, RTKs define the prototypical class of oncogenes involved in most forms of human
malignancies [2]. Deregulations of RTKs in terms of mutations or aberrant expression enhance cancer
cell proliferation, survival, and invasion, which ultimately drive the development of aggressive tumor
phenotypes [3].
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The growth of breast cancer cells is under coordinate regulation of growth factors and hormones
acting through their respective receptors [1,4]. Multiple RTKs were identified for their oncogenic
potential in breast cancer. Insulin receptor (IR) is an RTK increasingly recognized to be involved
in cancer development and progression [5]. Accumulating evidence revealed a role for insulin and
insulin-like growth factors in development and progression of breast cancer [6–8]. Overexpression
of IR was reported in human breast cancer tissues [7,9–11]. In a mouse model of type II diabetes, IR
promoted breast cancer mitogenesis and hyperinsulinemia accelerated the progression of mammary
tumors [12]. Insulin resistance and hyperinsulinemia have been shown to drive mitogenic tumor
growth and increase cell proliferation and migration through activation of IR signaling [5,13–15]. In
line with this, conditions associated with insulin resistance such as type II diabetes mellitus, obesity,
and metabolic syndrome are now recognized as important risk factors for the development and
progression of a variety of malignancies including breast cancer [5,13,16]. Aberrant IR expression has
been shown to mediate cancer resistance to both conventional and targeted therapies [17]. Measures to
improve insulin resistance and obesity reduce the risk of epithelial cancers. Metformin reduced breast
cancer risks by reducing insulin levels [11]. In addition, metformin treatment in breast cancer patients
who were not diabetic reduced levels of IR expression in tumors and reduced phosphorylation of
several downstream signaling molecules such as protein kinase B (AKT), extracellular signal-regulated
kinase 1/2 (ERK1/2), and AMP-activated protein kinase (AMPK) [18]. Despite the availability of strong
evidence from preclinical studies to support the oncogenic potential of IR in breast cancer cells, the
impact of IR expression on the clinicopathologic characteristics of breast cancer patients is less clear.

The hepatocyte growth factor (HGF) receptor, c-MET, is an RTK known to promote oncogenic
transformation and progression of cancers. Activation of c-MET by its natural ligand, HGF, is
associated with aggressive tumor growth characterized by cancer cell proliferation, migration, invasion,
angiogenesis, and metastasis [19,20]. Clinical studies showed that c-MET is overexpressed in
20%–30% of breast cancer cases and is a strong, independent predictor of reduced survival and
poor outcomes [21,22]. c-MET expression in breast tissue is variable with the lowest levels in normal
breast tissue, higher expression in ductal carcinoma in situ (DCIS), and the highest levels in invasive
carcinoma [23]. Despite its oncogenic potential, the impact of c-MET expression on established
prognostic factors in breast cancer patients is less established. In addition, most studies evaluated the
expression of c-MET in basal-like tumors and little data is available regarding the expression of c-MET
in other molecular subtypes. c-MET has been shown to be necessary for an optimal response to insulin
in hepatocytes by engaging with IR in a hybrid complex of both receptors [24].

Previous reports had addressed expression of IR and c-MET in breast cancer tissue. However,
less data is available on the association between expression levels of these receptors in breast cancer
patients. In addition, the impact of IR and c-MET expression on disease prognosis and clinicopathologic
characteristics is inconsistent. In this study, the expression of IR and c-MET was evaluated in tumors
from primary breast cancer patients. Associations between expression levels of both RTKs with
clinicopathologic factors and molecular subtypes were evaluated and further stratified based on
menopausal status. These findings are particularly important because effective therapeutic approaches
require stratification of patients based on specific tumor markers essential to assess the efficacy of new
molecular therapies in terms of disease prevention and/or treatment.

2. Materials and Methods

2.1. Patients and Tumor Samples

Seventy-one patients with histologically confirmed diagnosis of invasive breast cancer and
complete data regarding the receptor status and molecular subtype were retrieved from archives of
King Abdullah University Hospital (KAUH) through the period of 2004–2014. All included patients
underwent mastectomy or wide local excision with or without chemotherapy, according to tumor
board recommendations. Relevant demographic and anthropometric data were collected from medical
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records and the electronic database. Body mass index (BMI) was calculated using the standard method
as weight in kilograms divided by the height squared in meters. Based on World Health Organization
(WHO) definition for obesity, patients were classified as underweight (BMI < 18.5 kg/m2), normal (BMI
18.5–24.99 kg/m2), overweight (BMI 25.0–29.99 kg/m2), and obese (BMI ≥ 30.0 kg/m2) [25].

Pathological data were retrieved from pathology reports issued by the Pathology Department at
KAUH at the time of diagnosis. Pathological data included details of tumor size, grade, histological
subtype, ipsilateral axillary lymph node status, and presence/absence of lymphovascular invasion
(LVI). In addition, pathology reports provided details for the expression status of estrogen receptor
(ER), progesterone receptor (PR), and Human Epidermal Growth Factor Receptor 2 (HER2/neu). For
HER2, immunohistochemistry (IHC) scores of 0 or +1 were considered negative while a score of
+3 indicated positive staining. For equivocal results of +2 score, fluorescence in situ hybridization
(FISH) analysis positive for gene amplification was positive for HER2 expression. ER-positive patients
received hormonal treatment and patients overexpressing HER2 received trastuzumab for one year.

The clinicopathological stage of breast cancer was obtained according to the
tumor–node–metastasis (TNM) cancer staging systems of the American Joint Committee on Cancer
(AJCC) [26]. The grade of carcinoma was determined based on the Nottingham Combined Histologic
Grade system [27]. Accordingly, tumors were classified into grade I (well–differentiated/low grade),
grade II (moderately–differentiated/intermediate grade), and grade III (poorly–differentiated/high
grade) carcinomas. Breast cancer was further classified into subtypes based on the expression
of hormone receptors and HER2 status [28,29] including luminal (ER+ and/or PR+, HER2+/–),
HER2-positive (ER–, PR–, HER2+), and triple-negative (ER–, PR–, HER2–).

The Institutional Review Board (IRB) committee of JUST and KAUH (Research number 33/80/2014)
approved the study.

2.2. Immunohistochemistry

Immunohistochemistry (IHC) was performed using a Dako autostainer-Plus (Dako, Denmark)
following a standard protocol. Paraffin-embedded tissues for each tumor were obtained from the
Pathology Department and sections were cut at a thickness of 4 µm and prepared for IHC. The sections
were dewaxed in two changes in xylene, rehydrated through a descending graded series of ethanol
(100%, 90%, 80%, 70%, and 50%), and, lastly, rehydrated in distilled water. Antigen retrieval was
performed in a PT-link Instrument (Dako, Glostrup, Denmark) using high pH citrate buffer for 20 min.
Endogenous peroxidase activity was blocked by incubation with 2.5% hydrogen peroxide for 10 min.
Sections were next washed with phosphate buffered saline (PBS) twice and incubated with primary
antibodies for IR (Insulin RB H-70, Santa Cruz Biotechnology, Santa Cruz, CA, USA) diluted 1:100 and
c-MET (Met C-12: sc-10, Santa Cruz Biotechnology, Santa Cruz, CA, USA) diluted 1:200 for 45 min
at room temperature. These primary antibodies were polyclonal and unconjugated according to the
manufacturer’s specification sheets. Slides were then washed twice with PBS and signal detection was
carried out using The Envision Dual Link System HRP Kit, K8000 (Dako, Glostrub, Denmark) in which
slides were incubated with HRP-conjugated secondary antibodies for 30 min at room temperature.
Then, slides were washed and incubated with DAB (3,3′-Diaminobenzine) chromogen for 3–4 min.
Lastly, slides were washed with distilled water and counterstained with Mayer’s Haematoxylin.

2.3. Evaluation of Immunostaining

Immunostaining was evaluated using the immunoreactive score (IRS) system [30,31]. IRS gives
a range of 0–12 as a product of multiplication between a positive cells proportion score (0–4) and a
staining intensity score (0–3). Staining extent was scored as 0 (no positive cells), 1 (<10%), 2 (10%–50%),
3 (51%–80%), and 4 (>80%) according to the percentage of positively stained cells. Staining intensity
was scored as 0 (no color reaction), 1 (mild), 2 (moderate), and 3 (intense). Based on final IRS scores,
immunostaining was determined to be negative (IRS score 0–1), mild (IRS score 2–3), moderate (IRS
score 4–8), and strongly positive (IRS score 9–12) [30,31]. Immunostaining was evaluated by two
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pathologists (AM and NA) who were blind to patient demographic data, clinical data, and pathological
data. The concordance rate was more than 90%. Discrepancies were resolved by joint discussion.
Representative examples of staining for each antibody are shown in Figure 1. Positive control slides
were included, and negative controls were run with the primary antibody replaced by buffer.Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 19 
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Figure 1. Immunohistochemistry staining for IR and c-MET in breast cancer. (A) Negative staining for
IR; (B) mild staining for IR; (C) moderate staining for IR; (D) strongly positive staining for IR; (E) mild
staining for c-MET; (F) moderate staining for c-MET; and (G) strongly positive staining for c-MET.
[Magnification at x200]. IR, insulin receptor.
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2.4. Statistical Analysis

Data analysis was performed using IBM SPSS statistical package (IBM Corp. Version 21.0.
Armonk, NY, USA). Continuous variables are expressed as mean ± standard deviation or median
and interquartile range (IQR). Categorical variables are presented as frequency and percentages
(n, %). A non-parametric Mann–Whitney U test was applied to compare two independent groups.
Kruskal–Wallis analysis of variance was used to compare multiple independent groups. To compare
categorical variables between groups, Pearson’sχ2 test of independence was used. To assess correlations
between continuous variables, Spearman’s correlation test was applied. All p-values were two-sided
and statistical significance is indicated at p < 0.05.

Dichotomization of some categorical variables was considered for correlation analysis of some
study variables. This dichotomization was based on sample size and was performed in advance of
conducting statistical analysis in order to avoid small sample size upon further stratification of data
by menopausal status [28]. Therefore, BMI was categorized as non-obese (<30.00 kg/m2) and obese
(≥30.0 kg/m2). The TNM stage of breast cancer was dichotomized as early (I/II) and advanced (III/IV).
Histologic grade was further categorized into grades (I/II) and grade (III) tumors. Categories of these
tumor variables were selected based on cut points previously published by other researchers [32,33].
Receptor expression was further categorized as either low or high based on IRS scoring. IRS scores
of 7–12 were considered high, and scores below 7 were considered low for expression of target
receptors [34,35].

Kaplan-Meier survival curves were generated for breast cancer patients based on the expression
status of IR and c-MET using GraphPad Prism 8.0.1 software (GraphPad Software, San Diego, CA,
USA). Cox proportional hazards models were fitted with overall survival (OS) as the outcome.

3. Results

3.1. Patient Characteristics

Demographic and clinicopathologic features of breast cancer patients are presented in Table 1.
Mean age at presentation was 49.5 ± 10.4 ranging from 28–77 years (median 47, IQR 42–57). Mean BMI
was 29.7± 5.3 kg/m2 (range 18.7–41.2, median 29.1, IQR 25.8–33.3) and most patients (42.3%) were obese.
Thirty-seven patients (52.1%) were premenopausal and 30 patients (42.3%) were postmenopausal.
Mean tumor size was 4.5 ± 0.3 cm with a rage of 0.5–13 (median 4, IQR 2.5–5.9). More than half of
patients (54.9%) had lymph node positive disease at presentation. Thirty patients presented at stage
II disease (42.3%) while 24 patients had stage III disease (33.8%). Most patients (70.4%) had grade
III disease and invasive ductal carcinoma (IDC) was the most common histologic subtype (81.7%).
Twenty-nine patients (40.8%) presented with triple-negative molecular subtype while (32.4%) presented
with luminal disease. Other clinicopathologic parameters are shown in Table 1.

Table 1. Demographics and clinicopathologic characteristics of breast cancer patients (n = 71).

Characteristics n (%)

Age, years
<45 26 (36.6)

45–60 33 (46.5)
>60 12 (16.9)

BMI, kg/m2

Normal 16 (22.5)
Overweight 25 (35.2)

Obese 30 (42.3)
Marital status

Single 8 (11.3)
Married 63 (88.7)
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Table 1. Cont.

Characteristics n (%)

Menopausal status
Premenopausal 37 (52.1)
Postmenopausal 30 (42.3)

Unknown 4 (5.6)
Family history of breast cancer

Absent 49 (69.0)
Present 14 (19.7)

Unknown 8 (11.3)
Smoking

Never smoker 61 (85.9)
Past smoker 3 (4.2)

Current smoker 6 (8.5)
Unknown 1 (1.4)

Alcohol intake
Never 66 (93.0)

Unknown 5 (7.0)
HRT use

No 60 (84.5)
Yes 1 (1.4)

Unknown 10 (14.1)
Site of disease

Right 35 (49.3)
Left 33 (46.5)

Bilateral 3 (4.2)
Tumor size

<2 cm 6 (8.5)
≥2 cm 59 (83.1)

Unknown 6 (8.5)
Lymph nodes

Negative 24 (33.8)
Positive 39 (54.9)

Unknown 8 (11.3)
Stage

I 3 (4.2)
II 30 (42.3)
III 24 (33.8)
IV 11 (15.5)

Unknown 3 (4.2)
Grade

I 5 (7.0)
II 14 (19.7)
III 50 (70.4)

Unknown 2 (2.8)
Histologic type

IDC 58 (81.7)
ILC 11 (15.5)

Other 2 (2.8)
LVI

Unidentified 28 (39.4)
Identified 37 (52.1)
Unknown 6 (8.5)

ER
Positive 23 (32.4)

Negative 48 (67.6)
PR

Positive 19 (26.8)
Negative 52 (73.2)
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Table 1. Cont.

Characteristics n (%)

HER2
Positive 19 (26.8)

Negative 52 (73.2)
Molecular subtype

Luminal 23 (32.4)
HER2–positive 19 (26.8)
Triple–negative 29 (40.8)

Surgery
Mastectomy 60 (84.5)

Wide local excision 11 (15.5)
Adjuvant chemotherapy

Yes 59 (83.1)
No 4 (5.6)

Unknown 8 (11.3)

BMI, body mass index. ER, estrogen receptor. HRT, hormone replacement therapy. HER2, human epidermal growth
factors receptor 2. IDC, invasive ductal carcinoma. ILC, invasive lobular carcinoma. LVI, lymphovascular invasion.
PR, progesterone receptor.

3.2. Expression of IR and c-MET in Breast Cancer Tissues and Association with
Clinicopathologic Characteristics

IR immunoreactivity was detected in 68/71 patients (95.8%) by IHC. IR was detected in cell
membranes (Figure 1A–D). Mean IRS score for IR expression was 4.5 ± 0.4 ranging from 0–12 (median
4.0, IQR 2.0–6.0). According to IRS scoring, 8 patients (11.8%) classified to have negative expression of
IR, 22 patients (32.4%) had mild staining, 31 patients (45.6%) had moderate staining, and 7 patients
(10.3%) showed strongly positive staining (Figure 1A–D).

The association between clinicopathologic characteristics of breast cancer patients and expression
of IR is shown in Table 2. Fifty-three patients (74.6%) were determined to have low expression of IR. IR
expression was significantly associated with tumor grade (p = 0.017). Among patients with high IR
expression, 42.1% presented with low-to-intermediate grade (I/II) compared to 14.9% of patients who
had high grade carcinoma and high IR expression. IR expression was also significantly associated with
ER expression (p = 0.015). Low IR expression was mostly found among patients with an ER-negative
status (86.7%). Alternatively, high IR expression was associated with an ER-positive status (39.1%). No
significant associations were found between IR expression and patient age, BMI, menopausal status,
tumor stage, lymph node involvement, PR, HER2, or LVI (Table 2).

Expression of c-MET was detected in all cases and was mainly observed as cytoplasmic staining of
breast cancer cells (Figure 1E–G). c-MET expression was determined to be strongly positive in 15 (21.1%)
cases, moderate in 48 (67.6%), and mild in 8 (11.3%) patients (Figure 1E–G). Mean immunoreactive
score (IRS) for c-MET expression was 7.8 ± 0.3 with a range from 2–12 (median 8.0, IQR 6.0–8.0).

The association between c-MET expression and clinicopathologic characteristics of patients is
presented in Table 3. Low c-MET expression was found in 19 (26.8%) patients, while 52 (73.2%)
patients had high expression. No significant associations were found between c-MET expression and
all demographic and clinicopathologic parameters assessed among the entire sample of breast cancer
patients (Table 3).

Correlation between receptor expression scores and clinicopathologic characteristics associated
with outcomes in breast cancer patients is shown in Table 4. There was a significant positive correlation
between IR and c-MET expression scores among the entire cohort (rho = 0.458, p < 0.001). There
were no significant correlations between IR or c-MET scores and age at diagnosis, BMI, tumor size, or
number of lymph nodes among breast cancer patients (Table 4).
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Table 2. Expression of IR (insulin receptor) and its association with clinicopathologic parameters in
breast cancer patients (n = 68).

Parameter
IR [n (%)]

p-ValueLow
(n = 53)

High
(n = 15)

Age, years 0.341
<50 28 (73.7%) 10 (26.3%)
≥50 25 (83.3%) 5 (16.7%)

Menopausal status 0.195
Premenopausal 26 (72.2%) 10 (27.8%)
Postmenopausal 24 (85.7%) 4 (14.3%)

BMI, kg/m2 0.533
Non-obese 33 (80.5%) 8 (19.5%)

Obese 20 (74.1%) 7 (25.9%)
Grade 0.017 *

I/II 11 (57.9%) 8 (42.1%)
III 40 (85.1%) 7 (14.9%)

Stage 0.635
Early (I and II) 26 (81.3%) 6 (18.8%)

Advanced (III and IV) 26 (76.5%) 8 (23.5%)
Lymph nodes 0.571

Negative 18 (75.0%) 6 (25.0%)
Positive 30 (81.1%) 7 (18.9%)

ER 0.015 *
Positive 14 (60.9%) 9 (39.1%)

Negative 39 (86.7%) 6 (13.3%)
PR 0.067

Positive 12 (63.2%) 7 (36.8%)
Negative 41 (83.7%) 8 (16.3%)

HER2 0.081
Positive 15 (93.8%) 1 (6.3%)

Negative 39 (73.1%) 14 (26.9%)
LVI 0.244

Unidentified 19 (70.4%) 8 (29.6%)
Identified 29 (82.9%) 6 (17.1%)

Low, IRS = 0–6, high, IRS = 7–12. Pearson’s chi-square test of independence. Statistically significant at * p < 0.05 BMI,
body mass index. ER, estrogen receptor. HER2, human epidermal growth factor receptor 2. IR, insulin receptor. LVI,
lymphovascular invasion. PR, progesterone receptor.

Table 3. Expression of c-MET and its association with clinicopathologic parameters in breast cancer
patients (n = 71).

Parameter
c-MET [n (%)]

p-ValueLow
(n = 19)

High
(n = 52)

Age, years 0.064
<50 7 (17.9%) 32 (82.1%)
≥50 12 (37.5%) 20 (62.5%)

Menopausal status 0.057
Premenopausal 7 (18.9%) 30 (81.1%)
Postmenopausal 12 (40.0%) 18 (60.0%)

Body mass index (BMI), kg/m2 0.271
Non-obese 13 (31.7%) 28 (68.3%)

Obese 6 (20.0%) 24 (80.0%)
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Table 3. Cont.

Parameter
c-MET [n (%)]

p-ValueLow
(n = 19)

High
(n = 52)

Grade 0.979
I/II 5 (26.3%) 14 (73.7%)
III 13 (26.0%) 37 (74.0%)

Stage 0.327
Early (I and II) 10 (30.3%) 23 (69.7%)

Advanced (III and IV) 7 (20.0%) 28 (80.0%)
Lymph nodes 0.373

Negative 8 (33.3%) 16 (66.7%)
Positive 9 (23.1%) 30 (76.9%)

ER 0.929
Positive 6 (26.1%) 17 (73.9%)

Negative 13 (27.1%) 35 (72.9%)
PR 0.959

Positive 5 (26.3%) 14 (73.7%)
Negative 14 (26.9%) 38 (73.1%)

HER2 0.511
Positive 4 (21.1%) 15 (78.9%)

Negative 15 (28.8%) 37 (71.2%)
LVI 0.700

Unidentified 8 (28.6%) 20 (71.4%)
Identified 9 (24.3%) 28 (75.7%)

Low, IRS = 0–6, high, IRS = 7–12. Pearson’s chi-square test of independence. Statistically significant at * p < 0.05. BMI,
body mass index. ER, estrogen receptor. HER2, human epidermal growth factor receptor 2. LVI, lymphovascular
invasion. PR, progesterone receptor.

Table 4. Correlation between IR and c-MET expression with demographic and clinicopathologic factors
in breast cancer patients (Continuous variables) (n = 71).

Parameter
IR Score c-MET Score

rho p-Value rho p-Value

Age, years 0.054 0.659 −0.103 0.394
BMI, kg/m2 0.155 0.207 0.001 0.991

Tumor size, cm 0.029 0.823 0.129 0.306
Lymph nodes 0.199 0.130 0.151 0.244

IR score —— —— 0.458 <0.001 *
c-MET score 0.458 <0.001 * —— ——

rho, Spearman’s correlation coefficient. Statistically significant at * p < 0.05. BMI, body mass index. IR,
insulin receptor.

3.3. Correlation between IR and c-MET Expression with Clinicopathologic Characteristics Based on
Menopausal Status

Correlations between IR and c-MET scores and clinicopathologic factors associated with outcomes
in breast cancer patients stratified according to menopausal status are shown in Tables 5 and 6,
respectively. Among premenopausal cases, IR expression scores were significantly higher in patients
with grade I/II disease (p = 0.025), ER-positive (p = 0.030), and PR-positive carcinoma (p = 0.015)
(Table 5). There were no significant correlations between IR scores with tumor stage, lymph node
status, HER2, and LVI among premenopausal breast cancer patients. Among postmenopausal cases,
IR immunostaining scores lacked significant correlation with all clinicopathologic variables tested.

c-MET expression scores were significantly higher among premenopausal patients with ER-positive
(p = 0.007) and PR-positive carcinoma (p = 0.024) (Table 6). There were no significant correlations
between c-MET scores with the other tumor characteristics among premenopausal cases. Similar to
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findings with IR, c-MET expression lacked significant correlations with all clinicopathologic variables
tested among postmenopausal breast cancer patients in this study (Table 6).

Table 5. Correlation between IR expression with clinicopathologic factors stratified by menopausal
status among breast cancer patients (n = 67).

Parameter

Premenopausal
(n = 37)

Postmenopausal
(n = 30)

IR Score
p-Value

IR Score
p-Value

Median (IQR) Median (IQR)

Grade 0.025 * 0.978
I/II 8.0 (4.0–12.0) 3.0 (2.0–8.0)
III 4.0 (2.0–6.0) 3.5 (3.0–4.0)

Stage 0.686 0.085
Early (I/II) 4.0 (2.0–8.0) 3.0 (1.0–4.0)

Advanced (III/IV) 4.0 (3.0–7.5) 3.5 (3.0–5.0)
Lymph nodes 0.944 0.085

Negative 4.0 (2.0–8.0) 2.5 (2.0–3.75)
Positive 4.0 (3.0–6.5) 3.5 (3.0–4.0)

ER 0.030 * 0.376
Positive 4.0 (4.0–12.0) 3.5 (2.75–8.0)

Negative 4.0 (2.0–6.0) 3.0 (2.0–4.00)
PR 0.015 * 0.404

Positive 6.0 (4.0–12.0) 3.5 (3.0–7.0)
Negative 3.5 (2.0–6.0) 3.0 (2.0–4.0)

HER2 0.429 0.198
Positive 6.0 (2.5–9.0) 4.0 (3.0–4.0)

Negative 4.0 (2.0–8.0) 3.0 (2.0–4.0)
LVI 0.986 0.834

Unidentified 4.0 (1.0–12.0) 3.0 (2.0–4.0)
Identified 4.0 (3.0–6.0) 3.0 (3.0–4.0)

Mann-Whitney U test. Statistically significant at * p < 0.05. ER, estrogen receptor. HER2, human epidermal
growth factor receptor 2. IR, insulin receptor. IQR, interquartile range. LVI, lymphovascular invasion. PR,
progesterone receptor.

Table 6. Correlation between c-MET expression with clinicopathologic factors stratified by menopausal
status among breast cancer patients (n = 67).

Parameter

Premenopausal
(n = 37)

Postmenopausal
(n = 30)

c-MET Score
p-Value

c-MET Score
p-Value

Median (IQR) Median (IQR)

Grade 0.404 0.780
I/II 8.0 (8.0–12.0) 7.0 (3.75–9.0)
III 8.0 (7.5–12.0) 8.0 (3.75–8.0)

Stage 0.911 0.143
Early (I/II) 8.0 (8.0–12.0) 7.0 (3.0–8.0)

Advanced (III/IV) 8.0 (8.0–11.0) 8.0 (6.0–8.0)
Lymph nodes 0.569 0.143

Negative 8.0 (8.0–12.0) 8.0 (5.0–8.0)
Positive 8.0 (8.0–9.0) 5.0 (3.0–8.0)

ER 0.007 * 0.317
Positive 12.0 (8.0–12.0) 5.0 (3.0–9.0)

Negative 8.0 (6.0–8.0) 8.0 (6.0–8.0)
PR 0.024 * 0.372

Positive 10.0 (8.0–12.0) 5.0 (3.0–11.0)
Negative 8.0 (6.0–8.0) 8.0 (5.5–8.0)
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Table 6. Cont.

Parameter

Premenopausal
(n = 37)

Postmenopausal
(n = 30)

c-MET Score
p-Value

c-MET Score
p-Value

Median (IQR) Median (IQR)

HER2 0.117 0.083
Positive 7.0 (3.75–9.0) 8.0 (8.0–8.0)

Negative 8.0 (8.0–12.0) 6.0 (3.0–8.0)
LVI 0.956 0.238

Unidentified 8.0 (8.0–11.0) 8.0 (3.0–8.0)
Identified 8.0 (8.0–12.0) 8.0 (4.0–8.0)

Mann-Whitney U test. Statistically significant at * p < 0.05 ER, estrogen receptor. HER2, human epidermal
growth factor receptor 2. IR, insulin receptor. IQR, interquartile range. LVI, lymphovascular invasion. PR,
progesterone receptor.

3.4. Expression of IR and c-MET among Breast Cancer Molecular Subtypes

Figure 2 represents IR and c-MET immunostaining scores among breast cancer molecular subtypes
for all patients including premenopausal and postmenopausal cases. IR score was significantly
different among molecular subtypes for all patients (p = 0.006) and premenopausal cases (p = 0.035)
(Figure 2A,B). IR scores were significantly higher among patients with luminal subtype compared to
both HER2-positive and triple-negative disease. No significant difference in IR score was found among
molecular subtypes in postmenopausal patients (Figure 2C). Expression of c-MET was statistically
different among molecular subtypes for premenopausal patients (p = 0.019) with higher expression
scores for the luminal subtype compared with HER2-positive and triple-negative cases (Figure 2E).
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Figure 2. Expression of IR and c-MET among breast cancer patients according to molecular subtype
and menopausal status. IR, insulin receptor. Boxplots represent median IR scores (A–C) and c-MET
scores (D–F). The boxes represent the 25th and 75th percentiles, whereas the bars represent minimum
and maximum values. * p < 0.05 between molecular subtypes, according to Kruskal–Wallis analysis
of variance.
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3.5. Survival Analysis

Figure 3 shows the overall survival (OS) of breast cancer patients stratified by the expression status
of IR and c-MET. Survival curves for patients with low or high expression of IR were not significantly
different (p = 0.643, Log-rank (Mantel–Cox) test). Similarly, the expression status of c-MET did not
result in significant differences in patient OS (p = 0.527, Log-rank (Mantel–Cox) test).
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4. Discussion

Insulin is an established mitogen known to promote breast cancer cell growth [10,36]. The
mitogenic actions of insulin in breast cancer cells are mediated by activation of IR. Earlier studies
showed that IR was overexpressed in breast tumors when compared to normal breast tissue [10,37]. In
cancer cells, IR has been found to drive proliferative and mitogenic effects, which are distinct from
the regular metabolic activity mediated by the receptor [5,18]. Activation of IR phosphorylates IR
substrate (IRS) which, in turn, activates multiple downstream signal transduction effectors such as
phosphoinositide 3-kinase (PI3K)/AKT and ERK pathways [38,39]. As a result, IR regulates several
fundamental cellular processes such as cell proliferation, differentiation, cell cycle, and migration [17].
Insulin-like growth factor 1 receptor (IGF-1R) is a common dimerization partner of IR [5,7]. IGF-1R/IR
pathway mediated resistance to endocrine treatment and is further required for the growth of
hormone-independent breast cancer [7,38,40].

A limited number of studies described the expression of IR in breast cancer tissues and its
association with disease presentation and prognosis [41]. Results from this study demonstrated that
high IR expression was significantly associated with low tumor grade and expression of hormone
receptors, which are classified as favorable prognostic factors [42]. When stratified by menopausal
status, these associations were found among premenopausal but not postmenopausal patients. Our
findings showed no significant associations between IR expression with patient age, BMI, tumor size,
or nodal status. In addition, our findings showed that patient survival was not affected by the IR
expression status. In agreement with our findings, Mulligan et al. found that high IR expression
was significantly associated with low tumor grade, lymph node negativity, and positive expression
of PR in a series of breast cancer patients who underwent surgical treatment at three University of
Toronto hospitals [43]. High IR expression was associated with improved distant disease-free survival
and OS among breast cancer patients compared to low expression status [43]. In addition, Björner
et al. described the expression of IR in a population-based cohort of 1,026 primary invasive breast
cancer patients in Sweden [38]. Moderate-strong staining of IR was detected in 82% of breast cancer
patients [38]. Strong IR expression was significantly associated with ER-positivity, while negative-weak
expression of IR was associated with a triple-negative molecular status. However, IR expression lacked
prognostic impact regarding event-free survival or distant metastasis among this cohort of Sweden
breast cancer patients [38]. Alternatively, Papa et al. examined the expression of IR in 159 specimens
for Italian breast cancer patients and compared the expression to the content of 42 non-malignant
breast tissues [10]. The expression of IR in breast cancer tissues was more than six-fold higher than
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its expression in non-malignant breast tissue. In addition, Papa et al. showed that IR expression was
positively correlated with tumor size, histological grade, and ER content [10]. No correlations were
found between IR levels and age, body weight, menopausal status, and nodal involvement of breast
cancer patients [10]. Aljada et al. showed that mRNA levels of IR were significantly higher in cancer
patients presented with advanced clinical stage of the disease compared to early stages [44]. As our
findings demonstrate, a favorable prognostic impact for IR expression in breast cancer tissues and IR
expression may be perceived as a marker of differentiation [43].

c-MET is a high-affinity receptor for HGF [45]. c-MET is classified as the prototype member
of the RTK subfamily with Ron and Sea based on shared structural homology of c-MET [46]. HGF
binding induces c-MET dimerization and subsequent activation of several downstream transducers and
adaptors including PI3K, Src, Grb2, Shc, and signal transducer and activator of transcription (STATs) [45].
Dysregulation of c-MET signaling upregulates diverse tumor cell functions including cell proliferation,
survival, cell scattering and motility, epithelial-to-mesenchymal transition, angiogenesis, invasion,
and metastasis [47]. In addition, high c-MET expression is critical for acquiring resistance toward
chemotherapy and targeted therapies [48,49]. Findings from this study revealed that c-MET is strongly
expressed in breast cancer tissues and its levels are associated with hormone-receptor expression and
luminal subtype among premenopausal breast cancer patients. However, no associations were found
between c-MET expression and other tumor characteristics or patient survival in this analysis. In
agreement with our results, several studies revealed a lack of association between c-MET expression and
prognostic factors such as patient age, tumor size, and lymph node status [50]. Wang et al. demonstrated
a lack of correlation between c-MET expression and clinicopathologic characteristics or prognosis
among a cohort of patients diagnosed with triple-negative breast cancer [51]. Lengyel et al. evaluated
the expression of c-MET in 40 primary breast cancer patients with positive axillary lymph nodes in
Germany and revealed a lack of association between receptor levels and age, lymph node involvement,
ER, PR, tumor size, or grade [52]. Nakopoulou et al. showed that c-MET immunoreactivity was
associated with low histological grade and favorable prognostic and predictive factors such as ER and
PR positivity and negative HER2 expression [53]. Nevertheless, c-MET expression was not significantly
associated with other prognostic factors such as tumor size, lymph node status, and stage [53]. Baccelli
et al. showed that expression of c-MET in luminal tumors was associated with lymph node metastasis
and reduced OS suggesting that c-MET expression could be utilized as a prognostic marker for risk
stratification and treatment of patients with hormone receptor-positive breast cancer [54]. Jia et al. also
showed that increased c-MET expression in breast cancer tissues was associated with increased tumor
size and stage, and reduced OS [48]. c-MET expression was significantly associated with the tumor
grade in a series of patients diagnosed with triple-negative breast cancer from Greece and Austria [55].
Results from a meta-analysis of 6010 breast cancer cases indicated that c-MET overexpression correlated
with poor relapse-free survival (RFS) and OS in Western patients. However, such an association
was not observed among Asian patients [56]. Inconsistencies in findings correlating IR and c-MET
expression with the clinicopathologic characteristics of breast cancer or the prognostic impact could be
attributed to different approaches applied to assess immunostaining of target receptors and differences
in populations examined.

Our findings revealed that breast cancer tissues showed a significant positive correlation for the
expression of IR and c-MET. A limited number of studies addressed the potential crosstalk between
IR and c-MET. Fafalios et al. reported that c-MET is essential for an optimal response to insulin
in hepatocytes in which c-MET directly engage with IR in a hybrid complex of both receptors [24].
Though this finding has been shown in hepatic tissue, it is possible that IR and c-MET receptor hybrids
are formed in cancerous tissues as well. This is particularly important since high expression of both
receptors was found among luminal disease and, thus, mitogenic signaling in these tumors could be, in
part, dependent on IR and c-MET RTKs, which could enable luminal tumors to escape the suppressive
effects of endocrine treatments.
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Expression of IR and c-MET in breast cancer tissues could make them sensitive to inhibitors
targeted for both receptors. Traditionally, IR pathway has been the focus of antidiabetic therapies [5].
IR had received less attention as a therapeutic target in cancer because of the potential impact on
glucose homeostasis [7]. Nevertheless, recent evidence from in vitro and in vivo studies had indicated
that inhibitors of IR have potent antitumor activity [17,57–60]. Sharma et al. showed that IR antagonist
S961 suppressed growth and downregulated IR expression in breast cancer cells [17]. KW-2450 (Kyowa
Kirin Pharmaceutical Development, Inc., Princeton, NJ, USA) is an orally active multi-targeted tyrosine
kinase inhibitor with both IGF-1R and IR inhibitory activity [58]. KW-2450 exerts synergistic antitumor
effects in combination with lapatinib and letrozole. This drug is underway in early phase clinical
trials to evaluate tolerability and efficacy in combination with lapatinib plus letrozole in patients
with HER2-positive advanced or metastatic breast cancer [58]. The dual IGF-1R/IR tyrosine kinase
inhibitor BMS-754807 (Bristol-Myers Squibb, New York, NY, USA) resulted in synergistic antitumor
effects in combination with letrozole or tamoxifen in preclinical breast cancer models [59]. OSI-906
(OSI Pharmaceuticals, Melville, NY, USA) is another dual tyrosine kinase inhibitor of IGF-1R/IR that
has been shown to effectively suppress the growth of hormone-independent breast tumors in the
animal model alone, and in combination with the ER down regulator fulvestrant [7]. Several c-MET
inhibitors are commercially available, and some are approved for treatment of human cancers [47].
Currently, c-MET inhibitors are being investigated in breast cancer clinical trials as monotherapy or in
combination with targeted treatments [61,62].

The main limitation of this study is the comparatively small sample size of our breast cancer
patients. This may explain the lack of statistical significance for the association and correlation analysis
performed in this study. However, patients in our study are included from a single center with unified
diagnostic and management protocols. It is highly recommended to extend this analysis to involve
a larger number of breast cancer patients to better elucidate the impact of receptor expression on
clinicopathologic and prognostic factors.

5. Conclusions

To the best of our knowledge, this is the first study to characterize the expression of IR and c-MET
in Jordanian breast cancer patients and describe associations with clinicopathologic and prognostic
factors. Collectively, IR and c-MET were expressed in different molecular subtypes of breast cancer.
The majority of patients had high tumor expression of c-MET. Expression of IR was associated with
hormone receptors and tumor grade, which could imply a greater prognostic value for IR compared to
c-MET. c-MET expression was associated with hormone receptors but lacked significant associations
with other prognostic factors. When stratified based on menopausal status, these associations were
confined to premenopausal cases. Despite their association with favorable prognostic factors in this
study, ongoing research is being directed toward developing inhibitors of IR and c-MET, which could
benefit a specific population of breast cancer patients. Future research will be needed to understand
the potential crosstalk between IR and c-MET in breast cancer.
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