Effects of Outlet Shrinkage on Hydraulics in Hyper-Concentrated Sediment-Laden Flow
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.1.1. Model Design
2.1.2. Experimental Conditions
2.2. Methods
2.2.1. Nyquist’s Law
2.2.2. Probability Density
2.2.3. Power Spectrum and Correlation Coefficient
3. Experimental Results
3.1. Flow Discharge
3.2. Flow Regime
3.2.1. Water Nappe in Air
3.2.2. Jet Trajectory
3.2.3. Flow Regime in Plunge Pool
3.3. Hydrodynamic Pressure
3.3.1. Relative Time-Averaged Pressure
3.3.2. Fluctuating Pressure
4. Discussion
4.1. Probability Density of Fluctuating Pressure
4.2. Frequency Domain Characteristics
4.3. Time Domain Characteristics
4.4. Comparative Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ervine, D.A.; Falvey, H.T.; Withers, W. Pressure fluctuations on plunge pool floors. J. Hydraul. Res. 1997, 35, 257–279. [Google Scholar] [CrossRef]
- Changke Institute. Model Test and Prototype Observation of the Influence of Water Flow Pressure on the Downstream Riverbed of the Overflow Dam, the High-Speed Water Flow Translation Set; Water Power Press: Beijing, China, 1996. [Google Scholar]
- Chen, Y.C.; Xu, X.Q. Numerical simulation of the impact of jet on downstream riverbed. Hydrodyn. Res. Prog. Ser. A 1992, 7, 319–326. [Google Scholar] [CrossRef]
- Vinuesa, R.; Schlatter, P.; Malm, J.; Mavriplis, C.; Henningson, D.S. Direct numerical simulation of the flow around a wall-mounted square cylinder under various inflow conditions. J. Turbul. 2015, 16, 555–587. [Google Scholar] [CrossRef]
- Rezaeiravesh, S.; Liefvendahl, M. Effect of grid resolution on large eddy simulation of wall-bounded turbulence. Phys. Fluids 2018, 30, 055106. [Google Scholar] [CrossRef] [Green Version]
- Gutmark, E.; Wolfshtein, M.; Wygnanski, I. The plane turbulent impinging jet. J. Fluid Mech. 1978, 88, 737–756. [Google Scholar] [CrossRef]
- Head, M.R.; Bandyopadhyay, P. New aspects of turbulent boundary-layer structure. J. Fluid Mech. 1981, 107, 297–338. [Google Scholar] [CrossRef]
- Nakamura, I.; Tsuji, Y. Some progress in the research of the dynamical structure in wall turbulence. JSME Int. J. Ser. B Fluids Therm. Eng. 1995, 38, 335–345. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, P.; Balachanda, S.; Adrian, R.J. On the relationships between local vortex identification schemes. J. Fluid Mech. 2005, 535, 189–214. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Christensen, K.T. Population trends of spanwise vortices in wall turbulence. J. Fluid Mech. 2006, 568, 55–76. [Google Scholar] [CrossRef] [Green Version]
- Gao, Q.; Ortiz-dueñas, C.; Longmire, E.K. Analysis of vortex populations in turbulent wall-bounded flows. J. Fluid Mech. 2011, 678, 87–123. [Google Scholar] [CrossRef]
- Lee, S.; Jang, Y.; Choi, Y. Stereoscopic-PIV measurement of turbulent jets issuing from a sharp-edged circular nozzle with multiple triangular tabs. J. Mech. Sci. Technol. 2012, 26, 2765–2771. [Google Scholar] [CrossRef]
- Zhang, R.J. River Sediment Dynamics; Water Power Press: Beijing, China, 1998. [Google Scholar]
- Cao, Z.; Wei, L.; Xie, J. Sediment-laden flow in open channels from two-phase flow viewpoint. J. Hydraul. Eng. 1995, 121, 725–735. [Google Scholar] [CrossRef]
- Song, T.; Chiew, Y. Settling characteristics of sediments in moving Bingham fluid. J. Hydraul. Eng. 1997, 123, 812–815. [Google Scholar] [CrossRef]
- Wang, X.; Qian, N. Turbulence characteristics of sediment-laden flow. J. Hydraul. Eng. 1989, 115, 781–800. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, X.; Ren, Y. Statistical characteristics of Bingham fluid turbulence and its fluctuation spectrum distribution. J. Hydraul. Eng. 1993, 4, 12–22. [Google Scholar] [CrossRef]
- Guo, J.; Julien, P.Y. Turbulent velocity profiles in sediment-laden flows. J. Hydraul. Res. 2001, 39, 11–23. [Google Scholar] [CrossRef]
- Samanta, A.; Vinuesa, R.; Lashgari, I.; Schlatter, P.; Brandt, L. Enhanced secondary motion of the turbulent flow through a porous square duct. J. Fluid Mech. 2015, 784, 681–693. [Google Scholar] [CrossRef] [Green Version]
- Pagliara, S.; Hager, W.H.; Minor, H.E. Hydraulics of plane plunge pool scour. J. Hydraul. Eng. 2006, 132, 450–461. [Google Scholar] [CrossRef]
- Gou, W.J. Effect of Sediment Concentration on Hydraulic Characteristics of Energy. Dissipation in a Falling Turbulent Jet. Appl. Sci. 2018, 8, 1672. [Google Scholar] [CrossRef] [Green Version]
- Lin, B.N. Contraction Energy Dissipation and Flaring Gate Piers; Water Power Press: Beijing, China, 2001. [Google Scholar]
- Gong, Z.Y.; Liu, S.K.; Gao, J.Z. Convergent structures to enhance energy dissipation flaring gate piers and slit-type flip buckets. J. Hydro. Eng. 1983, 3, 48–57. [Google Scholar]
- Chen, C.; Wang, J. Research progress of flaring gate piers dissipator. Eng. Cons. 2010, 24, 728–730. [Google Scholar] [CrossRef]
- Surhone, L.M.; Timpledon, M.T.; Marseken, S.F. Nyquist Frequency; Betascript Publishing: Beau Bassin, Mauritius, 2010. [Google Scholar]
- Zhang, M.; You, C.; Zhao, X. Experimental study on turbulence characteristics of high sediment-laden Flow. Water Resour. Hydropower Eng. 2016, 47, 82–88. [Google Scholar] [CrossRef]
- Su, X.L.; Tong, X.W. Energy Dissipation and Anti-Shear Arrangement of Dongjiang Hydropower Station; Institute of Research and Design, Central South Survey and Design Institute, Ministry of Electric Power: Wuhan, China, 1983. [Google Scholar]
- Xiao, X.B. Summary of the application and development of narrow-slot energy dissipators in high-dam energy dissipation. Hydropower Stn. Des. 2004, 3, 76–81. [Google Scholar] [CrossRef]
- Davies, J.T. Turbulence Phenomena; Academic Press: New York, NY, USA; London, UK, 1972. [Google Scholar]
- Hartung, F.; Hausler, E. Scours’ Stilling Basins and Downstream Protection under Free Overfall Jets at Dams. In Proceedings of the 11th Congress on Large Dams, Madrid, Spain, 11–15 June 1973. [Google Scholar]
- Yang, M. Research on Hydrodynamic Characteristics and Protective Structure Safety of High Dam Plunge Pool; Tianjin University: Tianjin, China, 2003. [Google Scholar]
- Ni, J.R.; Xia, J.X. Particle fluctuation intensities in sediment-laden flows. Mech. Res. Commun. 2003, 30, 25–32. [Google Scholar] [CrossRef]
- Lyn, D.A. Turbulence characteristics of sediment-laden flows in open channels. J. Hydraul. Eng. 1992, 118, 971–988. [Google Scholar] [CrossRef]
- Gu, J.D.; Lian, J.J. Longitudinal distribution of hydraulic jump fluctuating pressure acting on floor. J. Hydraul. Eng. 2008, 38, 196–200. [Google Scholar] [CrossRef]
- Omid, M.H.; Nasrabadi, M.; Farhoudi, J. Suspended sediment effects on hydraulic jump characteristics. Proc. Inst. Civ. Eng. Water Manag. 2011, 164, 91–101. [Google Scholar] [CrossRef]
- Nasrabadi, M.; Omid, M.H.; Farhoudi, J. Submerged hydraulic jump with sediment-laden flow. Int. J. Sediment Res. 2012, 27, 100–111. [Google Scholar] [CrossRef]
- Li, F.T.; Liu, P.Q.; Xu, W.L.; Tian, Z. Experimental study on plunging nappe from surface spillways with flaring gate piers in high arch dams. Water Resour. Hydrol. Eng. 2003, 34, 23–25. [Google Scholar] [CrossRef]
- Li, F.T.; Liu, P.Q.; Xu, W.L.; Tian, Z. Experimental study on effect of flaring piers on weir discharge capacity in high arch dam. J. Hydraul. Eng. 2003, 11, 43–47. [Google Scholar] [CrossRef]
- Gu, J.D.; Lian, J.J. Study on characteristics of hydrodynamic loads and shape optimization of X-shaped flaring gate pier. Water Resour. Hydrol. Eng. 2011, 42, 58–61. [Google Scholar] [CrossRef]
- Sang, L.H. Study on Discharge Capacity and Hydraulic Characteristics of Flaring Gate Piers of Surface Spillway in High Arch Dam; Tianjin University: Tianjin, China, 2017. [Google Scholar]
- Xu, W.L.; Liao, H.S.; Yang, Y.Q.; Wu, C. Turbulent flow and energy dissipation in plunge pool of high arch dam. J. Hydraul. Res. 2002, 40. [Google Scholar] [CrossRef]
- Liao, H.S.; Xu, W.L.; Yang, Y.G. Characteristics of point and area wall fluctuating pressure by multiple jets impinging into plunge pool. J. Sichuan Union Univ. 1999, 3, 20–24. [Google Scholar] [CrossRef]
- Huang, X.B.; Yuan, Y.Z.; Wang, S.X. Characteristics of wall pressure fluctuations in high-velocity sediment-laden and aerated flow. J. Hohai Univ. 1997, 25, 78–83. [Google Scholar] [CrossRef]
Shape 1 | Shape 2 | Shape 3 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
No. | Contraction Ratio | Upstream Water Level (m) | Sediment Concentration (kg/m3) | No. | Contraction Ratio | Upstream Water Level (m) | Sediment Concentration (kg/m3) | No. | Contraction Ratio | Upstream Water Level (m) | Sediment Concentration (kg/m3) |
1 | 0.5 | 2.20 | 0 | 13 | 0.4 | 2.20 | 0 | 25 | 0.3 | 2.20 | 0 |
2 | 0.5 | 2.15 | 0 | 14 | 0.4 | 2.15 | 0 | 26 | 0.3 | 2.15 | 0 |
3 | 0.5 | 2.10 | 0 | 15 | 0.4 | 2.10 | 0 | 27 | 0.3 | 2.10 | 0 |
4 | 0.5 | 2.20 | 50 | 16 | 0.4 | 2.20 | 50 | 28 | 0.3 | 2.20 | 50 |
5 | 0.5 | 2.15 | 50 | 17 | 0.4 | 2.15 | 50 | 29 | 0.3 | 2.15 | 50 |
6 | 0.5 | 2.10 | 50 | 18 | 0.4 | 2.10 | 50 | 30 | 0.3 | 2.10 | 50 |
7 | 0.5 | 2.20 | 150 | 19 | 0.4 | 2.20 | 150 | 31 | 0.3 | 2.20 | 150 |
8 | 0.5 | 2.15 | 150 | 20 | 0.4 | 2.15 | 150 | 32 | 0.3 | 2.15 | 150 |
9 | 0.5 | 2.10 | 150 | 21 | 0.4 | 2.10 | 150 | 33 | 0.3 | 2.10 | 150 |
10 | 0.5 | 2.20 | 250 | 22 | 0.4 | 2.20 | 250 | 34 | 0.3 | 2.20 | 250 |
11 | 0.5 | 2.15 | 250 | 23 | 0.4 | 2.15 | 250 | 35 | 0.3 | 2.15 | 250 |
12 | 0.5 | 2.10 | 250 | 24 | 0.4 | 2.10 | 250 | 36 | 0.3 | 2.10 | 250 |
Sediment Concentration (kg/m3) | CS | CE | ||||||
---|---|---|---|---|---|---|---|---|
0 | 50 | 150 | 250 | 0 | 50 | 150 | 250 | |
Shape 1 | 0.5756 | 0.7667 | 0.6073 | 0.2048 | 3.4021 | 3.6736 | 2.9954 | 2.8885 |
Shape 2 | 0.3059 | 0.1312 | 0.0717 | 0.2021 | 2.9309 | 3.5226 | 3.2167 | 2.6378 |
Shape 3 | 0.9112 | 0.8501 | 0.8359 | 0.3711 | 3.482 | 3.6932 | 3.4116 | 2.8181 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lian, J.; Yin, H.; Liu, F.; Li, H.; Gou, W. Effects of Outlet Shrinkage on Hydraulics in Hyper-Concentrated Sediment-Laden Flow. Appl. Sci. 2020, 10, 1332. https://doi.org/10.3390/app10041332
Lian J, Yin H, Liu F, Li H, Gou W. Effects of Outlet Shrinkage on Hydraulics in Hyper-Concentrated Sediment-Laden Flow. Applied Sciences. 2020; 10(4):1332. https://doi.org/10.3390/app10041332
Chicago/Turabian StyleLian, Jijian, Hongxia Yin, Fang Liu, Huiping Li, and Wenjuan Gou. 2020. "Effects of Outlet Shrinkage on Hydraulics in Hyper-Concentrated Sediment-Laden Flow" Applied Sciences 10, no. 4: 1332. https://doi.org/10.3390/app10041332
APA StyleLian, J., Yin, H., Liu, F., Li, H., & Gou, W. (2020). Effects of Outlet Shrinkage on Hydraulics in Hyper-Concentrated Sediment-Laden Flow. Applied Sciences, 10(4), 1332. https://doi.org/10.3390/app10041332