Impact of Alkali Ions Codoping on Magnetic Properties of La0.9A0.1Mn0.9Co0.1O3 (A: Li, K, Na) Powders and Ceramics
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Structure and Morphology
3.2. Determination of Oxidation States of Mn and Co Ions
3.3. Magnetic Properties
4. Discussion and Conclusions
Author Contributions
Funding
|
Conflicts of Interest
References
- Schmid, H. Multi-ferroic magnetoelectrics. Ferroelectrics 1994, 162, 317–338. [Google Scholar] [CrossRef]
- Jahn, H.A.; Teller, E. Stability of polyatomic molecules in degenerate electronic states—I—Orbital degeneracy. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1937, 161, 220–235. [Google Scholar] [CrossRef]
- Rivero, P.; Meunier, V.; Shelton, W. Electronic, structural, and magnetic properties of LaMnO3 phase transition at high temperature. Phys. Rev. B 2016, 93, 024111. [Google Scholar] [CrossRef] [Green Version]
- Norby, P.; Andersen, I.; Andersen, E.; Andersen, N.H. The crystal structure of lanthanum manganate(iii), LaMnO3, at room temperature and at 1273 K under N2. J. Solid State Chem. 1995, 119, 191–196. [Google Scholar] [CrossRef]
- Malavasi, L.; Ritter, C.; Mozzati, M.C.; Tealdi, C.; Islam, M.S.; Azzoni, C.B.; Flor, G. Effects of cation vacancy distribution in doped LaMnO3+δ perovskites. J. Solid State Chem. 2005, 178, 2042–2049. [Google Scholar] [CrossRef] [Green Version]
- Lv, Y.; Li, Z.; Yu, Y.; Yin, J.; Song, K.; Yang, B.; Yuan, L.; Hu, X. Copper/cobalt-doped LaMnO3 perovskite oxide as a bifunctional catalyst for rechargeable Li-O2 batteries. J. Alloy. Compd. 2019, 801, 19–26. [Google Scholar] [CrossRef]
- Liu, X.; Gong, H.; Wang, T.; Guo, H.; Song, L.; Xia, W.; Gao, B.; Jiang, Z.; Feng, L.; He, J. Cobalt-Doped Perovskite-Type Oxide LaMnO3 as Bifunctional Oxygen Catalysts for Hybrid Lithium-Oxygen Batteries. Chem. Asian J. 2018, 13, 528–535. [Google Scholar] [CrossRef]
- Zhu, W.; Chen, X.; Liu, Z.; Liang, C. Insight into the Effect of Cobalt Substitution on the Catalytic Performance of LaMnO3 Perovskites for Total Oxidation of Propane. J. Phys. Chem. C 2020, 124, 14646–14657. [Google Scholar] [CrossRef]
- Flores-Lasluisa, J.X.; Huerta, F.; Cazorla-Amorós, D.; Morallon, E. Structural and morphological alterations induced by cobalt substitution in LaMnO3 perovskites. J. Colloid Interface Sci. 2019, 556, 658–666. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, R.V.; Banerjee, A. Evidence of dynamic Jahn-Teller effects in ferromagnetism of rhombohedral Al-substituted lanthanum manganite. J. Phys. Condens. Matter 2000, 12, 3835–3847. [Google Scholar] [CrossRef]
- Golenishchev-Kutuzov, A.V.; Golenishchev-Kutuzov, V.A.; Kalimullin, R.I.; Semennikov, A.V. Ordered states of Jahn-Teller distorted MnO6 octahedra in weakly doped lanthanum-strontium manganites. Phys. Solid State 2015, 57, 1633–1638. [Google Scholar] [CrossRef]
- Bogdanova, K.G.; Bulatov, A.R.; Golenishchev-Kutuzov, V.A.; Potapov, A.A. Influence of the Jahn-Teller effect on the structural, magnetic, and electrical properties of lightly doped manganites. Bull. Russ. Acad. Sci. Phys. 2013, 77, 275–277. [Google Scholar] [CrossRef]
- shihara, T. Perovskite Oxide for Solid Oxide Fuel Cells; Springer: New York, NY, USA, 2009; ISBN 78-0-387-77707-8. [Google Scholar]
- Jin, S.; Tiefel, T.H.; McCormack, M.; Fastnacht, R.A.; Ramesh, R.; Chen, L.H. Thousandfold Change in Resistivity in Magnetoresistive La-Ca-Mn-O Films. Science 1994, 264, 413–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, S.; Irvine, J.T.S.; Kilner, J.A. An Efficient Solid Oxide Fuel Cell Based upon Single-Phase Perovskites. Adv. Mater. 2005, 17, 1734–1737. [Google Scholar] [CrossRef]
- Ahmad, E.A.; Mallia, G.; Kramer, D.; Kucernak, A.R.; Harrison, N.M. The stability of LaMnO3 surfaces: A hybrid exchange density functional theory study of an alkaline fuel cell catalyst. J. Mater. Chem. A 2013, 1, 11152–11162. [Google Scholar] [CrossRef]
- Morelli, D.T.; Mance, A.M.; Mantese, J.V.; Micheli, A.L. Magnetocaloric properties of doped lanthanum manganite films. J. Appl. Phys. 1996, 79, 373–375. [Google Scholar] [CrossRef]
- 18. Jia, M.; Li, X.; Zhaorigetu; Shen, Y.; Li, Y. Activity and deactivation behavior of Au/LaMnO3 catalysts for CO oxidation. J. Rare Earths 2011, 29, 213–216. [Google Scholar] [CrossRef]
- Zhang, C.; Guo, Y.; Guo, Y.; Lu, G.; Boreave, A.; Retailleau, L.; Baylet, A.; Giroir-Fendler, A. LaMnO3 perovskite oxides prepared by different methods for catalytic oxidation of toluene. Appl. Catal. B Environ. 2014, 148–149, 490–498. [Google Scholar] [CrossRef]
- Schiffer, P.; Ramirez, A.P.; Bao, W.; Cheong, S.-W. Low Temperature Magnetoresistance and the Magnetic Phase Diagram of La1−xCaxMnO3. Phys. Rev. Lett. 1995, 75, 3336–3339. [Google Scholar] [CrossRef]
- Mahendiran, R.; Tiwary, S.; Raychaudhuri, A.; Ramakrishnan, T.; Mahesh, R.; Rangavittal, N.; Rao, C. Structure, electron-transport properties, and giant magnetoresistance of hole-doped systems. Phys. Rev. B Condens. Matter Mater. Phys. 1996, 53, 3348–3358. [Google Scholar] [CrossRef]
- Bara, M.; Dzik, J.; Feliksik, K.; Kozielski, L.; Wodecka-Duś, B.; Goryczka, T.; Zarycka, A.; Adamczyk-Habrajska, M. Influence of calcium ions on the structure and properties of LaMnO3. Arch. Metall. Mater. 2020, 65, 1189–1195. [Google Scholar]
- Kim, D.; Bliem, R.; Hess, F.; Gallet, J.-J.; Yildiz, B. Electrochemical Polarization Dependence of the Elastic and Electrostatic Driving Forces to Aliovalent Dopant Segregation on LaMnO3. J. Am. Chem. Soc. 2020, 142, 3548–3563. [Google Scholar] [CrossRef] [PubMed]
- Głuchowski, P.; Nikonkov, R.; Tomala, R.; Stręk, W.; Shulha, T.; Serdechnova, M.; Zheludkevich, M.; Pakalaniškis, A.; Skaudžius, R.; Kareiva, A.; et al. Magnetic Properties of La0.9A0.1MnO3 (A: Li, Na, K) Nanopowders and Nanoceramics. Materials 2020, 13, 1788. [Google Scholar] [CrossRef]
- Ekambaram, S.; Patil, K.C.; Maaza, M. Synthesis of lamp phosphors: Facile combustion approach. J. Alloy. Compd. 2005, 393, 81–92. [Google Scholar] [CrossRef] [Green Version]
- Fedyk, R.; Hreniak, D.; Łojkowski, W.; Stręk, W.; Matysiak, H.; Grzanka, E.; Gierlotka, S.; Mazur, P. Method of preparation and structural properties of transparent YAG nanoceramics. Opt. Mater. 2007, 29, 1252–1257. [Google Scholar] [CrossRef]
- Degen, T.; Sadki, M.; Bron, E.; König, U.; Nénert, G. The high score suite. In Powder Diffraction; Cambridge University Press: Cambridge, UK, 2014; Volume 29, pp. S13–S18. [Google Scholar]
- Van Roosmalen, J.A.M.; Cordfunke, E.H.P.; Helmholdt, R.B.; Zandbergen, H.W. The defect chemistry of lamno3±δ. 2. structural aspects of lamno3+δ. J. Solid State Chem. 1994, 110, 100–105. [Google Scholar] [CrossRef]
- Ma, F.; Jiao, Y.; Jiang, Z.; Du, A. Rhombohedral Lanthanum Manganite: A New Class of Dirac Half-Metal with Promising Potential in Spintronics. ACS Appl. Mater. Interfaces 2018, 10, 36088–36093. [Google Scholar] [CrossRef]
- Markovich, V.; Fita, I.; Mogilyansky, D.; Wisniewski, A.; Puzniak, R.; Titelman, L.; Vradman, L.; Herskowitz, M.; Gorodetsky, G. Effect of particle size on magnetic properties of LaMnO3 + δ nanoparticles. Superlattices Microstruct. 2008, 44, 476–482. [Google Scholar] [CrossRef]
- Handbook on the Physics and Chemistry of Rare Earths, Volume 33—1st Edition. Available online: https://www.elsevier.com/books/handbook-on-the-physics-and-chemistry-of-rare-earths/gschneidner/978-0-444-51323-6 (accessed on 20 November 2020).
- Gluchowski, P.; Stręk, W. Luminescence and excitation spectra of Cr3+:MgAl2O4 nanoceramics. Mater. Chem. Phys. 2013, 140, 222–227. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, J. Microstrain and grain-size analysis from diffraction peak width and graphical derivation of high-pressure thermomechanics. J. Appl. Crystallogr. 2008, 41, 1095–1108. [Google Scholar] [CrossRef] [Green Version]
- Gálvez, M.E.; Jacot, R.; Scheffe, J.; Cooper, T.; Patzke, G.; Steinfeld, A. Physico-chemical changes in Ca, Sr and Al-doped La–Mn–O perovskites upon thermochemical splitting of CO2via redox cycling. Phys. Chem. Chem. Phys. 2015, 17, 6629. [Google Scholar] [CrossRef] [PubMed]
- Mikhaylov, V.I.; Zubov, E.E.; Pashchenko, A.V.; Varyukhin, V.N.; Shtaba, V.A.; Dyakonov, V.P.; Szewczyk, A.; Abal’oshev, A.; Piotrowski, K.; Lewandowski, S.J.; et al. Comparison of pressure, magnetic-field, and excess manganese effects on transport properties of film and bulk ceramic La–Ca manganites. Low Temp. Phys. 2006, 32, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Guarieiro, L.L.N.; Guarieiro, A.L.N. Impact of the Biofuels Burning on Particle Emissions from the Vehicular Exhaust. In Biofuels—Status and Perspective; InTech: London, UK, 2015. [Google Scholar]
- Zhang, C.; Wang, C.; Zhan, W.; Guo, Y.; Guo, Y.; Lu, G.; Baylet, A.; Giroir-Fendler, A. Catalytic oxidation of vinyl chloride emission over LaMnO3 and LaB0.2Mn0.8O3 (B = Co, Ni, Fe) catalysts. Appl. Catal. B Environ. 2013, 129, 509–516. [Google Scholar] [CrossRef]
- Qi, G.; Yang, R.T. Characterization and FTIR studies of MnOx-CeO2 catalyst for low-temperature selective catalytic reduction of NO with NH3. J. Phys. Chem. B 2004, 108, 15738–15747. [Google Scholar] [CrossRef]
- Wang, F.; Dai, H.; Deng, J.; Bai, G.; Ji, K.; Liu, Y. Manganese Oxides with Rod-, Wire-, Tube-, and Flower-Like Morphologies: Highly Effective Catalysts for the Removal of Toluene. Environ. Sci. Technol. 2012, 46, 4034–4041. [Google Scholar] [CrossRef] [PubMed]
- Kucharczyk, B.; Tylus, W. Partial substitution of lanthanum with silver in the LaMnO3 perovskite: Effect of the modification on the activity of monolithic catalysts in the reactions of methane and carbon oxide oxidation. Appl. Catal. A: Gen. 2008, 335, 28–36. [Google Scholar] [CrossRef]
- Zhou, T.; Fan, W.; Liu, Y.; Wang, X. Comparative assessment of the chronic effects of five nano-perovskites on Daphnia magna: A structure-based toxicity mechanism. Environ. Sci. Nano 2018, 5, 708–719. [Google Scholar] [CrossRef]
- Figueiras, F.G.; Karpinsky, D.; Tavares, P.B.; Gonçalves, J.N.; Yañez-Vilar, S.; Moreira Dos Santos, A.F.; Franz, A.; Tovar, M.; Agostinho Moreira, J.; Amaral, V.S. Novel multiferroic state and ME enhancement by breaking the AFM frustration in LuMn1-xO3. Phys. Chem. Chem. Phys. 2017, 19, 1335–1341. [Google Scholar] [CrossRef]
- Troyanchuk, I.O.; Bushinsky, M.V.; Karpinsky, D.V.; Sikolenko, V.V.; Gavrilov, S.A.; Silibin, M.V.; Franz, A.; Ritter, C. Magnetic and magnetotransport properties of La1−xSrxMn0.5Co0.5O3 perovskites. Ceram. Int. 2018, 44, 1432–1437. [Google Scholar] [CrossRef]
- Coey, J.M.D.; Viret, M.; Von Molnár, S. Mixed-valence manganites. Adv. Phys. 1999, 48, 167–293. [Google Scholar] [CrossRef]
- García-Muñoz, J.; Fontcuberta, J.; Martinez, B.; Seffar, A.; Pinol, S.; Obradors, X. Magnetic frustration in mixed valence manganites. Phys. Rev. B Condens. Matter Mater. Phys. 1997, 55, R668–R671. [Google Scholar] [CrossRef]
Crystallite Size | a, b | c | V | Strain | |
---|---|---|---|---|---|
nm | Å | Å | Å3 | % | |
Powders | |||||
La0.9Li0.1Mn0.9Co0.1O3 Rwp = 2.897; Rexp = 1.991; GOF = 2.119 | 22 | 5.5073(3) | 13.3145(3) | 349.73(4) (58.29) | 0.008 |
La0.9Na0.1Mn0.9Co0.1O3 Rwp = 3.216; Rexp = 1.993; GOF = 3.113 | 26 | 5.5041(1) | 13.3375(4) | 349.92(9) (58.32) | 0.045 |
La0.9K0.1Mn0.9Co0.1O3 Rwp = 4.285; Rexp = 2.012; GOF = 4.899 | 33 | 5.5127(1) | 13.3567(3) | 351.52(8) (58.59) | 0.054 |
Ceramics | |||||
La0.9Li0.1Mn0.9Co0.1O3 Rwp = 11.004; Rexp = 8.322; GOF = 9.849 | 9 | 5.5060(8) | 13.3123(7) | 348.64(3) (58.11) | 0.063 |
La0.9Na0.1Mn0.9Co0.1O3 Rwp = 13.415; Rexp = 9.071; GOF = 10.185 | 11 | 5.5080(3) | 13.3198(7) | 349.47(6) (58.25) | 0.065 |
La0.9K0.1Mn0.9Co0.1O3 Rwp = 17.080; Rexp = 12.096; GOF = 14.003 | 12 | 5.5058(7) | 13.3755(8) | 351.15(2) (58.55) | 0.077 |
Mn Oxidation State (%) | Co Oxidation State (%) | |||
---|---|---|---|---|
3+ | 4+ | 2+ | 3+ | |
Powders | ||||
La0.9Li0.1Mn0.9Co0.1O3 | 73.2 | 26.8 | 61.1 | 38.9 |
La0.9Na0.1Mn0.9Co0.1O3 | 75.2 | 24.8 | 42.9 | 57.1 |
La0.9K0.1Mn0.9Co0.1O3 | 67.2 | 32.8 | 39.9 | 60.1 |
Ceramics | ||||
La0.9Li0.1Mn0.9Co0.1O3 | 75.8 | 24.2 | 60.2 | 39.8 |
La0.9Na0.1Mn0.9Co0.1O3 | 65.1 | 34.9 | 41.7 | 58.3 |
La0.9K0.1Mn0.9Co0.1O3 | 66.3 | 33.7 | 37.0 | 63.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Głuchowski, P.; Nikonkov, R.; Tomala, R.; Stręk, W.; Shulha, T.; Serdechnova, M.; Zarkov, A.; Murauskas, T.; Pakalaniškis, A.; Skaudžius, R.; et al. Impact of Alkali Ions Codoping on Magnetic Properties of La0.9A0.1Mn0.9Co0.1O3 (A: Li, K, Na) Powders and Ceramics. Appl. Sci. 2020, 10, 8786. https://doi.org/10.3390/app10248786
Głuchowski P, Nikonkov R, Tomala R, Stręk W, Shulha T, Serdechnova M, Zarkov A, Murauskas T, Pakalaniškis A, Skaudžius R, et al. Impact of Alkali Ions Codoping on Magnetic Properties of La0.9A0.1Mn0.9Co0.1O3 (A: Li, K, Na) Powders and Ceramics. Applied Sciences. 2020; 10(24):8786. https://doi.org/10.3390/app10248786
Chicago/Turabian StyleGłuchowski, Paweł, Ruslan Nikonkov, Robert Tomala, Wiesław Stręk, Tatsiana Shulha, Maria Serdechnova, Aleksej Zarkov, Tomas Murauskas, Andrius Pakalaniškis, Ramūnas Skaudžius, and et al. 2020. "Impact of Alkali Ions Codoping on Magnetic Properties of La0.9A0.1Mn0.9Co0.1O3 (A: Li, K, Na) Powders and Ceramics" Applied Sciences 10, no. 24: 8786. https://doi.org/10.3390/app10248786
APA StyleGłuchowski, P., Nikonkov, R., Tomala, R., Stręk, W., Shulha, T., Serdechnova, M., Zarkov, A., Murauskas, T., Pakalaniškis, A., Skaudžius, R., Kareiva, A., Kholkin, A., Bushinsky, M., Latushka, S., & Karpinsky, D. (2020). Impact of Alkali Ions Codoping on Magnetic Properties of La0.9A0.1Mn0.9Co0.1O3 (A: Li, K, Na) Powders and Ceramics. Applied Sciences, 10(24), 8786. https://doi.org/10.3390/app10248786