Investigation of Rain-On-Snow Floods under Climate Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selected Catchments and Data Used
2.2. Hydrological Model
2.3. Climate Change Scenarios
2.4. Selection of the Rain-On-Snow Floods and Methods Used for the Analysis
3. Results and Discussion
3.1. Model Calibration and Validation
3.2. Climate Change Scenarios
3.2.1. Seasonality
3.2.2. Frequency and Magnitude
4. Conclusions
- -
- For catchments located at higher elevations (i.e., Soča) with mountain climate characteristics, the strength of seasonality of ROS events could decrease in the future (i.e., based on the median result of five GCM/RCM models). This means that ROS floods may occur more frequently in the periods of the year in which in the past we only had few events.
- -
- A shift (i.e., one or two weeks) in the time of occurrence (MD) of ROS floods could be expected for both investigated catchments in the future (i.e., based on the median result of five GCM/RCM models).
- -
- In general, more ROS floods can be expected in the future. Moreover, the magnitudes of the most severe ROS floods could increase. However, median values indicate a slight decrease in ROS-flood magnitudes, which could be attributed to the fact that the number of small magnitude ROS floods would also increase.
- -
- Results indicate a high variability among the five investigated GCM/RCM models, which could be related to the high uncertainty. Therefore, additional investigation into ROS-flood characteristics in the future is needed to validate the aforementioned conclusions. This means that more studies should be conducted in similar environments. Along with the changes in the meteorological conditions, which are incorporated in the GCM/RCM models, one could also expect other changes in the future, such as land-use changes, which also have an effect on the elements of the water cycle that are related to the ROS-mechanism generation.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Merz, R.; Blöschl, G. A process typology of regional floods. Water Resour. Res. 2003, 39, 1340. [Google Scholar] [CrossRef]
- Kour, R.; Patel, N.; Krishna, A.P. Climate and hydrological models to assess the impact of climate change on hydrological regime: A review. Arab. J. Geosci. 2016, 9. [Google Scholar] [CrossRef]
- Arnell, N.W.; Gosling, S.N. The impacts of climate change on river flood risk at the global scale. Clim. Chang. 2016, 134, 387–401. [Google Scholar] [CrossRef] [Green Version]
- Surfleet, C.G.; Tullos, D. Variability in effect of climate change on rain-on-snow peak flow events in a temperate climate. J. Hydrol. 2013, 479, 24–34. [Google Scholar] [CrossRef] [Green Version]
- Gobiet, A.; Kotlarski, S.; Beniston, M.; Heinrich, G.; Rajczak, J.; Stoffel, M. 21st century climate change in the European Alps—A review. Sci. Total Environ. 2014, 493, 1138–1151. [Google Scholar] [CrossRef]
- Morán-Tejeda, E.; López-Moreno, J.I.; Stoffel, M.; Beniston, M. Rain-on-snow events in Switzerland: Recent observations and projections for the 21st century. Clim. Res. 2016, 71. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Krysanova, V.; Dankers, R.; Hirabayashi, Y.; Kanae, S.; Hattermann, F.F.; Huang, S.; Milly, P.C.D.; Stoffel, M.; Driessen, P.P.J.; et al. Differences in flood hazard projections in Europe–their causes and consequences for decision making. Hydrol. Sci. J. 2017, 62, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Brunner, M.I.; Farinotti, D.; Zekollari, H.; Huss, M.; Zappa, M. Future shifts in extreme flow regimes in Alpine regions. Hydrol. Earth Syst. Sci. 2019, 23, 4471–4489. [Google Scholar] [CrossRef] [Green Version]
- Beniston, M.; Stoffel, M. Rain-on-snow events, floods and climate change in the Alps: Events may increase with warming up to 4 C and decrease thereafter. Sci. Total Environ. 2016, 571, 228–236. [Google Scholar] [CrossRef]
- Rojas, R.; Feyen, L.; Dosio, A.; Bavera, D. Improving pan-European hydrological simulation of extreme events through statistical bias correction of RCM-driven climate simulations. Hydrol. Earth Syst. Sci. 2011, 15. [Google Scholar] [CrossRef] [Green Version]
- Kobold, M.; Dolinar, M.; Frantar, P. Changes of water regime due to the climate change and anthropogenic influences. In Proceedings of the First Conference on Waters in Ljubljana, Ljubljana, Slovenia, 22 March 2012; pp. 7–22. (In Slovenian). [Google Scholar]
- Bertalanič, R.; Dolinar, M.; Honzak, L.; Lokovšek, N.; Medved, A.; Vertačnik, G.; Vlahovič, Ž. Climate Change Projections for Slovenia over the 21st Century (Temperature and Precipitation Summary); Slovenian Environment Agency: Ljubljana, Slovenia, 2019. Available online: http://www.meteo.si/uploads/probase/www/climate/text/en/publications/OPS21_brosura_ENG.pdf (accessed on 10 February 2019).
- Dolšak, D.; Bezak, N.; Šraj, M. Temporal characteristics of rainfall events under three climate types in Slovenia. J. Hydrol. 2016, 541, 1395–1405. [Google Scholar] [CrossRef]
- Pushpalatha, R.; Perrin, C.; Le Moine, N.; Mathevet, T.; Andreassian, V. A downward structural sensitivity analysis of hydrological models to improve low-flow simulation. J. Hydrol. 2011, 411, 66–76. [Google Scholar] [CrossRef]
- Valery, A.; Andreassian, V.; Perrin, C. As simple as possible but not simpler: What is useful in a temperature-based snow-accounting routine? Part 1—Comparison of six snow accounting routines on 380 catchments. J. Hydrol. 2014, 517, 1166–1175. [Google Scholar] [CrossRef]
- Valery, A.; Andreassian, V.; Perrin, C. As simple as possible but not simpler: What is useful in a temperature-based snow-accounting routine? Part 2—Sensitivity analysis of the cemaneige snow accounting routine on 380 catchments. J. Hydrol. 2014, 517, 1176–1187. [Google Scholar] [CrossRef]
- Sezen, C.; Bezak, N.; Šraj, M. Hydrological modelling of the karst Ljubljanica River catchment using lumped conceptual model. Acta Hydrol. 2018, 31, 87–100. [Google Scholar] [CrossRef]
- Sezen, C.; Bezak, N.; Bai, Y.; Šraj, M. Hydrological modelling of karst catchment using lumped conceptual and data mining models. J. Hydrol. 2019, 576, 98–110. [Google Scholar] [CrossRef]
- Coron, L.; Thirel, G.; Delaigue, O.; Perrin, C.; Andreassian, V. The suite of lumped GR hydrological models in an R package. Environ. Model. Softw. 2017, 94, 166–171. [Google Scholar] [CrossRef]
- Coron, L.; Delaigue, O.; Thirel, G.; Perrin, C.; Michel, C. airGR: Suite of GR Hydrological Models for Precipitation-Runoff Modelling. 2019 R Package Version 1.2.13.16. Available online: https://CRAN.R-project.org/package=airGR/ (accessed on 20 March 2019).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; Available online: https://www.R-project.org/ (accessed on 4 February 2019).
- Oudin, F.; Hervieu, F.; Michel, C.; Perrin, C.; Andreassian, V.; Antcil, F.; Loumagne, C. Which potential evapotranspiration input for a lumped rainfall-runoff model? Part 2—Towards a simple and efficient potential evapotranspiration model for rainfall-runoff modelling. J. Hydrol. 2005, 303, 290–306. [Google Scholar] [CrossRef]
- Perrin, C.; Michel, C.; Andreassian, V. Improvement of a parsimonious model for streamflow simulation. J. Hydrol. 2003, 279, 275–289. [Google Scholar] [CrossRef]
- Michel, C. Hydrologie Appliquée Aux Petits Bassins Ruraux, Hydrology Handbook; Cemagref: Antony, France, 1991. (In French) [Google Scholar]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Biondi, D.; Freni, G.; Iacobellis, V.; Mascaro, G.; Montanari, A. Validation of hydrological models: Conceptual basis, methodological approaches and a proposal for a code of practice. Phys. Chem. Earth 2012, 42–44, 70–76. [Google Scholar] [CrossRef]
- Benestad, R.; Haensler, A.; Hennemuth, B.; Illy, T.; Jacob, D.; Keup-Thiel, E.; Kotlarski, S.; Nikulin, G.; Zsebeház, G.; Otto, J.; et al. 2019 Guidance for EURO-CORDEX Climate Projections Data Use. 2018. Available online: https://www.euro-cordex.net/imperia/md/content/csc/cordex/euro-cordex-guidelines-version1.0-2017.08.pdf (accessed on 10 February 2019).
- Gudmundsson, L. Package “qmap”. 2016. Available online: https://cran.r-project.org/web/packages/qmap/qmap.pdf (accessed on 10 March 2019).
- Cannon, A.J. Package “MBC”. 2018. Available online: https://cran.r-project.org/web/packages/MBC/MBC.pdf (accessed on 10 March 2019).
- Sapač, K.; Medved, A.; Rusjan, S.; Bezak, N. Investigation of Low- and High-Flow Characteristics of Karst Catchments under Climate Change. Water 2019, 11, 925. [Google Scholar] [CrossRef] [Green Version]
- Burn, D.H. Catchment similarity for regional flood frequency analysis using seasonality measures. J. Hydrol. 1997, 202, 212–230. [Google Scholar] [CrossRef]
- Bezak, N.; Brilly, M.; Šraj, M. Flood frequency analyses, statistical trends and seasonality analyses of discharge data: A case study of the Litija station on the Sava River. J. Flood Risk Manag. 2016, 9, 154–168. [Google Scholar] [CrossRef]
- Sapač, K.; Rusjan, S.; Šraj, M. Influence of calculation criteria on the values of low-flow recession constants in a non-homogenous catchment in Slovenia. Acta Hydrol. 2019, 32, 1–21. [Google Scholar] [CrossRef]
- Morisai, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance measures and evaluation criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar]
- Parajka, J.; Kohnová, S.; Bálint, G.; Barbuc, M.; Borga, M.; Claps, P.; Cheval, S.; Dumitrescu, A.; Gaume, E.; Hlavcova, K.; et al. Seasonal characteristics of flood regimes across the Alpine–Carpathian range. J. Hydrol. 2010, 394, 78–89. [Google Scholar] [CrossRef]
- Parajka, J.; Kohnová, S.; Merz, R.; Szolgay, J.; Hlavčová, K.; Blöschl, G. Comparative analysis of the seasonality of hydrological characteristics in Slovakia and Austria/Analyse comparative de la saisonnalité de caractéristiques hydrologiques en Slovaquie et en Autriche. Hydrol. Sci. J. 2009, 54, 456–473. [Google Scholar] [CrossRef]
- Blöschl, G.; Hall, J.; Parajka, J.; Perdigão, R.A.; Merz, B.; Arheimer, B.; Aronica, G.T.; Bilibashi, A.; Bonacci, O.; Borga, M.; et al. Changing climate shifts timing of European floods. Science 2017, 357, 588–590. [Google Scholar] [CrossRef] [Green Version]
- Musselman, K.N.; Lehner, F.; Ikeda, K.; Clark, M.P.; Prein, A.F.; Liu, C.; Barlage, M.; Rasmussen, R. Projected increases and shifts in rain-on-snow flood risk over western North America. Nat. Clim. Chang. 2018, 8, 808. [Google Scholar] [CrossRef]
Gauging Station | Kršovec | Solčava | Dvor |
---|---|---|---|
River | Soča | Savinja | Gradaščica |
Catchment area [km2] | 157.9 | 63.4 | 78.9 |
Mean catchment elevation [m] | 1376 | 1229 | 615 |
Maximum catchment elevation [m] | 2533 | 2345 | 986 |
Calibration period [dd/mm/yy] | 01/01/1964–31/12/2000 | 01/01/1964–31/12/2002 | 01/01/1981–31/12/2005 |
Validation period [dd/mm/yy] | 01/01/2001–31/12/2011 | 01/01/2003–31/12/2013 | 01/01/2006–31/12/2016 |
Minimum [m3/s] | 1.7 | 0.2 | 0.3 |
Mean [m3/s] | 11.4 | 2.1 | 2.3 |
Maximum [m3/s] | 195 | 99.9 | 55.6 |
Standard deviation [m3/s] | 11.5 | 2.4 | 3.1 |
Relative Difference [%] Compared to the 1981–2010 | Soča River (r; MD) | Soča River (N; Q) | Gradaščica River (r; MD) | Gradaščica River (N; Q) |
---|---|---|---|---|
2011–2040 | −12.9; 2.3 | 8; −5 | −15.7; 0.6 | −13; 3 |
2041–2070 | −7.8; 4.4 | 69; −9 | 2.8; 6.5 | 47; 3 |
2071–2100 | −11.7; 6.3 | 46; −2 | 14.3; 7.0 | 33; 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sezen, C.; Šraj, M.; Medved, A.; Bezak, N. Investigation of Rain-On-Snow Floods under Climate Change. Appl. Sci. 2020, 10, 1242. https://doi.org/10.3390/app10041242
Sezen C, Šraj M, Medved A, Bezak N. Investigation of Rain-On-Snow Floods under Climate Change. Applied Sciences. 2020; 10(4):1242. https://doi.org/10.3390/app10041242
Chicago/Turabian StyleSezen, Cenk, Mojca Šraj, Anže Medved, and Nejc Bezak. 2020. "Investigation of Rain-On-Snow Floods under Climate Change" Applied Sciences 10, no. 4: 1242. https://doi.org/10.3390/app10041242
APA StyleSezen, C., Šraj, M., Medved, A., & Bezak, N. (2020). Investigation of Rain-On-Snow Floods under Climate Change. Applied Sciences, 10(4), 1242. https://doi.org/10.3390/app10041242