A Never-Ending Conformational Story of the Quercetin Molecule: Quantum-Mechanical Investigation of the O3′H and O4′H Hydroxyl Groups Rotations
Abstract
:1. Introduction
2. Computational Methods
3. Obtained Results and Their Discussion
4. Conclusions and Perspective for the Future Research
Author Contributions
Funding
Conflicts of Interest
References
- Cianciosi, D.; Forbes-Hernández, T.Y.; Afrin, S.; Gasparrini, M.; Reboredo-Rodriguez, P.; Manna, P.P.; Zhang, J.; Lamas, L.B.; Flórez, S.M.; Toyos, P.A.; et al. Phenolic compounds in honey and their associated health benefits: A review. Molecules 2018, 23, 2322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grytsenko, O.M.; Degtyarev, L.S.; Pilipchuck, L.B. Physico-chemical properties and electronic structure of quercetin. Farmats. Zhurn. 1992, N2, 34–38. [Google Scholar]
- Burda, S.; Oleszek, W. Antioxidant and antiradical activities of flavonoids. J. Agric. Food Chem. 2001, 49, 2774–2779. [Google Scholar] [CrossRef] [PubMed]
- Grytsenko, O.M.; Pylypchuck, L.B.; Bogdan, T.V.; Trygubenko, S.A.; Hovorun, D.M.; Maksutina, N.P. Keto-enol prototropic tautomerism of quercetin molecule: Quantum-chemical calculations. Farmats. Zhurn. 2003, N5, 62–65. [Google Scholar]
- Olejniczak, S.; Potrzebowski, M.J. Solid state NMR studies and density functional theory (DFT) calculations of conformers of quercetin. Org. Biomol. Chem. 2004, 2, 2315–2322. [Google Scholar] [CrossRef]
- Bentz, A.B. A review of quercetin: Chemistry, antioxidant properties, and bioavailability. J. Young Investig. 2009, 19, 1–14. [Google Scholar]
- Tošović, J.; Marković, S.; Dimitrić Marković, J.M.; Mojović, M.; Milenković, D. Antioxidative mechanisms in chlorogenic acid. Food Chem. 2017, 237, 390–398. [Google Scholar] [CrossRef]
- Nathiya, S.; Durga, M.; Devasena, T. Quercetin, encapsulated quercetin and its application—A review. Int. J. Pharm. Pharm. Sci. 2014, 10, 20–26. [Google Scholar]
- David, A.V.A.; Arulmoli, R.; Parasuraman, S. Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacogn. Rev. 2016, 10, 84–89. [Google Scholar]
- van Acker, S.A.; de Groot, M.J.; van den Berg, D.J.; Tromp, M.N.; Donné-Op den Kelder, G.; van der Vijgh, W.J.; Bast, A.A. A quantum chemical explanation of the antioxidant activity of flavonoids. Chem. Res. Toxicol. 1996, 9, 1305–1312. [Google Scholar] [CrossRef]
- Bogdan, T.V.; Trygubenko, S.A.; Pylypchuck, L.B.; Potyahaylo, A.L.; Samijlenko, S.P.; Hovorun, D.M. Conformational analysis of the quercetin molecule. Sci. Notes NaUKMA 2001, 19, 456–460. [Google Scholar]
- Trouillas, P.; Marsal, P.; Siri, D.; Lazzaroni, R.; Duroux, J.-C. A DFT study of the reactivity of OH groups in quercetin and taxifolin antioxidants: The specificity of the 3-OH site. Food Chem. 2006, 97, 679–688. [Google Scholar] [CrossRef]
- Marković, Z.; Amić, D.; Milenković, D.; Dimitrić-Marković, J.M.; Marković, S. Examination of the chemical behavior of the quercetin radical cation towards some bases. Phys. Chem. Chem. Phys. 2013, 15, 7370–7378. [Google Scholar] [CrossRef] [PubMed]
- Protsenko, I.O.; Hovorun, D.M. Conformational properties of quercetin: Quantum chemistry investigation. Rep. Natl. Acad. Sci. Ukr. 2014, N3, 153–157. [Google Scholar] [CrossRef]
- Vinnarasi, S.; Radhika, R.; Vijayakumar, S.; Shankar, R. Structural insights into the anti-cancer activity of quercetin on G-tetrad, mixed G-tetrad, and G-quadruplex DNA using quantum chemical and molecular dynamics simulations. J. Biomol. Struct. Dyn. 2019. [Google Scholar] [CrossRef]
- Brovarets’, O.O.; Hovorun, D.M. Conformational diversity of the quercetin molecule: A quantum-chemical view. J. Biomol. Struct. Dyn. 2019. [Google Scholar] [CrossRef]
- Brovarets’, O.O.; Hovorun, D.M. Conformational transitions of the quercetin molecule via the rotations of its rings: A comprehensive theoretical study. J. Biomol. Struct. Dyn. 2019. [Google Scholar] [CrossRef]
- Brovarets’, O.O.; Hovorun, D.M. A hidden side of the conformational mobility of the quercetin molecule caused by the rotations of the O3H, O5H and O7H hydroxyl groups. In silico scrupulous study. Symmetry 2020, 12, 230. [Google Scholar]
- Brovarets’, O.O.; Protsenko, I.O.; Hovorun, D.M. Computational design of the conformational and tautomeric variability of the quercetin molecule. In Proceedings of the 6th Young Medicinal Chemist Symposium (EFMC-YMCS 2019, Athens, Greece, 5–6 September 2019; p. 50. [Google Scholar]
- Brovarets’, O.O.; Protsenko, I.O.; Hovorun, D.M. Comprehensive analysis of the potential energy surface of the quercetin molecule. In Proceedings of the “Bioheterocycles 2019” XVIII International Conference on Heterocycles in Bioorganic Chemistry, Ghent, Belgium, 17–20 June 2019; p. 84. [Google Scholar]
- Brovarets’, O.O.; Protsenko, I.O.; Zaychenko, G. Computational modeling of the tautomeric interconversions of the quercetin molecule. In Proceedings of the International Symposium EFMC-ACSMEDI Medicinal Chemistry Frontiers 2019, MedChemFrontiers 2019, Krakow, Poland, 10–13 June 2019; p. 114. [Google Scholar]
- Filip, X.; Filip, C. Can the conformation of flexible hydroxyl groups be constrained by simple NMR crystallography approaches? The case of the quercetin solid forms. Solid State Nucl. Magn. Reson. 2015, 65, 21–28. [Google Scholar] [CrossRef]
- Filip, X.; Miclaus, M.; Martin, F.; Filip, C.; Grosu, I.G. Optimized multi-step NMR-crystallography approach for structural characterization of a stable quercetin solvate. J. Pharm. Biomed. Anal. 2017, 138, 22–28. [Google Scholar] [CrossRef]
- Tirado-Rives, J.; Jorgensen, W.L. Performance of B3LYP Density Functional Methods for a large set of organic molecules. J. Chem. Theory Comput. 2008, 4, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Parr, R.G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press: Oxford, UK, 1989. [Google Scholar]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. GAUSSIAN 09 (Revision B.01); Gaussian Inc.: Wallingford, CT, USA, 2010. [Google Scholar]
- Brovarets’, O.O.; Hovorun, D.M. Atomistic understanding of the C·T mismatched DNA base pair tautomerization via the DPT: QM and QTAIM computational approaches. J. Comput. Chem. 2013, 34, 2577–2590. [Google Scholar] [CrossRef] [PubMed]
- Brovarets’, O.O.; Tsiupa, K.S.; Hovorun, D.M. Non-dissociative structural transitions of the Watson-Crick and reverse Watson-Crick A∙T DNA base pairs into the Hoogsteen and reverse Hoogsteen forms. Sci. Rep. 2018, 8, 10371. [Google Scholar]
- Palafox, M.A. Molecular structure differences between the antiviral nucleoside analogue 5-iodo-2′-deoxyuridine and the natural nucleoside 2′-deoxythymidine using MP2 and DFT methods: Conformational analysis, crystal simulations, DNA pairs and possible behavior. J. Biomol. Struct. Dyn. 2014, 32, 831–851. [Google Scholar] [CrossRef]
- Hratchian, H.P.; Schlegel, H.B. Finding minima, transition states, and following reaction pathways on ab initio potential energy surfaces. In Theory and Applications of Computational Chemistry: The First 40 Years; Dykstra, C.E., Frenking, G., Kim, K.S., Scuseria, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 195–249. [Google Scholar]
- Vásquez-Espinal, A.; Yañez, O.; Osorio, E.; Areche, C.; García-Beltrán, O.; Ruiz, L.M.; Cassels, B.K.; Tiznado, W. Theoretical study of the antioxidant activity of quercetin oxidation products. Front. Chem. 2019, 7, 818. [Google Scholar] [CrossRef]
- Frisch, M.J.; Head-Gordon, M.; Pople, J.A. Semi-direct algorithms for the MP2 energy and gradient. Chem. Phys. Lett. 1990, 166, 281–289. [Google Scholar] [CrossRef]
- Hariharan, P.C.; Pople, J.A. The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chim. Acta 1973, 28, 213–222. [Google Scholar] [CrossRef]
- Krishnan, R.; Binkley, J.S.; Seeger, R.; Pople, J.A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 1980, 72, 650–654. [Google Scholar] [CrossRef]
- Atkins, P.W. Physical Chemistry; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Wigner, E. Über das Überschreiten von Potentialschwellen bei chemischen Reaktionen [Crossing of potential thresholds in chemical reactions]. Zeits. Physik. Chem. 1932, B19, 203–216. [Google Scholar]
- Keith, T.A. AIMAll (Version 10.07.01). 2010. Available online: aim.tkgristmill.com (accessed on 7 January 2020).
- Matta, C.F.; Hernández-Trujillo, J. Bonding in polycyclic aromatic hydrocarbons in terms of the electron density and of electron delocalization. J. Phys. Chem. A 2003, 107, 7496–7504. [Google Scholar] [CrossRef]
- Brovarets’, O.O.; Hovorun, D.M. A new era of the prototropic tautomerism of the quercetin molecule: A QM/QTAIM computational advances. J. Biomol. Struct. Dyn. 2019. [Google Scholar] [CrossRef]
- Brovarets’, O.O.; Hovorun, D.M. Intramolecular tautomerization of the quercetin molecule due to the proton transfer: QM computational study. PLoS ONE 2019, 14, e0224762. [Google Scholar] [CrossRef] [PubMed]
TS of the Conformational Transition | µTS a | νi b | ∆G c | ∆E d | ∆∆GTS e | ∆∆ETS f | ∆∆G g | ∆∆E h | kf i | kr j | τ99.9% k | τ l | HO3′C3′C2′ m |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TSO3′H2↔9 | 1.78 | 340.2 | 3.98 | 3.80 | 6.90 | 6.75 | 2.91 | 2.95 | 6.01∙107 | 5.01∙1010 | 1.38∙10−10 | 2.00∙10−11 | ±80.1 |
TSO3′H4↔11 | 4.02 | 333.4 | 4.15 | 4.07 | 7.08 | 6.73 | 2.93 | 2.66 | 4.36∙107 | 4.82∙1010 | 1.43∙10−10 | 2.07∙10−11 | ±79.1 |
TSO3′H7↔10 | 4.10 | 361.1 | 3.29 | 3.21 | 6.25 | 6.53 | 2.97 | 3.32 | 1.80∙108 | 4.62∙1010 | 1.49∙10−10 | 2.17∙10−11 | ∓82.8 |
TSO3′H8↔12 | 5.93 | 362.0 | 3.32 | 3.23 | 6.25 | 6.51 | 2.93 | 3.28 | 1.80∙108 | 4.91∙1010 | 1.40∙10−10 | 2.04∙10−11 | ∓82.9 |
TSO3′H14↔24 | 5.08 | 355.2 | 3.70 | 3.75 | 6.50 | 6.92 | 2.80 | 3.17 | 1.17∙108 | 6.09∙1010 | 1.13∙10−10 | 1.64∙10−11 | ±81.3 |
TSO3′H15↔26 | 6.24 | 340.9 | 3.79 | 3.97 | 6.47 | 6.86 | 2.68 | 2.89 | 1.23∙108 | 7.44∙1010 | 9.27∙10−11 | 1.34∙10−11 | ∓79.3 |
TSO3′H17↔29 | 7.60 | 355.6 | 3.81 | 3.91 | 6.62 | 7.05 | 2.81 | 3.15 | 9.70∙107 | 6.03∙1010 | 1.14∙10−10 | 1.66∙10−11 | ±80.6 |
TSO3′H18↔30 | 8.65 | 343.3 | 3.79 | 3.94 | 6.50 | 6.87 | 2.71 | 2.93 | 1.17∙108 | 7.04∙1010 | 9.79∙10−11 | 1.42∙10−11 | ∓79.5 |
TSO3′H21↔34 | 3.08 | 328.8 | 4.01 | 4.14 | 6.54 | 6.70 | 2.53 | 2.56 | 1.09∙108 | 9.51∙1010 | 7.26∙10−11 | 1.05∙10−11 | ±78.7 |
TSO3′H27↔33 | 6.23 | 363.5 | 3.25 | 3.03 | 6.27 | 6.29 | 3.02 | 3.27 | 1.75∙108 | 4.25∙1010 | 1.62∙10−10 | 2.35∙10−11 | ∓83.3 |
TSO3′H31↔36 | 3.35 | 336.2 | 3.85 | 3.86 | 6.39 | 6.63 | 2.54 | 2.77 | 1.42∙108 | 9.44∙1010 | 7.30∙10−11 | 1.06∙10−11 | ±79.8 |
TSO3′H32↔35 | 5.97 | 362.6 | 3.23 | 3.05 | 6.29 | 6.38 | 3.06 | 3.33 | 1.69∙108 | 3.96∙1010 | 1.74∙10−10 | 2.53∙10−11 | ∓83.2 |
TSO3′H39↔45 | 6.15 | 354.7 | 3.83 | 3.92 | 6.60 | 7.01 | 2.77 | 3.09 | 9.97∙107 | 6.43∙1010 | 1.07∙10−10 | 1.56∙10−11 | ±80.5 |
TSO3′H40↔46 | 7.86 | 344.1 | 3.70 | 3.82 | 6.45 | 6.80 | 2.75 | 2.98 | 1.27∙108 | 6.60∙1010 | 1.04∙10−10 | 1.52∙10−11 | ±80.5 |
TSO3′H42↔48 | 6.37 | 341.6 | 3.70 | 3.85 | 6.41 | 6.79 | 2.71 | 2.94 | 1.36∙108 | 7.05∙1010 | 9.78∙10−11 | 1.42∙10−11 | ∓79.6 |
TSO3′H44↔47 | 4.47 | 353.8 | 1.46 | 1.51 | 4.23 | 4.62 | 2.77 | 3.12 | 5.47∙109 | 6.46∙1010 | 9.85∙10−11 | 1.55∙10−11 | ±81.1 |
TS of the Conformational Transition | µTS | νi | ∆G | ∆E | ∆∆GTS | ∆∆ETS | ∆∆G | ∆∆E | kf | kr | τ99.9% | τ | HO4′C4′C5′ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TSO4′H1↔10 | 2.41 | 381.6 | 4.20 | 4.30 | 7.05 | 7.38 | 2.84 | 3.08 | 4.75∙107 | 5.77∙1010 | 1.20∙10−10 | 1.73∙10−11 | ±81.1 |
TSO4′H3↔9 | 2.82 | 391.5 | 3.92 | 4.03 | 6.86 | 7.23 | 2.94 | 3.21 | 6.60∙107 | 4.95∙1010 | 1.39∙10−10 | 2.02∙10−11 | ∓81.9 |
TSO4′H5↔12 | 3.63 | 379.7 | 4.24 | 4.37 | 6.93 | 7.35 | 2.69 | 2.98 | 5.80∙107 | 7.41∙1010 | 9.32E-11 | 1.35∙10−11 | ±80.8 |
TSO4′H6↔11 | 3.99 | 389.2 | 3.86 | 4.00 | 6.92 | 7.14 | 3.07 | 3.14 | 5.90∙107 | 3.98∙1010 | 1.73∙10−10 | 2.51∙10−11 | ∓82.1 |
TSO4′H13↔24 | 4.78 | 375.8 | 4.07 | 4.13 | 6.81 | 7.22 | 2.74 | 3.09 | 7.12∙107 | 6.89∙1010 | 1.00∙10−10 | 1.45∙10−11 | ∓80.4 |
TSO3′H16↔30 | 6.83 | 374.4 | 4.01 | 4.11 | 6.78 | 7.16 | 2.77 | 3.04 | 7.42∙107 | 6.52∙1010 | 1.06∙10−10 | 1.53∙10−11 | ±80.7 |
TSO4′H19↔33 | 4.64 | 371.6 | 4.12 | 4.49 | 6.74 | 7.25 | 2.62 | 2.76 | 7.98∙107 | 8.40∙1010 | 8.22∙10−11 | 1.19∙10−11 | ±80.2 |
TSO4′H20↔26 | 4.64 | 371.6 | 0.63 | 0.72 | 6.71 | 7.51 | 6.08 | 6.79 | 8.36∙107 | 2.42∙108 | 2.12∙10−8 | 4.13∙10−9 | ±80.2 |
TSO4′H22↔34 | 5.05 | 380.8 | 4.04 | 3.97 | 6.71 | 7.00 | 2.67 | 3.03 | 8.43∙107 | 7.74∙1010 | 8.91∙10−11 | 1.29∙10−11 | ∓81.8 |
TSO4′H23↔29 | 7.10 | 375.3 | 0.55 | 0.60 | 3.33 | 3.73 | 2.78 | 3.13 | 2.52∙1010 | 6.41∙1010 | 7.73∙10−11 | 1.56∙10−11 | ∓80.7 |
TSO4′H25↔35 | 5.37 | 373.7 | 4.12 | 4.35 | 6.84 | 7.22 | 2.71 | 2.88 | 6.77∙107 | 7.17∙1010 | 9.62∙10−11 | 1.39∙10−11 | ±80.5 |
TSO4′H28↔36 | 5.70 | 382.7 | 4.07 | 4.06 | 6.74 | 7.08 | 2.67 | 3.02 | 7.99∙107 | 7.71∙1010 | 8.95∙10−11 | 1.30∙10−11 | ∓81.6 |
TSO4′H37↔45 | 6.56 | 369.1 | 4.03 | 4.05 | 6.75 | 7.11 | 2.72 | 3.06 | 7.80∙107 | 7.09∙1010 | 9.74∙10−11 | 1.41∙10−11 | ∓80.4 |
TSO4′H38↔46 | 6.19 | 367.5 | 4.03 | 4.16 | 6.72 | 7.10 | 2.69 | 2.95 | 8.14∙107 | 7.40∙1010 | 9.32∙10−11 | 1.35∙10−11 | ±80.2 |
TSO4′H41↔48 | 5.09 | 366.7 | 4.00 | 4.10 | 6.69 | 7.05 | 2.69 | 2.94 | 8.64∙107 | 7.42∙1010 | 9.30∙10−11 | 1.35∙10−11 | ±80.4 |
TSO4′H43↔47 | 5.49 | 369.4 | 1.83 | 1.88 | 4.73 | 5.10 | 2.90 | 3.22 | 2.37∙109 | 5.21∙1010 | 1.27∙10−10 | 1.92∙10−11 | ∓80.2 |
TS of the Conformational Transition | µTS | νi | ∆G | ∆E | ∆∆GTS | ∆∆ETS | ∆∆G | ∆∆E | kf | kr | τ99.9% | τ | HO3′C3′C4′/HO4′C4′C3′ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TSO3′H/O4′H1↔7 | 2.97 | 457.1 | 0.92 | 1.09 | 7.50 | 7.99 | 6.59 | 6.90 | 2.31∙107 | 1.09∙108 | 5.23∙10−8 | 9.17∙10−9 | ±12.5/∓14.4 |
TSO3′H/O4′H2↔3 | 3.73 | 470.5 | 0.07 | -0.23 | 7.03 | 7.19 | 6.96 | 7.42 | 5.16∙107 | 5.80∙107 | 6.30∙10−8 | 1.72∙10−8 | ±12.3/∓14.1 |
TSO3′H/O4′H4↔6 | 6.15 | 467.7 | 0.27 | 0.07 | 7.18 | 7.19 | 6.91 | 7.12 | 4.04∙107 | 6.38∙107 | 6.63∙10−8 | 1.57∙10−8 | ±12.5/∓14.3 |
TSO3′H/O4′H5↔8 | 5.56 | 459.1 | 0.92 | 1.14 | 7.40 | 7.96 | 6.48 | 6.82 | 2.74∙107 | 1.29∙108 | 4.41∙10−8 | 7.73∙10−9 | ±12.4/∓14.3 |
TSO3′H/O4′H13↔14 | 6.37 | 483.1 | 0.37 | 0.37 | 6.56 | 7.55 | 6.19 | 7.18 | 1.16∙108 | 2.17∙108 | 2.07∙10−8 | 4.61∙10−9 | ±8.3/∓9.3 |
TSO3′H/O4′H15↔20 | 6.09 | 466.9 | 3.13 | 3.25 | 6.30 | 7.13 | 3.17 | 3.88 | 1.79∙108 | 3.53∙1010 | 1.95∙10−10 | 2.83∙10−11 | ±10.0/∓12.3 |
TSO3′H/O4′H16↔18 | 8.76 | 469.1 | 0.22 | 0.17 | 6.49 | 7.26 | 6.27 | 7.09 | 1.29∙108 | 1.88∙108 | 2.18∙10−8 | 5.31∙10−9 | ±9.1/∓11.3 |
TSO3′H/O4′H17↔23 | 8.97 | 473.2 | 3.25 | 3.31 | 6.32 | 7.21 | 3.07 | 3.90 | 1.73∙108 | 4.19∙1010 | 1.64∙10−10 | 2.39∙10−11 | ±10.3/∓11.2 |
TSO3′H/O4′H19↔27 | 4.38 | 455.1 | 0.87 | 1.46 | 7.46 | 8.11 | 6.59 | 6.64 | 2.50∙107 | 1.09∙108 | 5.17∙10−8 | 9.20∙10−9 | ±13.9/∓15.6 |
TSO3′H/O4′H21↔22 | 5.41 | 461.5 | 0.03 | 0.17 | 6.75 | 7.21 | 6.72 | 7.04 | 8.30∙107 | 8.73∙107 | 4.06∙10−8 | 1.15∙10−8 | ±14.1/∓15.6 |
TSO3′H/O4′H25↔32 | 3.43 | 454.5 | 0.86 | 1.29 | 7.56 | 8.08 | 6.70 | 6.78 | 2.11∙107 | 9.02∙107 | 6.21∙10−8 | 1.11∙10−8 | ±14.0/∓15.8 |
TSO3′H/O4′H28↔31 | 4.51 | 465.7 | 0.22 | 0.20 | 6.89 | 7.34 | 6.67 | 7.14 | 6.56∙107 | 9.50∙107 | 4.30∙10−8 | 1.05∙10−8 | ±13.8/∓15.3 |
TSO3′H/O4′H37↔39 | 7.18 | 468.7 | 6.58 | 7.32 | 6.58 | 7.32 | 6.38 | 7.19 | 1.11∙108 | 1.55∙108 | 2.60∙10−8 | 6.46∙10−9 | ±12.3/∓13.0 |
TSO3′H/O4′H38↔40 | 6.91 | 470.9 | 0.33 | 0.33 | 6.56 | 7.36 | 6.23 | 7.03 | 1.14∙108 | 2.01∙108 | 2.19∙10−8 | 4.98∙10−9 | ±9.6/∓11.7 |
TSO3′H/O4′H41↔42 | 4.74 | 467.2 | 0.30 | 0.25 | 6.56 | 7.33 | 6.26 | 7.07 | 1.15∙108 | 1.90∙108 | 2.27∙10−8 | 5.26∙10−9 | ±10.7/∓12.9 |
TSO3′H/O4′H43↔44 | 5.12 | 476.2 | 0.37 | 0.37 | 4.41 | 5.29 | 4.04 | 4.92 | 4.37∙109 | 8.13∙109 | 5.53∙10−10 | 1.23∙10−10 | ±10.6/∓11.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brovarets’, O.O.; M. Hovorun, D. A Never-Ending Conformational Story of the Quercetin Molecule: Quantum-Mechanical Investigation of the O3′H and O4′H Hydroxyl Groups Rotations. Appl. Sci. 2020, 10, 1147. https://doi.org/10.3390/app10031147
Brovarets’ OO, M. Hovorun D. A Never-Ending Conformational Story of the Quercetin Molecule: Quantum-Mechanical Investigation of the O3′H and O4′H Hydroxyl Groups Rotations. Applied Sciences. 2020; 10(3):1147. https://doi.org/10.3390/app10031147
Chicago/Turabian StyleBrovarets’, Ol’ha O., and Dmytro M. Hovorun. 2020. "A Never-Ending Conformational Story of the Quercetin Molecule: Quantum-Mechanical Investigation of the O3′H and O4′H Hydroxyl Groups Rotations" Applied Sciences 10, no. 3: 1147. https://doi.org/10.3390/app10031147
APA StyleBrovarets’, O. O., & M. Hovorun, D. (2020). A Never-Ending Conformational Story of the Quercetin Molecule: Quantum-Mechanical Investigation of the O3′H and O4′H Hydroxyl Groups Rotations. Applied Sciences, 10(3), 1147. https://doi.org/10.3390/app10031147