Next Article in Journal
Medial Opening Wedge High Tibial Osteotomy in Knee Osteoarthritis—A Biomechanical Approach
Next Article in Special Issue
Special Issue “Advanced Phase Change Materials for Thermal Storage”
Previous Article in Journal
The Role of Mitochondria in the Dual Effect of Low-Temperature Plasma on Human Bone Marrow Stem Cells: From Apoptosis to Activation of Cell Proliferation
Previous Article in Special Issue
Experimental Devices to Investigate the Long-Term Stability of Phase Change Materials under Application Conditions
Article

Compact Model of Latent Heat Thermal Storage for Its Integration in Multi-Energy Systems

Department of Energy, Politecnico di Torino, 10129 Torino, Italy
*
Author to whom correspondence should be addressed.
Appl. Sci. 2020, 10(24), 8970; https://doi.org/10.3390/app10248970
Received: 30 October 2020 / Revised: 10 December 2020 / Accepted: 14 December 2020 / Published: 16 December 2020
(This article belongs to the Special Issue Advanced Phase Change Materials for Thermal Storage)
Nowadays, flexibility through energy storage constitutes a key feature for the optimal management of energy systems. Concerning thermal energy, Latent Heat Thermal Storage (LHTS) units are characterized by a significantly higher energy density with respect to sensible storage systems. For this reason, they represent an interesting solution where limited space is available. Nevertheless, their market development is limited by engineering issues and, most importantly, by scarce knowledge about LHTS integration in existing energy systems. This study presents a new modeling approach to quickly characterize the dynamic behavior of an LHTS unit. The thermal power released or absorbed by a LHTS module is expressed only as a function of the current and the initial state of charge. The proposed model allows simulating even partial charge and discharge processes. Results are fairly accurate when compared to a 2D finite volume model, although the computational effort is considerably lower. Summarizing, the proposed model could be used to investigate optimal LHTS control strategies at the system level. In this paper, two relevant case studies are presented: (a) the reduction of the morning thermal power peak in District Heating systems; and (b) the optimal energy supply schedule in multi-energy systems. View Full-Text
Keywords: latent heat thermal storage; pcm; 0D dynamic model; multi-energy system; district heating; thermal network latent heat thermal storage; pcm; 0D dynamic model; multi-energy system; district heating; thermal network
Show Figures

Figure 1

MDPI and ACS Style

Colangelo, A.; Guelpa, E.; Lanzini, A.; Mancò, G.; Verda, V. Compact Model of Latent Heat Thermal Storage for Its Integration in Multi-Energy Systems. Appl. Sci. 2020, 10, 8970. https://doi.org/10.3390/app10248970

AMA Style

Colangelo A, Guelpa E, Lanzini A, Mancò G, Verda V. Compact Model of Latent Heat Thermal Storage for Its Integration in Multi-Energy Systems. Applied Sciences. 2020; 10(24):8970. https://doi.org/10.3390/app10248970

Chicago/Turabian Style

Colangelo, Alessandro, Elisa Guelpa, Andrea Lanzini, Giulia Mancò, and Vittorio Verda. 2020. "Compact Model of Latent Heat Thermal Storage for Its Integration in Multi-Energy Systems" Applied Sciences 10, no. 24: 8970. https://doi.org/10.3390/app10248970

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop