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Featured Application: This study establishes a foundation that links behavior with sediment
concentration to enable further research into energy dissipator function in large dams on
sediment-laden rivers.

Abstract: The effect of sediment on the hydraulics of jet energy dissipation is an urgent issue for
high dams built on sediment-laden rivers. Accordingly, flume experiments were conducted using
a ski-jump type energy dissipator in flows of four sediment concentrations (0 kg/m3, 50 kg/m3,
150 kg/m3, and 250 kg/m3) to determine the effects on discharge, flow regime, and hydrodynamic
pressure in a plunge pool. The results demonstrate that the effect of sediment on discharge is
constant, regardless of sediment concentration, when compared to fresh water. The width of the
nappe decreased with increasing concentrations of sediment. The length of the jet trajectory increased
with upstream water head. The time-averaged pressure and fluctuation pressure both exhibited
peaks, describing the impact of the jet on the bottom of the plunge pool. The maximum time-averaged
pressure and maximum fluctuating pressure both noticeably increased with upstream water head
and slightly increased with sediment concentration for a given flow condition. The results also
demonstrated that the dominant frequency of fluctuation trends to lower values, and that both the
fluctuating energy and vortex scale increase with increasing sediment concentrations due to increased
viscosity. These findings can be used to improve energy dissipation in dams on sediment-laden rivers.
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1. Introduction

The interest in energy dissipation in hydraulic structures has developed at an appropriate
time, given the significant increase in the construction of large dams worldwide since the 1950s [1].
The design of hydraulic energy dissipators for these dams is often a challenge, especially when dam
parameters include high water head and large discharge [2]. The hydraulic jump [3] and ski-jump [4]
are common energy dissipation features, as is the plunge pool [5]. However, when a dam is built on a
hyperconcentrated sediment-laden river, energy dissipation is complicated by sediment effects [6].

Energy dissipation is an important issue in the design of a hydraulic structure. The hydraulic
characteristics of the impinging jet or plunge pool of an energy dissipator have been extensively studied
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in fresh water. Deep outlets with a plunge pool should be considered a standard, common design
for energy dissipation [7] and flushing sediment from reservoirs [8]. Nappe flows, in which water is
dropped through the atmosphere into a pool or water cushion, exhibit rapid diffusion of the jet in the
pool, dissipating the energy of the falling water and attenuating fluctuations at the base of the pool [9].
Many papers have been published on methods to determine the shape and size [10] of a plunge pool
and the bottom slab thickness [11], and others have paid special attention to hydraulic plunge pool
scour [12]. The safety of plunge pools has also been a subject of close attention, e.g., the hydraulic
pressure [13] and uplift force [14]. Other research has concentrated on the mechanism of the impinging
jet [15]. The entire flow of an energy dissipator is divided into a free jet region, an impinging region, and
wall jet region. Beltaos and Rajaratnam [16] discussed the time-averaged characteristics of an impinging
jet and Gutmark et al. [17] presented an experimental study of the turbulent structure on the centerline
of a two-dimensional impinging jet. Energy dissipation depends on the turbulence of flow and the
fluctuation of turbulent flow based on the formation of coherent structures [18,19]. Using experiments
and calculations, Adrian et al. [20] concluded that the vortex structure in a wall turbulent flow takes
the form of a hairpin. Chakraborty et al. [21] systematically analyzed, summarized, and compared
popular vortex identification criteria and vortex structure recognition methods. The scale, intensity,
and density of vortex structures have also been studied [22,23]. With the continued development
of experimental technology, new advanced simulation methods [24] and devices [25], such as direct
numerical simulation (DNS) [26], large eddy simulations (LES) [27], and particle image velocimetry [28],
have been used to research turbulence characteristics. However, turbulent flow is a complicated subject,
and many details describing turbulent structures still remain inconclusive.

Hyperconcentrated sediment-laden flow has been studied using experiments and simulations over
the past century as either a Newtonian fluid [29] or Bingham fluid [30]. The presence and characteristics
of particles have been found to affect the turbulent structure of a suspension [31]. Samanta et al. [32]
simulated porous turbulent flows using DNS and observed that stream-wise turbulence intensity
decreased in a porous duct. The turbulent velocity profile in sediment-laden flows has been studied
by experiments [33] and simulations [34,35]. Guo and Julien [36] performed a theoretical analysis
and determined that sediment suspension increases main flow energy loss and weakens turbulent
diffusion in the vertical direction, and increases the velocity gradient. Wang and Qian [37] performed
experiments to study the turbulence structure of open channel flow and confirmed that the turbulence
of a sediment-laden flow is less intense, with a smaller frequency and larger turbulence eddies in the
longitudinal direction compared with clear water flow; the distribution of density probability and
the autocorrelation coefficients of the fluctuating velocity were similar to that of a clear water flow.
These results suggested that the fundamental turbulence structure of a sediment-laden Newtonian
flow remains unchanged, but Wang et al. [38] found different experimental results. Omid et al. [39]
and Nasrabadi et al. [40] performed experiments demonstrating that suspended sediment increases
flow resistance as a result of decreased maximum flow velocity. Though a great deal of the literature
published in the last century has addressed the transport of sediment and turbulent structure of
sediment-laden flow using experiments [41] and simulations [42], it remains necessary to clarify the
effects of sediment-laden flow on ski-jump type energy dissipators, as they appear to complicate the
turbulence structure and energy dissipation mechanisms of a fluid.

For a high dam in a hyperconcentrated, sediment-laden river, an impinging jet from a deep outlet
and plunge pool are combined to act as an energy dissipator. Deep outlets perform the critical function
of flushing sediment from behind a dam, so the hydraulics of hyperconcentrated flows should be
determined in order to ensure safe operation. The effect of sediment on energy dissipation is an
urgent issue for dams on hyperconcentrated sediment-laden rivers. In this paper, experiments were
conducted using a re-circulating flume and deep outlet discharge subjected to flow of four sediment
concentrations (0 kg/m3, 50 kg/m3, 150 kg/m3, and 250 kg/m3) and three upstream water heads
(1.8 m, 1.85 m, 1.9 m) to study the effects of sediment concentration on the hydraulics of energy
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dissipation, as quantified by discharge, flow regime of nappes, and hydraulic pressure on the slab in
the plunge pool.

2. Experimental Setup

The experiments were conducted using a re-circulating flume, shown schematically in Figure 1a.
The flume mainly consisted of an upstream tank with a water level indicator supporting a stabilized
water head, a plunge pool, and a pump with a flow meter. The upstream tank was 1 m wide, 1.3 m
long and 2.6 m high. The 0.61 m deep plunge pool was 4 m long and of a trapezoidal cross-section,
0.8 m and 0.4 m wide at the top and bottom, respectively. A deep outlet was fixed at the upstream tank
1.28 m above the bottom plate of the plunge pool, as shown in the schematic diagram in Figure 1b.
The tank and the plunge pool were connected by 12 cm diameter pipes and a mud pump.

The tests were conducted in a room-temperature environment of about 20 ± 2 ◦C. Upstream
and downstream water levels were controlled within an experimental error of ± 1 mm. The flow
discharge was measured by a flow meter, and each experiment case was conducted three times to
determine the average discharge. Diaphragm-type TS202 pressure transducers (Beijing Tiantai Xingye
Technology co. Ltd, Beijing, China)with a diameter of 20 mm were spaced at 0.1 m intervals along
the centerline of the plunge pool to measure the hydrodynamic pressure. A DASP data collection
system sampled the transducers at 100 Hz on the basis of Nyquist’s law [43], equivalent to a sampling
time interval of 0.01 s. The transducers were calibrated in the air and the hydrostatic pressures
were measured prior to the experiments in order to provide a comparison of water level before
and after the experimental hydrodynamic pressures were applied. At least 8192 effective samples
were taken in every experimental case. The complete set of samples was first analyzed for effective
data, then decomposed using an infinite impulse response (IIR) filter in MATLAB (The MathWorks,
Inc., Natick, MA, U.S.). Finally, the parameters of the hydrodynamic pressures were calculated
using MATLAB.

The sediment used was from the Yellow River and was classified as fine silt and clay of particle
sizes ranging from 0.001 mm to 0.05 mm and a median particle size of 0.008 mm. The concentration
of mud was determined by its concentration at the nappe. Viscosity was measured by an NDJ-8S
(Shanghai Yueping Scientific Instrument Co. Ltd., Shanghai, China) rotational viscometer. After testing
each case, the viscosity of the sediment-laden flow was measured at room temperature. Each case was
repeated five times and the results were averaged for analysis.
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Figure 1. Schematic diagram of the experimental (a) re-circulating flume; and (b) deep outlet.

Experiments were conducted in two sets for a downstream water depth of 0.1 m. The first set
of experiments evaluated fresh water at three upstream water heads (1.80 m, 1.85 m, and 1.90 m) to
determine its energy dissipation in the plunge pool. The second set of experiments consisted of three
concentrations (50 kg/m3, 150 kg/m3, and 250 kg/m3) of sediment-laden flow to determine its energy
dissipation at each of the three evaluated upstream water heads. The densities of the suspensions
were 1.02 kg/m3, 1.05 kg/m3, and 1.08 kg/m3 for sediment concentrations of 50 kg/m3, 150 kg/m3,
and 250 kg/m3, respectively. The details of all twelve experimental cases are presented in Table 1.
The experimental errors were controlled to less than 1%.
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Table 1. Experimental cases.

No.
Concentrations

of Sediment
(kg/m3)

Upstream
Water

Head (m)

Downstream
Water

Depth (m)
No.

Concentrations
of Sediment

(kg/m3)

Upstream
Water

Head (m)

Downstream
Water Depth

(m)

1 0 1.80 0.1 7 150 1.80 0.1
2 0 1.85 0.1 8 150 1.85 0.1
3 0 1.90 0.1 9 150 1.90 0.1
4 50 1.80 0.1 10 250 1.80 0.1
5 50 1.85 0.1 11 250 1.85 0.1
6 50 1.90 0.1 12 250 1.90 0.1

3. Experimental Results and Analysis

3.1. Flow Discharge

Flow discharge is a critical control factor in the design of a hydraulic structure. A satisfactory
flow rate ensures the safe operation of a dam in a hyperconcentrated sediment-laden river, so the
effect of sediment on flow discharge is an important and urgent issue. The experiments in this
study were conducted to determine the relationship between flow rate and upstream water head for
sediment-laden flow. The experimental results are presented in Figure 2, in which the dark line is the
flow rate of fresh water and the dots are the flow rates of the sediment-laden flow of various sediment
concentrations. The flow rate was observed to increase exponentially with the square root of the
upstream water head. The dots were close to the line, indicating that the flow rate is stable regardless
of sediment concentration, which is the same conclusion reached by references [44,45]. Therefore,
when a hydraulic structure is designed, the flow rate need only be evaluated in terms of fresh water.
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sediment concentrations.

3.2. Jet Properties

Jet properties affect the mean or fluctuating pressure on the floor slab of a plunge pool because
the break-up and air entrainment of the jet is influenced by surface tension and turbulence effects.
These effects, in turn, determine the thickness of the slab. Nappe regimes at various sediment
concentrations are shown in Figure 3. The air entrainment of the falling jet is obvious. The break-up of
the jet in the air is best understood by vertically dividing it into three major flow regimes. The first
region was characterized by the initial formation of waves on the surface of the jet. Surface tension
resists the growth of these disturbances. The flow exiting the outlet was glassy and smooth, and the
nappe section was similar to that of a sharp outlet. This glassy smooth region increased in length with
increasing sediment concentrations. The second region was characterized by the growth of instabilities
on the water surface. Small, regularly spaced waves formed and were amplified in the direction of
flow. Notably, the falling jet of sediment-laden flow was smoother than that of fresh water, and the
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small waves appeared slightly later. The third region was characterized by the transition of the surface
waves into circumferential vortex elements. Jet break-up was clearly observed and was less intense in
sediment-laden flow than in fresh water, as was the air entrainment. This behavior has been attributed
to the higher viscosity of sediment-laden flow [46]. Figure 4 presents the relationship between viscosity
and sediment concentration at 10 ◦C, 20 ◦C, and 30 ◦C. Clearly, the viscosity of flow increases with
increasing sediment concentration and decreases with increasing temperature. The increasing viscosity
of the sediment-laden flow likely results in an increase in surface tension [9], and, as a result, the falling
jets exhibit different nappe regimes at the different sediment concentrations.
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When a falling jet impacts the floor slab of a plunge pool of sufficient depth, the flow regime in
the plunge pool can be divided into the three regions shown in Figure 5 to determine the hydraulic
pressure distribution. The first region (I) is the submerged jet region. In this region, the flow velocity
of the main stream remains approximately linear; the center of the main stream exhibits the highest
velocity while the edge of the main stream exhibits the lowest velocity. The second region (II) is the
main stream impact region, in which the velocity of the main stream decreases rapidly and streamlines
abruptly upon meeting the slab, so the pressure on the slab of the plunge pool increases sharply.
The third region (III) is the wall jet region, in which the main stream is ejected and flows to the wall
and along the slab of the plunge pool. Here, spirals begin to roll and diffuse. Looking at these three
regions, clearly the design impact pressure is caused by the effects of the jet in the main stream impact
region (II), where the maximum pressure on the slab occurs, and instability and failure of the slab are
most likely.
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3.3. Hydrodynamic Pressure

Hydrodynamic pressure was measured along the centerline of the plunge pool by diaphragm-type
TS202 pressure transducers and a DASP data collection system. According to the results of previous
research [44], a sampling frequency of 100 Hz was used that satisfied Nyquist’s law [43]. The selection
of sample interval and sampling time is related to the ability of the collected data to accurately
reflect the reality of the experiment. According to the sampling theorem, the truncation frequency of
Nyquist’s law must be greater than the highest frequency of the sampling signal in the selection. If the
sampling interval is too large, the truncation frequency is too small, causing spectrum aliasing. As a
result, at least 8192 samples were taken for every experiment in order to provide sufficient data to
reduce uncertainty [25]. Figure 6 depicts a portion of the original time history curve of hydrodynamic
pressures for Case 3. These data were then decomposed by an IIR filter before proceeding with
the analysis.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  6 of 15 

Looking at these three regions, clearly the design impact pressure is caused by the effects of the jet 

in the main stream impact region (II), where the maximum pressure on the slab occurs, and 

instability and failure of the slab are most likely. 

3.3. Hydrodynamic Pressure 

Hydrodynamic pressure was measured along the centerline of the plunge pool by 

diaphragm-type TS202 pressure transducers and a DASP data collection system. According to the 

results of previous research [44], a sampling frequency of 100 Hz was used that satisfied Nyquist’s 

law [43]. The selection of sample interval and sampling time is related to the ability of the collected 

data to accurately reflect the reality of the experiment. According to the sampling theorem, the 

truncation frequency of Nyquist’s law must be greater than the highest frequency of the sampling 

signal in the selection. If the sampling interval is too large, the truncation frequency is too small, 

causing spectrum aliasing. As a result, at least 8192 samples were taken for every experiment in 

order to provide sufficient data to reduce uncertainty [25]. Figure 6 depicts a portion of the original 

time history curve of hydrodynamic pressures for Case 3. These data were then decomposed by an 

IIR filter before proceeding with the analysis. 

 

Figure 5. Schematic diagram of the flow regime. 

 

Figure 6. The time history curve of maximum hydrodynamic pressures for Case 3. 

Hydrodynamic pressure can be expressed as a combination of mean pressure and fluctuating 

pressure as 

𝑃𝑖 = 𝑃̅ + 𝑃′ (1) 

where 𝑃𝑖  is the instantaneous pressure at a test point, 𝑃̅ is the mean pressure at this test point, and 

𝑃′ is the fluctuating pressure. Mean and fluctuating dynamic pressure on the centerline of the floor 

slab is affected by the diffusion and air entrainment in the falling jet, and the scale of the turbulence 

in the plunge pool. 

3.3.1. Mean Pressure 

Figure 5. Schematic diagram of the flow regime.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  6 of 15 

Looking at these three regions, clearly the design impact pressure is caused by the effects of the jet 

in the main stream impact region (II), where the maximum pressure on the slab occurs, and 

instability and failure of the slab are most likely. 

3.3. Hydrodynamic Pressure 

Hydrodynamic pressure was measured along the centerline of the plunge pool by 

diaphragm-type TS202 pressure transducers and a DASP data collection system. According to the 

results of previous research [44], a sampling frequency of 100 Hz was used that satisfied Nyquist’s 

law [43]. The selection of sample interval and sampling time is related to the ability of the collected 

data to accurately reflect the reality of the experiment. According to the sampling theorem, the 

truncation frequency of Nyquist’s law must be greater than the highest frequency of the sampling 

signal in the selection. If the sampling interval is too large, the truncation frequency is too small, 

causing spectrum aliasing. As a result, at least 8192 samples were taken for every experiment in 

order to provide sufficient data to reduce uncertainty [25]. Figure 6 depicts a portion of the original 

time history curve of hydrodynamic pressures for Case 3. These data were then decomposed by an 

IIR filter before proceeding with the analysis. 

 

Figure 5. Schematic diagram of the flow regime. 

 

Figure 6. The time history curve of maximum hydrodynamic pressures for Case 3. 

Hydrodynamic pressure can be expressed as a combination of mean pressure and fluctuating 

pressure as 

𝑃𝑖 = 𝑃̅ + 𝑃′ (1) 

where 𝑃𝑖  is the instantaneous pressure at a test point, 𝑃̅ is the mean pressure at this test point, and 

𝑃′ is the fluctuating pressure. Mean and fluctuating dynamic pressure on the centerline of the floor 

slab is affected by the diffusion and air entrainment in the falling jet, and the scale of the turbulence 

in the plunge pool. 

3.3.1. Mean Pressure 

Figure 6. The time history curve of maximum hydrodynamic pressures for Case 3.

Hydrodynamic pressure can be expressed as a combination of mean pressure and fluctuating
pressure as

Pi = P + P′ (1)

where Pi is the instantaneous pressure at a test point, P is the mean pressure at this test point, and P′ is
the fluctuating pressure. Mean and fluctuating dynamic pressure on the centerline of the floor slab is
affected by the diffusion and air entrainment in the falling jet, and the scale of the turbulence in the
plunge pool.
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3.3.1. Mean Pressure

The mean dynamic pressure of the falling jet on the plunge pool floor slab can be determined by
the average of the dynamic pressure over time, thus, the relative time average pressures (P*) can be
given as

P∗ = P− h0 (2)

where P is the time-averaged pressure at every test point and h0 is the static water depth in the
plunge pool. The relative time-averaged pressure is a function of the location of the experimental
measurement points, as presented in Figure 7. The experimental results illustrate that the relative
time-averaged pressures remain stable before exhibiting a clear peak, as can be observed in Figure 7a–c.
This peak in relative pressure mainly occurs in the main stream impact region, which is clearly similar
to the experimental results of Xu et al. [5]. In this region, the velocity of the jet is forced to sharply
decrease, causing the pressure to abruptly increase [9]. The maximum value of the relative pressure,
which affects the stability and safety of the plunge pool slab [13], can be seen in Figure 7 to increase
with increasing sediment concentration, agreeing well with the experimental results of Wang and
Qian [37]. This result was expected, because the higher pressure can be explained by the increase in
the viscosity of the liquid that accompanies increased sediment concentration, causing the diffusion
and air entrainment of the jet to decrease.
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Figure 7. Time-averaged pressure and location for different upstream water heads at different
concentrations of sediments: (a) Upstream water head of 1.9 m; (b) upstream water head of 1.85 m;
(c) upstream water head of 1.8 m; (d) comparison of pressures at different upstream water heads due to
fresh water and sediment-laden flow of 250 kg/m3 in concentration.

With increasing upstream water head, the pressure peak moves downstream, as shown in
Figure 7d, indicating that the impact region of the jet moves downstream as it travels further
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horizontally through the air. The difference in the maximum values of relative pressure caused
by fresh water and by water with a concentration of 250 kg/m3 is approximately stable, regardless of
upstream water head. It is likely that the increase in upstream water head has little influence on the
comparative degree of turbulence of fresh water and sediment-laden water. Clearly, while pressure
head does not change the relative effects of sediment-laden flow, the sediment concentration has an
obvious influence on the impact pressure.

3.3.2. Fluctuating Pressure

The mean hydrodynamic pressure represents the average falling jet force on the floor slab of the
plunge pool over a period of time, and the fluctuating pressure caused by turbulence represents the
degree of turbulence at every point tested. The pressure fluctuation on the center line of the plunge
pool was measured by transducers and the root mean squares (RMS) of the fluctuating pressure were
determined by

σ =

√√√√ 1
N

N

∑
i=1

(Pi − P)2 (3)

where,

P =
1
N

N

∑
i=1

Pi (4)

in which σ is the RMS fluctuating pressure, Pi is the instantaneous pressure at a given point, i is the
test number, P is the mean value of pressure at all test points, and N is total number of tests. As shown
in Figure 8a–c, the experimental results indicate that the RMS fluctuating pressures remain stable
at the beginning of the plunge pool, then increase sharply, exhibiting a peak before returning to a
stable value at the end. For sediment-laden flow, the maximum values of the RMS pressure increased
with increasing sediment concentration from 0 kg/m3 to 250 kg/m3 for a given upstream water head.
The increasing concentration of sediment causes an increase in the viscosity of the flow, resulting in
a decreased turbulence intensity [35] and an increased fluctuation in turbulence, which is consistent
with the turbulence characteristics of sediment-laden flows in open channels [34].

Figure 8d shows that the maximum RMS increased with increasing upstream water head at a given
concentration of sediment, and shows that the location of the maximum RMS moved downstream
with the length of the region following the peak increasing with increasing water head. This indicates
that the higher the upstream water head, the more energy carried by the jet and then applied to
the slab, and the larger “hill” region following the peak of the RMS indicates that the main stream
impact region is larger. Figure 8d, in which same color lines represent the RMS measured for different
sediment concentrations at the same upstream water head, further demonstrates this relationship:
The differences between the maximum RMS at different concentrations are similar, regardless of the
upstream water head.

Figure 9 depicts the maximum time-averaged pressure and the maximum fluctuating pressure for
different sediment concentrations at different upstream water heads. The maximum time-averaged
pressure can be seen to increase with both sediment concentration and water head, but the slopes at
which the pressure increases with sediment concentration for all three water heads are nearly identical.
The same trends are exhibited for the maximum fluctuating pressure. The results demonstrate that
the pressure increases in a stable manner with the increasing sediment concentrations regardless
of the upstream water head owing to the viscosity of the suspension and the accompanying flow
resistance. Nasrabadi et al. [40] conducted experiments studying a submerged hydraulic jump with
sediment-laden flow and determined that suspended sediment increased the flow resistance as a result
of the decreased maximum flow velocity, which likely further confirms the presently observed effects
of sediment in the flow.
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(c) upstream water head of 1.80 m; (d) comparison of pressures measured at different upstream water
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3.3.3. Amplitude Characteristics

The maximum fluctuating pressure is further studied here as a key characteristic of jet flow.
The probability density is an important statistical parameter describing fluctuating pressure and
representing its overall amplitude. When the upstream water head was 1.90 m, the maximum pressure
on the slab of the plunge pool was 1.20 m from the wall of the upstream tank. Figure 10 depicts the
probability density of the maximum fluctuating pressure for different concentrations of sediments at
an upstream water head of 1.90 m. In this figure, the probability densities of the maximum pressure
at different concentrations basically satisfy a Gaussian distribution and are positively skewed, i.e.,
the positive fluctuations tend to be larger than the negative ones. The peaks of the probability densities
decrease, and the weights of the probability densities increase, with increasing sediment concentration.
Wang and Qian [37] conducted experiments studying the turbulence structure of open channel flow
and suggested that the turbulence in sediment-laden flow is less intense than that in clear water flow.
This further demonstrates that the turbulence intensity decreases, and the fluctuation of turbulence
increases, with increasing sediment concentration.
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3.3.4. Frequency Domain Characteristics

The power spectrum is an important parameter that represents the frequency domain
characteristics of fluctuating pressure, given by

S( f ) = 4
∫ ∞

0
R(t) cos 2π f tdt (5)

where f is the frequency of fluctuating pressure, t is the test time, and S(f ) is the power spectrum
of the fluctuating pressure. The maximum fluctuating pressure on the slab of the plunge pool is
also a key characteristic for studying the frequency domain characteristics. Figure 11 depicts the
relationships of the power spectrum and frequency for an upstream water head of 1.90 m at different
sediment concentrations. The calculations show that the turbulence energy was most concentrated at
frequencies of 0–0.2 Hz and that the frequency bands of the fluctuating energy widen with increasing
sediment concentrations. The dominant frequency trended to a lower frequency with increasing
sediment concentration. The results demonstrate that the higher the sediment concentration, the larger
the viscosity of the flow and the lower the turbulent kinetic energy of the small-scale vortexes,
which decrease gradually, causing the turbulent kinetic energy to become more concentrated in
large-scale energetic vortexes. Notably, under these conditions, the turbulence eddies are longer.
These results are similar to the results of Wang and Qian [37] who undertook experiments to study
turbulent structure of open channel flow with plastic particles. Figure 12 depicts the relationships of
spectral density and frequency for four concentrations (0%, 1.4%, 5.6% and 10.4%) of particles with
a mean diameter of 0.266 mm. They reveal that the turbulent frequency decreases with the increase
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in concentration and the turbulence energy is transmitted to the eddy with low frequency and large
size. However, the different values of frequencies by the two experiments are the result of different
turbulence and flow regimes.
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3.3.5. Time Domain Characteristics

The coefficient of association is an important parameter used to analyze the turbulent structure
and dimensions of vortexes. The coefficient of association includes two parameters: The coefficient of
autocorrelation and the coefficient of cross-correlation. The point of maximum pressure is the critical
location at which the coefficient of association, R, should be determined, calculated by

R =
1

T − τ

∫ T−τ

0
[px(t)− px] ·

[
py(t + τ)− py

]
dt (6)

where T is the entire test duration; t is the test time and τ is an interval of time; px is the hydrodynamic
pressure at a given test point and py is the hydrodynamic pressure at another test point; px and py are
the average hydrodynamic pressures at test points x and y, respectively; when px and py represent a
single test point, R represents the coefficient of auto correlation for Rxx, and when px and py represent
two different test points, R represents the coefficient of cross-correlation for Rxy.

The coefficient of autocorrelation of the maximum hydrodynamic pressure, and the coefficient of
cross-correlation between the point with the maximum pressure and the other points located at 0.1 m
intervals downstream, should be calculated. By comparing the coefficients of autocorrelation of the
fresh water and water with a sediment concentration of 250 kg/m3, the results in Figure 13 demonstrate
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that the eddy sizes in sediment-laden flow are larger than those in fresh water. Additionally,
the coefficients of cross-correlation of the fresh water and water with a sediment concentration of
250 kg/m3 indicate that the scale of the vortex increases with the presence of sediment in the flow.
The scale of the vortex increases when sediment is present as a result of the changes in turbulent
structure and surface tension [47,48].

Although different objects were studied, and different experimental details were produced,
these results correspond well with those in reference [37], as shown in Figure 14. Figure 14, taken from Wang
and Qian [37] depicts the relationships of eddy sizes with particle concentrations. The results reveal
that the longitudinal sizes of the macroscale eddies increase with the increase in sediment concentration
and is mainly decided by the low frequency, large-size eddies. When the frequency of turbulent eddies
is reduced, the energy proportion carried by large-size eddies increases. The longitudinal sizes of
the microscale eddies increase with an increase in concentration and is mainly decided by small-size
eddies with high frequency. For a sediment-laden flow, part of the energy carried by high frequency
eddies decreases and the smallest eddies vanish.
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Hence, the fluctuating pressure is the result of the movement and interaction of different scales of
vortexes in the plunge pool, caused by the nappe jet. The results of the experiments and calculations
demonstrate that the larger the sediment concentration in the liquid of the jet, the higher its viscosity.
This causes a decrease in vortexes of smaller scales and an increase in vortexes of larger scales, leading
to an increase in fluctuating pressure and, thus, energy. The scale of vortexes increases with the
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increasing concentrations of sediments. The energy of fluctuation also increases with increasing
concentrations of sediments.

4. Conclusions

The effect of the concentration of fine sediments on the hydraulics of the energy dissipation of a
turbulent jet is an important and urgent problem for dams on hyperconcentrated sediment-laden rivers.
Experiments were conducted using a deep outlet in an upstream tank and a plunge pool consisting
of 12 test cases at four sediment concentrations (0 kg/m3, 50 kg/m3, 150 kg/m3 and 250 kg/m3)
under three upstream water heads (1.80 m, 1.85 m and 1.90 m). The results of these tests were used to
study the hydraulic characteristics of energy dissipation in terms of flow discharge, jet properties, and
hydrodynamic pressure. The main conclusions are:

(1) Flow discharge is solely related to the upstream water head for a deep outlet and is independent
of sediment concentration.

(2) The horizontal length of the jet from the deep outlet to the plunge pool increases with increasing
upstream water head, and the width of the jet decreases with increasing sediment concentrations.
The nappe of the jet also becomes smoother and exhibits decreased air entrainment as a result of
the higher viscosity of suspensions with higher sediment concentrations.

(3) The time-averaged pressure in the plunge pool exhibits a peak around the impact region of the
falling jet and the magnitude and distance from the outlet of this peak increases with increasing
sediment concentration due to increased viscosity. The distance from the outlet to the peak also
increases with increasing upstream water head.

(4) The RMS fluctuating pressure exhibits the same trend as the time-averaged pressure.
The probability density, power spectrum, and coefficient of correlation of hydrodynamic
pressure was calculated and the results demonstrate that as sediment concentration increases,
the fluctuating energy increases, as does the scale of the vortexes, and the dominant
frequency decreases.

The findings of this study provide invaluable insights into the effects of sediment on the behavior
of energy dissipators in large river dams. The behaviors and relationships determined in this study
establish a foundation for the informed design of dam energy dissipator structures such as plunge
pools, improving the operational safety of the overall dam. In the future, the effects of sediment on the
velocity profile of the flow will be studied further.
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