Hyphenated TLC as a Tool in the Effect-Directed Discovery of Bioactive Natural Products
Abstract
:1. Introduction
2. Targeted Identification of Bioactive Compounds versus Nontarget Analysis and Effect-Directed Analysis (EDA)
3. Effect-Directed Analysis (EDA)
4. High Performance Thin Layer Chromatography/Thin Layer Chromatography (HPTLC/TLC) and Effect-Directed Analysis (EDA)
5. Hyphenation with Spectroscopic Methods of Identification
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ebrahimi-Najafabadi, H.; Kazemeini, S.S.; Pasdaran, A.; Hamedi, A. A novel similarity search approach for high-performance thin-layer chromatography (HPTLC) fingerprinting of medicinal plants. Phytochem. Anal. 2019, 30, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Choma, I.; Jesionek, W. Effects-Directed Biological Detection. In Instrumental Thin-Layer Chromatography; Poole, C., Ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 279–312. [Google Scholar] [CrossRef]
- Móricz, Á.M.; Ott, P.G.; Yüce, I.; Darcsi, A.; Béni, S.; Morlock, G.E. Effect-directed analysis via hyphenated high-performance thin-layer chromatography for bioanalytical profiling of sunflower leaves. J. Chromatogr. A 2018, 1533, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Agatonovic-Kustrin, S.; Kustrin, E.; Morton, D.W. Essential oils and functional herbs for healthy aging. Neural Regen. Res. 2019, 14, 441–445. [Google Scholar] [CrossRef] [PubMed]
- Skogberg, A.; Maki, A.J.; Mettanen, M.; Lahtinen, P.; Kallio, P. Cellulose nanofiber alignment using evaporation-induced droplet-casting, and cell alignment on aligned nanocellulose surfaces. Biomacromolecules 2017, 18, 3936–3953. [Google Scholar] [CrossRef] [PubMed]
- Barreca, D.; Gattuso, G.; Lagana, G.; Leuzzi, U.; Bellocco, E. C- and O-glycosyl flavonoids in Sanguinello and Tarocco blood orange (Citrus sinensis (L.) Osbeck) juice: Identification and influence on antioxidant properties and acetylcholinesterase activity. Food Chem. 2016, 196, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Riethmuller, E.; Konczol, A.; Szakal, D.; Vegh, K.; Balogh, G.T.; Kery, A. HPLC-DPPH screening method for evaluation of antioxidant compounds in Corylus species. Nat. Prod. Commun. 2016, 11, 641–644. [Google Scholar] [PubMed]
- Bandonienė, D.; Murkovic, M. On-line HPLC-DPPH screening method for evaluation of radical scavenging phenols extracted from apples (Malus domestica L.). J. Agric. Food Chem. 2002, 50, 2482–2487. [Google Scholar] [CrossRef]
- Fabel, S.; Niessner, R.; Weller, M.G. Effect-directed analysis by high-performance liquid chromatography with gas-segmented enzyme inhibition. J. Chromatogr. A 2005, 1099, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Wang, H.; Fu, Q.; An, H.; Liang, Y.; Zhang, B.; Hashi, Y.; Chen, S. Simultaneous separation, identification and activity evaluation of three butyrylcholinesterase inhibitors from Plumula nelumbinis using on-line HPLC-UV coupled with ESI-IT-TOF-MS and BChE biochemical detection. Talanta 2013, 110, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Stolper, P.; Fabel, S.; Weller, M.G.; Knopp, D.; Niessner, R.J.A.; Chemistry, B. Whole-cell luminescence-based flow-through biodetector for toxicity testing. Anal. Bioanal. Chem. 2008, 390, 1181–1187. [Google Scholar] [CrossRef] [PubMed]
- Choma, I.; Grzelak, E. Bioautography detection in thin-layer chromatography. J. Chromatogr. A 2010, 1218, 2684–2691. [Google Scholar] [CrossRef] [PubMed]
- Agatonovic-Kustrin, S.; Morton, D.W. High-performance thin-layer chromatography-direct bioautography as a method of choice for alpha-amylase and antioxidant activity evaluation in marine algae. J. Chromatogr. A 2017, 1530, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Marston, A.; Kissling, J.; Hostettmann, K. A rapid TLC bioautographic method for the detection of acetylcholinesterase and butyrylcholinesterase inhibitors in plants. Phytochem. Anal. 2002, 13, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Simoes-Pires, C.A.; Hmicha, B.; Marston, A.; Hostettmann, K. A TLC bioautographic method for the detection of alpha- and beta-glucosidase inhibitors in plant extracts. Phytochem. Anal. 2009, 20, 511–515. [Google Scholar] [CrossRef] [PubMed]
- Azadniya, E.; Morlock, G.E. Bioprofiling of Salvia miltiorrhiza via planar chromatography linked to (bio)assays, high resolution mass spectrometry and nuclear magnetic resonance spectroscopy. J. Chromatogr. A 2018, 1533, 180–192. [Google Scholar] [CrossRef] [PubMed]
Detection | Activity | Test |
---|---|---|
Microchemical detection | Free radical scavenging | DPPH free radical ABTS radical scavenging test |
Antioxidants | β-Carotene bleaching test | |
Microbial detection (bioautography) | Bacterial culture | Bacillus subtilis (antibacterial test) Aliivibrio fischeri or Vibrio fischeri (toxicity test) |
Fungal culture | p-YES test (planar yeast estrogen screen) estrogenic activity | |
Biochemical detection (bioassays) | Enzyme inhibition | Cholinesterase inhibitors α-Amylase inhibitors α- and β-glucosidase inhibitors Xanthine oxidase inhibitors Tyrosinase inhibitors |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agatonovic-Kustrin, S.; Morton, D.W. Hyphenated TLC as a Tool in the Effect-Directed Discovery of Bioactive Natural Products. Appl. Sci. 2020, 10, 1123. https://doi.org/10.3390/app10031123
Agatonovic-Kustrin S, Morton DW. Hyphenated TLC as a Tool in the Effect-Directed Discovery of Bioactive Natural Products. Applied Sciences. 2020; 10(3):1123. https://doi.org/10.3390/app10031123
Chicago/Turabian StyleAgatonovic-Kustrin, Snezana, and David W. Morton. 2020. "Hyphenated TLC as a Tool in the Effect-Directed Discovery of Bioactive Natural Products" Applied Sciences 10, no. 3: 1123. https://doi.org/10.3390/app10031123
APA StyleAgatonovic-Kustrin, S., & Morton, D. W. (2020). Hyphenated TLC as a Tool in the Effect-Directed Discovery of Bioactive Natural Products. Applied Sciences, 10(3), 1123. https://doi.org/10.3390/app10031123