Analysis of Selected Properties of Fruits of Black Chokeberry (Aronia melanocarpa L.) from Organic and Conventional Cultivation
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagent and Standard
2.2. Plant Materials
2.3. Dry Matter, Ash Content, Titratable Acidity, Pectin
2.4. Analysis of Antioxidant Activity
2.5. Ultra-Weak Luminescence
2.6. Analysis of Sugars with HPLC-ELSD Method
2.7. Identification and Quantification of Polyphenols by the UPLCPDAMS Method
2.8. Statistical Analysis
3. Results and Discussion
3.1. Antioxidant Activity and Ultra-Weak Luminescence
3.2. Identification of Sugars
3.3. Identification of Polyphenolic Compounds
3.4. Comparison of Phenolic Compounds Found in Black Chokeberry
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Horszwald, A.; Julien, H.; Andlauer, W. Characterisation of Aronia powders obtained by different drying processes. Food Chem. 2013, 141, 2858–2863. [Google Scholar] [CrossRef] [PubMed]
- Chrubasik, C.; Li, G.; Chrubasik, S. The clinical effectiveness of chokeberry: A systematic review. Phytother. Res. 2010, 24, 1107–1114. [Google Scholar] [CrossRef] [PubMed]
- Kulling, S.E.; Rawel, H.M. Chokeberry (Aronia melanocarpa)—A review on the characteristic components and potential health effects. Planta Med. 2008, 74, 1625–1635. [Google Scholar] [CrossRef] [PubMed]
- Benvenuti, S.; Pellati, F.; Melegari, M.A.; Bertelli, D. Polyphenols, anthocyanins, ascorbic acid, and radical scavenging activity of Rubus, Ribes, and Aronia. J. Food Sci. 2004, 69, FCT164–FCT169. [Google Scholar] [CrossRef]
- Zheng, W.; Wang, S.Y. Oxygen radical absorbing capacity of phenolics in blueberries, cranberries, chokeberries, and lingonberries. J. Agric. Food Chem. 2003, 51, 502–509. [Google Scholar] [CrossRef]
- Skoczyńska, A.; Jędrychowska, I.; Poręba, R.; Affelska-Jercha, A.; Turczyn, B.; Wojakowska, A.; Andrzejak, R. Influence of chokeberry juice on arterial blood pressure and lipid parameters in men with mild hypercholesterolemia. Pharmacol. Rep. 2007, 59, 177–182. [Google Scholar]
- Valcheva-Kuzmanova, S.V.; Belcheva, A. Current knowledge of Aronia melanocarpa as a medicinal plant. Folia Med. 2006, 48, 11–17. [Google Scholar]
- Santos Buelga, C.; Scalbert, A. Proanthocyanidins and tannin like compounds-nature, occurrence, dietary intake and effects on nutrition and health. J. Sci. Food Agric. 2000, 80, 1094–1117. [Google Scholar] [CrossRef]
- Kazimierczak, R.; Hallmann, E.; Rusaczonek, A.; Rembiałkowska, E. Antioxidant content in black currants from organic and conventional cultivation. Electron. J. Pol. Agric. Univ. Food Sci. Technol. 2008, 11, 28–33. [Google Scholar]
- Cayuela, J.A.; Vidueira, J.M.; Albi, M.A.; Gutiérrez, F. Influence of the ecological cultivation of strawberries (Fragaria × ananassa cv. Chandler) on the quality of the fruit and on their capacity for conservation. J. Agric. Food Chem. 1997, 45, 1736–1740. [Google Scholar] [CrossRef]
- Wojdyło, A.; Oszmiański, J.; Milczarek, M.; Wietrzyk, J. Phenolic profile, antioxidant and antiproliferative activity of black and red currants (Ribes spp.) from organic and conventional cultivation. Int. J. Food Sci. Technol. 2013, 48, 715–726. [Google Scholar] [CrossRef]
- Nakamuraa, K.; Hiramatsub, M. Ultra-weak photon emission from human hand: Influence of temperature and oxygen concentration on emission. J. Photochem. Photobiol. B Biol. 2005, 80, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Laager, F.; Park, S.H.; Yang, J.M.; Song, W.; Soh, K.S. Effects of exercises on biophoton emission of the wrist. Eur. J. Appl. Physiol. 2007, 102, 463–469. [Google Scholar]
- Kiełbasa, P.; Dróżdż, T.; Nawara, P.; Dróżd, M. The use of bio-photons emission for the quality parameterization of food products. Przegląd Elektrotech. 2017, 93, 153–156. [Google Scholar] [CrossRef]
- Oziembłowski, M.; Dróżdż, M.; Kiełbasa, P.; Dróżdż, T.; Gąsiorski, A.; Nawara, P.; Tabor, S. Ultra weak luminescence (USL) as a potential method for evaluating the quality of traditional. Przegląd Elektrotech. 2017, 93, 131–134. [Google Scholar]
- Gałązka-Czarnecka, I.; Korzeniewska, E.; Czarnecki, A.; Sójka, M.; Kiełbasa, P.; Dróżdż, T. Evaluation of quality of eggs from hens kept in caged and free-range systems using traditional methods and ultra-weak luminescence. Appl. Sci. 2019, 9, 2430. [Google Scholar] [CrossRef]
- Gong, Y.; Tiejun Yang, T.; Liang, Y. Integrating ultra weak luminescence properties and multi-scale permutation entropy algorithm to analyze freshness degree of wheat kernel. Optik 2020, 218, 165099. [Google Scholar] [CrossRef]
- Trzyniec, K.; Kiełbasa, P.; Oziembłowski, M.; Dróżdż, M.; Nawara, P.; Posyłek, Z.; Leja, R. Using photons emission to evaluate the quality of apples. Przegląd Elektrotech. 2017, 93, 183–186. [Google Scholar] [CrossRef][Green Version]
- AOAC International. Official Methods of Analysis of AOAC International, 18th ed.; Horowitz, W., Latimer, G.E., Eds.; AOAC International: Rockville, MD, USA, 2005. [Google Scholar]
- Przetwory Owocowe i Warzywne. Przygotowanie Próbek i Metody Badań Fizykochemicznych. Oznaczenie Kwasowości Ogólnej; Technical Report No. PN-90/A-75101/04 Warszawa.
- Pijanowski, E.; Mrożewski, S.; Horubała, A.; Jarczyk, A. Technologia Produktów Owocowych i Warzywnych; PWRiL: Warsaw, Poland, 1973. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Nawirska-Olszańska, A.; Kita, A.; Biesiada, A.; Sokół-Łętowska, A.; Kucharska, A.Z. Characteristics of antioxidant activity and composition of pumpkin seed oils in 12 cultivars. Food Chem. 2013, 139, 155–161. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing Ability of plasma (FRAP) as a measure of “Antioxidant Power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Kolniak-Ostek, J. Chemical composition and antioxidant capacity of different anatomical parts of pear (Pyrus communis L.). Food Chem. 2016, 203, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Białek, M.; Rutkowska, J.; Hallmann, E. Black chokeberry (Aronia melanocarpa) as potential component of functional food. Żywność Nauka Technol. Jakość 2012, 6, 21–30. [Google Scholar] [CrossRef]
- Nawirska-Olszańska, A.; Pasławska, M.; Stępień, B.; Maciej Oziembłowski, M.; Sala, K.; Smorowska, A. Effect of vacuum impregnation with apple-pear juice on content of bioactive compounds and antioxidant activity of dried chokeberry fruit. Foods 2020, 9, 108. [Google Scholar] [CrossRef] [PubMed]
- Skupień, K.; Oszmiański, J. The effect of mineral fertilization on nutritive value and biological activity of chokeberry fruit. Agric. Food Sci. 2007, 16, 46–55. [Google Scholar] [CrossRef]
- Oszmiański, J.; Wojdyło, A. Aronia melanocarpa phenolics and their antioxidant activity. Eur. Food Res. Technol. 2005, 221, 809–813. [Google Scholar] [CrossRef]
- Oszmaiński, J.; Lachowicz, S. Effect of the production of dried fruits and juice from chokeberry (Aronia melanocarpa L.) on the content and antioxidative activity of bioactive compounds. Molecules 2016, 21, 1098. [Google Scholar] [CrossRef]
- Denev, P.; Kratchanova, M.; Petrova, I.; Klisurova, D.; Georgiev, Y.; Ognyanov, M.; Yanakieva, I. Black chokeberry (Aronia melanocarpa (Michx.) Elliot) fruits and functional drinks differ significantly in their chemical composition and antioxidant activity. J. Chem. 2018, 11, 9574587. [Google Scholar] [CrossRef]
- Cebulak, T.; Oszmiański, J.; Kapusta, I.; Lachowicz, S. Effect of UV-C radiation, ultra-sonication electromagnetic field and microwaves on changes in polyphenolic compounds in chokeberry (Aronia melanocarpa). Molecules 2017, 22, 1161. [Google Scholar] [CrossRef]
- Lee, J.E.; Kim, G.S.; Park, S.; Kim, Y.H.; Kim, M.B.; Lee, W.S.; Jeong, S.W.; Lee, S.J.; Jin, J.S.; Shin, S.C.; et al. Determination of chokeberry (Aronia melanocarpa) polyphenol components using liquid chromatography–tandem mass spectrometry: Overall contribution to antioxidant activity. Food Chem. 2014, 146, 1–5. [Google Scholar] [CrossRef]
Variant of Chokeberry | Dry Matter | Ash | Pectins | Titratable Acidity |
---|---|---|---|---|
% | ||||
C 1e | 24.2 ± 1.24 c | 0.82 ± 0.01 b | 0.47 ± 0.01 c | 1.29 ± 0.12 a |
C 2e | 26.1 ± 1.21 b | 0.81 ± 0.01 b | 0.54 ± 0.01 a | 1.21 ± 0.11 b |
C 3e | 24.2 ± 1.14 c | 0.97 ± 0.02 a | 0.50 ± 0.01 b | 1.22 ± 0.11 b |
C 4c | 24.0 ± 1.11 c | 0.61 ± 0.01 d | 0.49 ± 0.02 b | 0.99 ± 0.09 c |
C 5c | 23.8 ± 0.99 d | 0.79 ± 0.04 b,c | 0.46 ± 0.01 d | 0.93 ± 0.09 c |
C 6c | 26.5 ± 1.01 a | 0.73 ± 0.02 c | 0.35 ± 0.01 e | 1.01 ± 0.09 c |
Variant of Chokeberry | ABTS | FRAP | Photon Emission |
---|---|---|---|
µmole/100 g | µmole/100 g | - | |
C 1e | 126.58 ± 2.00 a | 95.53 ± 1.10 a | 416.3 ± 2.84 a |
C 2e | 109.85 ± 8.08 b | 89.12 ± 2.04 b | 402.8 ± 3.11 b |
C 3e | 102.79 ± 3.69 c | 78.99 ± 2.11 c | 398.7 ± 3.00 c |
C 4c | 92.37 ± 2.10 e | 55.05 ± 2.08 e | 352.2 ± 2.45 e |
C 5c | 95.83 ± 1.54 d | 62.19 ± 1.37 d | 367.2 ± 2.78 d |
C 6c | 92.19 ± 3.69 e | 54.99 ± 2.22 e | 349.9 ± 2.29 e |
Variant of Chokeberry | Fructose | Sorbitol | Glucose | Sum |
---|---|---|---|---|
g/100 g FW | ||||
C 1e | 1.54 ± 0.04 a | 1.97 ± 0.03 f | 2.82 ± 0.01 c | 6.33 |
C 2e | 1.41 ± 0.03 b | 3.16 ± 0.01 a | 3.36 ± 0.03 b | 7.93 |
C 3e | 0.85 ± 0.01 f | 2.20 ± 0.02 d | 2.69 ± 0.02 d | 5.75 |
C 4c | 1.16 ± 0.01 d | 2.69 ± 0.01 c | 1.87 ± 0.02 e | 5.73 |
C 5c | 1.01 ± 0.01 e | 2.08 ± 0.01 e | 1.92 ± 0.01 e | 5.01 |
C 6c | 1.30 ± 0.04 c | 2.90 ± 0.02 b | 3.76 ± 0.04 a | 7.96 |
Nr | Compounds | Rt (min) | λmax (nm) | MS | MS-MS |
---|---|---|---|---|---|
1 | Cyanidin-3-hexoside-(epi)catechine | 2.54 | 520 | 737+ | 575/423/287 |
2 | Neochlorogenic acid | 2.57 | 323 | 353 | 191 |
3 | Cyanidin-3-pentoside-(epi)catechine | 2.98 | 520 | 707+ | 557/329/287 |
4 | (+) Catechin | 3.03 | 280 | 289 | |
5 | Cyanidin-3-hexoside-(epi)cat-(epi)cat | 3.15 | 520 | 1025+ | 575/409/287 |
6 | 3-O-p-Coumaroylquinic acid | 3.30 | 310 | 337 | 191 |
7 | Cyanidin-3-O-galctoside | 3.51 | 516 | 449+ | 287 |
8 | Chlorogenic acid | 3.62 | 323 | 353 | 191 |
9 | Cryptochlorogenic acid | 3.71 | 323 | 353 | 191 |
10 | Cyanidin-3-O-glucoside | 3.81 | 517 | 449+ | 287 |
11 | Cyanidin-3-O-arabinoside | 4.03 | 515 | 419+ | 287+ |
12 | Procyanidin B2 | 4.20 | 280 | 577 | 289 |
13 | Cyanidin-3-O-xyloside | 4.68 | 515 | 419+ | 287+ |
14 | (−) Epicatechin | 4.88 | 280 | 289 | |
15 | Quercetin-dihexoside | 5.23 | 352 | 625 | 445/301 |
16 | Quercetin-dihexoside | 5.29 | 352 | 625 | 445/301 |
17 | Quercetin-3-O-vicianoside | 5.52 | 353 | 595 | 432/301 |
18 | Quercetin-3-robinobioside | 5.87 | 353 | 609 | 463/301 |
19 | Quercetin-3-O-rutinoside | 6.02 | 353 | 609 | 463/301 |
20 | Quercetin-3-O-galctoside | 6.09 | 352 | 463 | 301 |
21 | Quercetin-3-O-glucoside | 6.22 | 352 | 463 | 301 |
22 | Eriodictyol-glucuronide | 6.28 | 280 | 463 | 287 |
23 | Isorhamnetin pentosylhexoside | 6.41 | 352 | 609 | 315 |
24 | Quercetin-O-deoxyhexose-O-deoxyhexoside | 6.76 | 352 | 593 | 433/301 |
25 | Isorhamnetin rhamnosylhexosideisomer | 6.71 | 352 | 623 | 463/315 |
26 | Isorhamnetin rhamnosylhexosideisomer | 6.88 | 352 | 623 | 421/315 |
27 | Di-caffeic quinic acid | 6.93 | 323 | 515 | 353/191 |
Numbers | C 1e | C 2e | C 3e | C 4c | C 5c | C 6c |
---|---|---|---|---|---|---|
1 | 4.43 ± 0.09 | 4.33 ± 0.07 | 3.23 ± 0.07 | 2.87 ± 0.08 | 2.16 ± 0.07 | 2.04 ± 0.06 |
2 | 174.35 ± 1.38 | 161.53 ± 1.75 | 141.99 ± 1.51 | 128.49 ± 1.14 | 91.56 ± 0.89 | 98.81 ± 0.53 |
3 | 1.30 ± 0.05 | 1.22 ± 0.04 | 1.26 ± 0.02 | 1.14 ± 0.04 | 1.09 ± 0.03 | 1.06 ± 0.03 |
4 | 18.27 ± 0.03 | 17.81 ± 0.70 | 18.21 ± 0.10 | 16.18 ± 0.90 | 16.66 ± 0.68 | 16.70 ± 0.59 |
5 | 10.23 ± 0.09 | 9.61 ± 0.07 | 9.97 ± 0.08 | 8.74 ± 0.07 | 8.77 ± 0.05 | 8.98 ± 0.05 |
6 | 6.70 ± 0.06 | 5.96 ± 0.05 | 6.12 ± 0.05 | 5.32 ± 0.08 | 5.31 ± 0.06 | 4.81 ± 0.03 |
7 | 661.70 ± 4.48 | 621.34 ± 2.22 | 666.44 ± 2.18 | 651.55 ± 4.24 | 652.15 ± 4.43 | 626.4 ± 4.13 |
8 | 92.69 ± 0.46 | 88.17 ± 1.17 | 84.26 ± 2.02 | 74.74 ± 4.42 | 77.51 ± 3.64 | 76.25 ± 3.73 |
9 | 5.60 ± 0.25 | 4.57 ± 0.20 | 4.82 ± 0.22 | 3.66 ± 0.28 | 4.21 ± 0.22 | 3.91 ± 0.01 |
10 | 22.06 ± 1.01 | 25.01 ± 0.62 | 19.99 ± 0.69 | 19.99 ± 0.34 | 19.71 ± 0.15 | 22.07 ± 1.09 |
11 | 316.02 ± 2.28 | 285.62 ± 9.02 | 235.42 ± 1.33 | 254.90 ± 1.68 | 248.72 ± 1.02 | 246.79 ± 2.21 |
12 | 4.13 ± 0.19 | 3.40 ± 0.18 | 3.64 ± 0.09 | 3.19 ± 0.04 | 3.29 ± 0.07 | 3.16 ± 0.12 |
13 | 29.41 ± 0.26 | 26.86 ± 0.82 | 28.81 ± 0.43 | 23.35 ± 0.41 | 22.32 ± 0.13 | 24.14 ± 0.42 |
14 | 160.13 ± 1.19 | 166.19 ± 1.16 | 165.89 ± 1.63 | 155.28 ± 1.98 | 153.58 ± 1.65 | 154.53 ± 1.85 |
15 | 3.35 ± 0.14 | 3.19 ± 0.07 | 3.28 ± 0.04 | 2.15 ± 0.04 | 2.89 ± 0.01 | 3.09 ± 0.15 |
17 | 4.80 ± 0.20 | 4.41 ± 0.10 | 4.99 ± 0.09 | 3.50 ± 0.05 | 3.45 ± 0.02 | 3.32 ± 0.22 |
18 | 2.52 ± 0.12 | 2.60 ± 0.13 | 2.56 ± 0.09 | 1.95 ± 0.09 | 1.94 ± 0.04 | 2.45 ± 0.03 |
19 | 10.68 ± 0.10 | 10.74 ± 0.11 | 9.99 ± 0.05 | 8.98 ± 0.08 | 9.29 ± 0.03 | 9.31 ± 0.21 |
20 | 32.43 ± 0.47 | 38.97 ± 0.24 | 36.42 ± 0.18 | 31.46 ± 0.14 | 31.77 ± 0.05 | 32.11 ± 0.50 |
21 | 27.24 ± 0.21 | 26.75 ± 0.16 | 26.97 ± 0.18 | 23.54 ± 0.11 | 22.98 ± 0.05 | 23.27 ± 0.11 |
22 | 44.40 ± 0.39 | 47.61 ± 0.28 | 45.33 ± 0.12 | 38.97 ± 0.24 | 39.24 ± 0.15 | 41.36 ± 0.39 |
23 | 6.20 ± 0.06 | 6.81 ± 0.05 | 6.47 ± 0.02 | 5.81 ± 0.01 | 6.30 ± 0.02 | 6.33 ± 0.02 |
25 | 3.16 ± 0.04 | 3.18 ± 0.03 | 3.09 ± 0.01 | 3.16 ± 0.01 | 2.89 ± 0.01 | 2.95 ± 0.01 |
27 | 2.35 ± 0.02 | 2.29 ± 0.02 | 2.15 ± 0.02 | 2.33 ± 0.01 | 2.00 ± 0.01 | 2.08 ± 0.02 |
Procyanidin polymers | 954.57 ± 6.45 | 921.73 ± 1.79 | 946.09 ± 2.16 | 871.07 ± 4.13 | 872.27 ± 4.21 | 877.84 ± 3.78 |
Total | 2598.72 ± 17.86 a | 2489.9 ± 15.78 b | 2477.39 ± 11.56 b | 2342.32 ± 15.87 c | 2302.06 ± 13.85 d | 2293.76 ± 12.74 d |
ABTS | FRAP | Polyphenolic | Ultra-Weak Luminescence | Sugars | |
---|---|---|---|---|---|
ABTS | 0.94 | 0.94 | 0.91 | 0.11 | |
FRAP | 0.96 | 0.99 | 0.17 | ||
Polyphenolic | 0.96 | 0.10 | |||
Ultra-weak luminescence | 0.04 | ||||
Sugars |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trenka, M.; Nawirska-Olszańska, A.; Oziembłowski, M. Analysis of Selected Properties of Fruits of Black Chokeberry (Aronia melanocarpa L.) from Organic and Conventional Cultivation. Appl. Sci. 2020, 10, 9096. https://doi.org/10.3390/app10249096
Trenka M, Nawirska-Olszańska A, Oziembłowski M. Analysis of Selected Properties of Fruits of Black Chokeberry (Aronia melanocarpa L.) from Organic and Conventional Cultivation. Applied Sciences. 2020; 10(24):9096. https://doi.org/10.3390/app10249096
Chicago/Turabian StyleTrenka, Magdalena, Agnieszka Nawirska-Olszańska, and Maciej Oziembłowski. 2020. "Analysis of Selected Properties of Fruits of Black Chokeberry (Aronia melanocarpa L.) from Organic and Conventional Cultivation" Applied Sciences 10, no. 24: 9096. https://doi.org/10.3390/app10249096
APA StyleTrenka, M., Nawirska-Olszańska, A., & Oziembłowski, M. (2020). Analysis of Selected Properties of Fruits of Black Chokeberry (Aronia melanocarpa L.) from Organic and Conventional Cultivation. Applied Sciences, 10(24), 9096. https://doi.org/10.3390/app10249096