Variables Affecting Peri-Implant Radiographic Bone Loss-8-23 Years Follow-Up
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Data
2.2. Dental Data
2.3. Implant Data
- Brand, length, and diameter; connection type (internal hex or external hex) of implants that were installed at T0; installation timing (immediate, early (up to 8 weeks after tooth extraction), late (healed ridge)); bone augmentation data: guided bone regeneration (GBR)—yes/no, sinus floor augmentation—yes/no. If yes, lateral window or trans-crestal approach; implant explantation—yes/no, if yes, date of explanation.
- At Tf: Probing depth at deepest site, bleeding on probing (BOP)—yes/no, plaque on supra-structure—yes/no.
- Restoration (supra-structure): timing of restoration—late/immediate; restoration type—removable, fixed single, fixed multiple; restoration quality—proper, overhanging margins, and ill-fitting margins (gap).
- Antagonist—absence of antagonist, teeth (intact or with filling material), tooth borne restoration (fixed/removable), and implant restoration (fixed/removable).
2.4. Radiographic Data
- Mesial and distal bone level were measured at T0 and Tf. (Figure 1a and Figure 1b, respectively). Radiographs were analyzed using a computer program (VixWin ProVrs. 1.5e Gendex Dental Systems. KAVO DENTAL 200 S Kraemer Blvd, Building E2 Brea, CA 92821). Analogue radiographs were digitalized with a flatbed scanner (Epson Expression 1680pro; Seiko Epson Corp.) with 600 dpi resolution and eight-bit grey values. The image files were stored as TIFF files and analyzed using the computer program VixWin on a 24’ flat screen (Philips 243V5Q, 1920 × 1080; Philips) in a particular room under exclusion of natural or artificial light except the screen. After calibration using the implant’s diameter, mesial and distal distances between implant shoulder and bone crest were measured using the ruler measurement tool. The degree of accuracy was 0.05 mm. A single trained and calibrated investigator (MS) performed the evaluation of all radiographs. Replicate measurements were done on 23 implants.
- Radiographic bone level change (the differences in radiographic bone level between Tf and T0 were calculated separately for mesial and distal of each implant. The larger of them was chosen for further calculation of mean implant bone loss).
- For the construction of a model of factors associated with peri-implant radiographic bone loss a new variable, "excess bone loss" was defined, consisting of peri-implant bone loss over the first year, of 1.5 mm, and the subsequent loss per year of 0.1 mm. The threshold for each implant was therefore calculated as 1.5 mm + 0.1 * (Tf - T0) years. Implants were categorized as 1 if the threshold was exceeded and 0 otherwise. With this variable, logistic regression was performed.
3. Statistical Analysis
- Bivariate analyses of factors influencing implant bone loss were performed using logistic regression for the calculation of the odds ratio (OR) with 95% confidence intervals (CI) and p-values.
- Mixed logistic regression analysis was performed to construct a model for assessment of the relation between general data, dental, and implant data. All variables with a p-value < 0.2 in bivariate analyses were selected as candidates for the multivariate analysis [20].
- “Goodness-of-fit” of the model was elaborated with receiver operating characteristic (ROC) analyses. ROC analysis provides tools to select possibly optimal models and to discard suboptimal ones independently from (and prior to specifying) the cost context or the class distribution. ROC analysis is related in a direct and natural way to cost/benefit analysis of diagnostic decision making. ROC is a probability curve and the Area Under the Curve (AUC) represents degree or measure of separability. It tells how much a model is capable of distinguishing between classes. In the present study, the higher the AUC, the better the model explains the association between parameters and peri-implant bone loss. Values over 70% indicate a good fit of the model [21].
4. Results
4.1. General Data
4.2. Dental Data
4.3. Implant Data
4.4. Radiographic Data
4.5. Intervariable Interactions
4.6. Mixed Logistic Regression
4.7. ROC Curve
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Buser, D.; Mericske-Stern, R.; Bernard, J.P.P.; Behneke, A.; Behneke, N.; Hirt, H.P.; Belser, U.C.; Lang, N.P. Long-term evaluation of non-submerged ITI implants. Part 1: 8-year life table analysis of a prospective multi-center study with 2359 implants. Clin. Oral Implant. Res. 1997, 8, 161–172. [Google Scholar] [CrossRef]
- E Pjetursson, B.; Asgeirsson, A.G.; Zwahlen, M.; Sailer, I. Improvements in Implant Dentistry over the Last Decade: Comparison of Survival and Complication Rates in Older and Newer Publications. Int. J. Oral Maxillofac. Implant. 2014, 29, 308–324. [Google Scholar] [CrossRef] [Green Version]
- De Angelis, F.; Papi, P.; Mencio, F.; Rosella, D.; Di Carlo, S.; Pompa, G. Implant survival and success rates in patients with risk factors: Results from a long-term retrospective study with a 10 to 18 years follow-up. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 433–437. [Google Scholar]
- Van Velzen, F.J.; Ofec, R.; Schulten, E.A.J.M.; Bruggenkate, C.M.T. 10-year survival rate and the incidence of peri-implant disease of 374 titanium dental implants with a SLA surface: A prospective cohort study in 177 fully and partially edentulous patients. Clin. Oral Implant. Res. 2015, 26, 1121–1128. [Google Scholar] [CrossRef]
- Araujo, M.G.; Lindhe, J. Peri-implant health. J. Clin. Periodontol. 2018, 45, S230–S236. [Google Scholar] [CrossRef] [Green Version]
- Lindquist, L.W.; Carlsson, G.E.; Jemt, T. A prospective 15-year follow- up study of mandibular fixed prostheses supported by osseointegrated implants. Clinical results and marginal bone loss. Clin. Oral Implant. Res. 1996, 7, 329–336. [Google Scholar] [CrossRef]
- Cochran, D.L.; Nummikoski, P.V.; Schoolfield, J.D.; Jones, A.A.; Oates, T.W. A Prospective Multicenter 5-Year Radiographic Evaluation of Crestal Bone Levels Over Time in 596 Dental Implants Placed in 192 Patients. J. Periodontol. 2009, 80, 725–733. [Google Scholar] [CrossRef]
- Albrektsson, T.; Zarb, G.; Worthington, P.; Eriksson, A.R. The long-term efficacy of currently used dental implants: A review and proposed criteria of success. Int. J. Oral Maxillofac. Implant. 1986, 1, 11–25. [Google Scholar]
- Berglundh, T.; Armitage, G.; Araujo, M.G.; Avila-Ortiz, G.; Blanco, J.; Camargo, P.M.; Chen, S.; Cochran, D.; Derks, J.; Figuero, E.; et al. Peri-implant diseases and conditions: Consensus report of workgroup 4 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Clin. Periodontol. 2018, 45, S286–S291. [Google Scholar] [CrossRef] [Green Version]
- Roccuzzo, M.; De Angelis, N.; Bonino, L.; Aglietta, M. Ten-year results of a three-arm prospective cohort study on implants in periodontally compromised patients. Part 1: Implant loss and radiographic bone loss. Clin. Oral Implant. Res. 2010, 21, 490–496. [Google Scholar] [CrossRef]
- Rinke, S.; Ohl, S.; Ziebolz, D.; Lange, K.; Eickholz, P. Prevalence of periimplant disease in partially edentulous patients: A practice-based cross-sectional study. Clin. Oral Implant. Res. 2011, 22, 826–833. [Google Scholar] [CrossRef]
- Mir-Mari, J.; Mir-Orfila, P.; Figueiredo, R.; Valmaseda-Castellón, E.; Gay-Escoda, C. Prevalence of peri-implant diseases. A cross-sectional study based on a private practice environment. J. Clin. Periodontol. 2012, 39, 490–494. [Google Scholar] [CrossRef]
- Frisch, E.; Wild, V.; Ratka-Krüger, P.; Vach, K.; Sennhenn-Kirchner, S. Long-term results of implants and implant-supported prostheses under systematic supportive implant therapy: A retrospective 25-year study. Clin. Implant. Dent Relat. Res. 2020. [Google Scholar] [CrossRef] [PubMed]
- Alsaadi, G.; Quirynen, M.; Michiles, K.; Teughels, W.; Komárek, A.; Van Steenberghe, D. Impact of local and systemic factors on the incidence of failures up to abutment connection with modified surface oral implants. J. Clin. Periodontol. 2008, 35, 51–57. [Google Scholar] [CrossRef]
- Pihlstrom, B.L.; Carlson, J.F.; Smith, Q.T.; Bastien, S.A.; Keenan, K.M. Prevention of Phenytoin Associated Gingival Enlargement—A 15-Month Longitudinal Study. J. Periodontol. 1980, 51, 311–317. [Google Scholar] [CrossRef]
- Lucas, R.M.; Howell, L.P.; Wall, B.A. Nifedipine-Induced Gingival Hyperplasia: A Histochemical and Ultrastructural Study. J. Periodontol. 1985, 56, 211–215. [Google Scholar] [CrossRef]
- Seymour, R.A.; Jacobs, D.J. Cyclosporin and the gingival tissues. J. Clin. Periodontol. 1992, 19, 1–11. [Google Scholar] [CrossRef]
- Ainamo, J.; Bay, I. Problems and proposals for recording gingivitis and plaque. Int. Dent. J. 1975, 25, 229–235. [Google Scholar]
- Silness, J.; Löe, H. Periodontal disease in pregnancy. II Corelation between oral hygiene and periodontal condition. Acta Odontol. Scand. 1964, 22, 112–135. [Google Scholar] [CrossRef]
- Katz, M.H. Multivariable Analysis: A Practical Guide for Clinicians and Public Health Researchers, 3rd ed.; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2000; pp. 156–164. [Google Scholar]
- Trombelli, L.; Farina, R.; Silva, C.O.; Tatakis, D.N. Plaque-induced gingivitis: Case definition and diagnostic considerations. J. Periodontol. 2018, 89, S46–S73. [Google Scholar] [CrossRef] [Green Version]
- Armitage, G.C. Development of a Classification System for Periodontal Diseases and Conditions. Ann. Periodontol. 1999, 4, 1–6. [Google Scholar] [CrossRef]
- Lin, L.I. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989, 45, 255–268. [Google Scholar] [CrossRef]
- McBride, G.B. A Proposal for Strength-of-Agreement Criteria for Lin’S Concordance Correlation Coefficient. NIWA Client Report: HAM2005-062; National Institute of Water & Atmospheric Research: Hamilton, New Zealand, 2005. [Google Scholar]
- Jafarian, M.; Bayat, M.; Pakravan, A.-H.; Emadi, N. Analysis of the Factors Affecting Surgical Success of Implants Placed in Iranian Warfare Victims. Med. Princ. Pract. 2016, 25, 449–454. [Google Scholar] [CrossRef] [Green Version]
- Gehrke, S.A.; Aramburú Júnior, J.S.; Pérez-Albacete Martínez, C.; Ramirez Fernandez, M.P.; Maté Sánchez de Val, J.E.; Calvo-Guirado, J.L. The influence of drill length and irrigation system on heat production during osteotomy preparation for dental implants: An ex vivo study. Clin. Oral Implant. Res. 2018, 29, 772–778. [Google Scholar] [CrossRef]
- Albrektsson, T.; Buser, D.; Sennerby, L. On crestal/marginal bone loss around dental implants. Int. J. Periodontics Restor. Dent. 2013, 33, 9–11. [Google Scholar]
- Argollo, L.M.D.S.C.D.T.E.; Francischone, C.E.; Duarte, L.R.; Senna, P.M.; Assis, N.M.S.P.; Sotto-Maior, B.S. Marginal Bone Remodeling Around Dental Implants with Hexagon External Connection After 10 Years: A Case Series with 10 to 19 Years of Function. Int. J. Periodontics Restor. Dent. 2019, 39, 703–708. [Google Scholar]
- Glibert, M.; Vervaeke, S.; Jacquet, W.; Vermeersch, K.; Östman, P.-O.; De Bruyn, H. A randomized controlled clinical trial to assess crestal bone remodeling of four different implant designs. Clin. Implant. Dent. Relat. Res. 2018, 20, 455–462. [Google Scholar] [CrossRef]
- Pjetursson, B.E.; A Valente, N.; Strasding, M.; Zwahlen, M.; Liu, S.; Sailer, I. A systematic review of the survival and complication rates of zirconia-ceramic and metal-ceramic single crowns. Clin. Oral Implant. Res. 2018, 29, 199–214. [Google Scholar] [CrossRef] [Green Version]
- Bidra, A.S.; Rungruanganunt, P. Clinical Outcomes of Implant Abutments in the Anterior Region: A Systematic Review. J. Esthet. Restor. Dent. 2013, 25, 159–176. [Google Scholar] [CrossRef]
- Galindo-Moreno, P.; Fernández-Jiménez, A.; Avila-Ortiz, G.; Silvestre, F.; Hernández-Cortés, P.; Wang, H. Marginal bone loss around implants placed in maxillary native bone or grafted sinuses: A retrospective cohort study. Clin. Oral Implant. Res. 2014, 25, 378–384. [Google Scholar] [CrossRef] [Green Version]
- Galindo-Moreno, P.; León-Cano, A.; Ortega-Oller, I.; Monje, A.; O′valle, F.; Catena, A. Marginal bone loss as success criterion in implant dentistry: Beyond 2 mm. Clin. Oral Implant. Res. 2015, 26, e28–e34. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Koak, J.-Y.; Kim, S.-K.; Rhyu, I.-C.; Ku, Y.; Heo, S.-J.; Han, C.-H. A Long-Term Prospective Evaluation of Marginal Bone Level Change Around Different Implant Systems. Int. J. Oral Maxillofac. Implant. 2016, 31, 657–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Díaz-Sánchez, R.-M.; Delgado-Muñoz, J.-M.; Serrera-Figallo, M.-Á.; González-Martín, M.-I.; Torres-Lagares, D.; Gutiérrez-Pérez, J.-L. Analysis of marginal bone loss and implant stability quotient by resonance frequency analysis in different osteointegrated implant systems. Randomized prospective clinical trial. Med. Oral Patol. Oral Cir. Bucal 2019, 24, e260–e264. [Google Scholar] [CrossRef] [PubMed]
- De Medeiros, F.; Kudo, G.; Leme, B.; Saraiva, P.; Verri, F.; Honório, H.; Pellizzer, E.; Júnior, J.F.S. Dental implants in patients with osteoporosis: A systematic review with meta-analysis. Int. J. Oral Maxillofac. Surg. 2018, 47, 480–491. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, F.; Becker, K.; Sahm, N.; Horstkemper, T.; Rousi, K.; Becker, J. The prevalence of peri-implant diseases for two-piece implants with an internal tube-in-tube connection: A cross-sectional analysis of 512 implants. Clin. Oral Implant. Res. 2017, 28, 24–28. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Chen, Z.; Pan, W.-L.; Wang, H.-L. Is History of Periodontal Disease Still a Negative Risk Indicator for Peri-implant Health under Supportive Post-implant Treatment Coverage? A Systematic Review and Meta-analysis. Int. J. Oral Maxillofac. Implant. 2020, 35, 52–62. [Google Scholar] [CrossRef]
- Rammelsberg, P.; Kappel, S.; Bermejo, J.L. Effect of prosthetic restoration on implant survival and success. Clin. Oral Implant. Res. 2017, 28, 1296–1302. [Google Scholar] [CrossRef]
- Woelber, J.P.; Ratka-Krueger, P.; Frisch, E.; Vach, K. Decementation Rates and the Peri-Implant Tissue Status of Implant-Supported Fixed Restorations Retained via Zinc Oxide Cement: A Retrospective 10-23-Year Study. Clin. Implant. Dent. Relat. Res. 2016, 18, 917–925. [Google Scholar] [CrossRef]
- Frisch, E.; Vach, K.; Ratka-Krueger, P. Impact of supportive implant therapy on peri-implant diseases: A retrospective 7-year study. J. Clin. Periodontol. 2020, 47, 101–109. [Google Scholar] [CrossRef] [Green Version]
Characteristics | % (n) |
---|---|
Age (years) | 55 ± 7.6 (34.7–74) |
Gender (male/female) | 16% (6)41% (15)/59% (22) |
Smoking (no/yes) | 78% (29)/22% (8) |
Systemic Diabetes/CVD/Osteoporosis | 11% (4)/53% (13)/5% (2) |
CaCB/Phenytoin/Cyclosporin | 0 |
Anticoagulants | 16% (6) |
Characteristics | T0 | Tf |
---|---|---|
Mean patient n teeth (range) | 21.8 ± 4.2 (10–29) | |
Mean patient n implants (range) | 1 ± 1.5 (0–5) | |
Mean n PD≥ 5mm (range) | 6.7 ± 8.5 (0–40) | 6.9 ± 9.2 (0–44) |
FMBS (%) (range) | 19.5% ± 15.4% (1–80%) | 24.5% ± 16.3% (0–67%) |
PI (range) | 1.1 ± 0.4 (0.3–2) | 1.3 ± 0.5 (0–2.5) |
SPT/year | 2.6 ± 1.4 (0–5) |
Characteristics | % (n) |
---|---|
Deepest PD at implant (≤3/4–6/≥7mm) | 49.3% (70)/42.3% (60)/8.4% (2) |
BOP at implant (no/yes) | 16.7% (22)/83.3% (110) |
PlI at implant (no/yes) | 12% (7)/88% (125) |
Timing of implantation (immediate/early/late) | 95.8% (136)/2.8% (4)/1.4% (2) |
Implant dimensions: Diameter (3.7–4mm/4.1–5mm) Length (10–12mm/13–16mm) | 62% (88)/38% (54) 69.7% (99)/30.3% (43) |
GBR (no/yes) | 62% (88)/38% (54) |
Sinus augmentation (no/transcrestal/lateral window) | 69% (98)/8.5% (12)/22.5% (32) |
Restoration type (fixed single/multiple) | 24% (34)/76% (108) |
Restoration quality—proper/overhanging margin/ill-fitting margin (gap) | 78.9% (112)/4.2% (6)/16.9% (24) |
Antagonist (tooth/implant/fixed/removable) | 38% (54)/16.2% (23)/40.8% (58)/5% (7) |
Characteristics | % (n) * Excess Bone Loss | p Value | ** OR | *** CI |
---|---|---|---|---|
With GBR | ||||
ext. hex | 29% (9) | |||
int. hex | 26.1% (6) | 0.811 | ||
Without GBR | ||||
ext. hex | 5.4% (2) | |||
int. hex | 31.4% (16) | 0.008 | 8 | 1.71–37.42 |
T0 n Teeth and n Implants | ||||
≥20 and <2 | 11.8% (4) | |||
<20 or ≥2 | 23.9% (17) | 0.153 | ||
<20 and ≥ 2 | 32.4% (12) | 0.045 | 3.6 | 1.03–12.56 |
Upper jaw | ||||
ext. hex | 20% (6) | |||
int. hex | 27.1% (13) | 0.48 | ||
Lower jaw | ||||
ext. hex | 13.2% (5) | |||
int. hex | 34.6% (9) | 0.048 | 3.49 | 1.01–12.07 |
Implant dimensions | ||||
Length Diameter | ||||
≤12 and ≤4 | 13.2% (7) | |||
>13 or >4 | 29.2% (26) | 0.033 | 2.71 | 1.08–6.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saminsky, M.; Ben Dor, A.; Horwitz, J. Variables Affecting Peri-Implant Radiographic Bone Loss-8-23 Years Follow-Up. Appl. Sci. 2020, 10, 8591. https://doi.org/10.3390/app10238591
Saminsky M, Ben Dor A, Horwitz J. Variables Affecting Peri-Implant Radiographic Bone Loss-8-23 Years Follow-Up. Applied Sciences. 2020; 10(23):8591. https://doi.org/10.3390/app10238591
Chicago/Turabian StyleSaminsky, Michael, Anat Ben Dor, and Jacob Horwitz. 2020. "Variables Affecting Peri-Implant Radiographic Bone Loss-8-23 Years Follow-Up" Applied Sciences 10, no. 23: 8591. https://doi.org/10.3390/app10238591
APA StyleSaminsky, M., Ben Dor, A., & Horwitz, J. (2020). Variables Affecting Peri-Implant Radiographic Bone Loss-8-23 Years Follow-Up. Applied Sciences, 10(23), 8591. https://doi.org/10.3390/app10238591