Antioxidant Properties of Soybean Oil Supplemented with Ginger and Turmeric Powders
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of the Ginger and Turmeric Powders
2.3. Preparation and Phenolic Extraction of the Ginger- and Turmeric-Supplemented Soybean Oils
2.4. Determination of Total Polyphenols
2.5. HPLC Analysis of 6-Gingerol, 6-Shogaol and Curcumin
2.6. Determination of Antioxidant Activity
2.7. Determination of Oxidative Stability
2.8. Statistical Analysis
3. Results and Discussion
3.1. Phenolic Characterization of Ginger- and Turmeric-Supplemented Soybean Oils
3.2. Antioxidant Activity of Ginger- and Turmeric-Supplemented Soybean Oils
3.3. Oxidative Stability of Ginger- and Turmeric-Supplemented Soybean Oils
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Su, C.; Gupta, M.; White, P. Oxidative and flavor stabilities of soybean oils with low-and ultra-low-linolenic acid composition. J. Am. Oil Chem. Soc. 2003, 80, 171–176. [Google Scholar] [CrossRef]
- Tinello, F.; Lante, A.; Bernardi, M.; Cappiello, F.; Galgano, F.; Caruso, M.C.; Favati, F. Comparison of OXITEST and RANCIMAT methods to evaluate the oxidative stability in frying oils. Eur. Food Res. Technol. 2018, 244, 747–755. [Google Scholar] [CrossRef]
- Johnson, D.R.; Decker, E.A. The Role of Oxygen in Lipid Oxidation Reactions: A Review. Annu. Rev. Food Sci. Technol. 2015, 6, 170–190. [Google Scholar] [CrossRef] [PubMed]
- Carocho, M.; Morales, P.; Ferreira, I.C. Antioxidants: Reviewing the chemistry, food applications, legislation and role as preservatives. Trends Food Sci. Technol. 2018, 71, 107–120. [Google Scholar] [CrossRef]
- Lante, A.; Nardi, T.; Zocca, F.; Giacomini, A.; Corich, V. Evaluation of red chicory extract as a natural antioxidant by pure lipid oxidation and yeast oxidative stress response as model systems. J. Agric. Food Chem. 2011, 59, 5318–5324. [Google Scholar] [CrossRef]
- Mihaylova, D.S.; Lante, A.; Tinello, F.; Krastanov, A.I. Study on the antioxidant and antimicrobial activities of Allium ursinum L. pressurised-liquid extract. Nat. Prod. Res. 2014, 28, 2000–2005. [Google Scholar] [CrossRef]
- Eshghi, N.; Asnaashari, M.; Haddad Khodaparast, M.H.; Hosseini, F. Evaluating the potential of natural curcumin for oxidative stability of soybean oil. Nat. Prod. Res. 2014, 28, 1375–1378. [Google Scholar] [CrossRef]
- Taghvaei, M.; Jafari, S.M.; Mahoonak, A.S.; Nikoo, A.M.; Rahmanian, N.; Hajitabar, J.; Meshginfar, N. The effect of natural antioxidants extracted from plant and animal resources on the oxidative stability of soybean oil. LWT-Food Sci. Technol. 2014, 56, 124–130. [Google Scholar] [CrossRef]
- Mohammadi, A.; Jafari, S.M.; Esfanjani, A.F.; Akhavan, S. Application of nano-encapsulated olive leaf extract in controlling the oxidative stability of soybean oil. Food Chem. 2016, 190, 513–519. [Google Scholar] [CrossRef]
- Saoudi, S.; Chammem, N.; Sifaoui, I.; Bouassida-Beji, M.; Jiménez, I.A.; Bazzocchi, I.L.; Silva, S.D.; Moktar, H.; Bronze, M.R. Influence of Tunisian aromatic plants on the prevention of oxidation in soybean oil under heating and frying conditions. Food Chem. 2016, 212, 503–511. [Google Scholar] [CrossRef]
- Yang, Y.; Song, X.; Sui, X.; Qi, B.; Wang, Z.; Li, Y.; Jiang, L. Rosemary extract can be used as a synthetic antioxidant to improve vegetable oil oxidative stability. Ind. Crops Prod. 2016, 80, 141–147. [Google Scholar] [CrossRef]
- Freitas, I.R.; Cattelan, M.G.; Rodrigues, M.L.; Luzia, D.M.M.; Jorge, N. Effect of grape seed extract (Vitis labrusca L.) on soybean oil under thermal oxidation. Nutr. Food Sci. 2017, 47, 610–622. [Google Scholar] [CrossRef]
- Saoudi, S.; Chammem, N.; Sifaoui, I.; Jiménez, I.A.; Lorenzo-Morales, J.; Piñero, J.E.; Bouassida-Beji, M.; Hamdi, M.; Bazzocchi, I. Combined effect of carnosol, rosmarinic acid and thymol on the oxidative stability of soybean oil using a simplex centroid mixture design. J. Sci. Food Agric. 2017, 97, 3300–3311. [Google Scholar] [CrossRef] [PubMed]
- Franco, D.; Rodriguez-Amado, I.; Agregán, R.; Munekata, P.E.; Vázquez, J.A.; Barba, F.J.; Lorenzo, J.M. Optimization of antioxidants extraction from peanut skin to prevent oxidative processes during soybean oil storage. LWT-Food Sci. Technol. 2018, 88, 1–8. [Google Scholar] [CrossRef]
- Pedro, A.C.; Maurer, J.B.B.; Zawadzki-Baggio, S.F.; Ávila, S.; Maciel, G.M.; Haminiuk, C.W.I. Bioactive compounds of organic goji berry (Lycium barbarum L.) prevents oxidative deterioration of soybean oil. Ind. Crops Prod. 2018, 112, 90–97. [Google Scholar] [CrossRef]
- Lante, A.; Tinello, F. Citrus hydrosols as useful by-products for tyrosinase inhibition. Innov. Food Sci. Emerg. Technol. 2015, 27, 154–159. [Google Scholar] [CrossRef]
- Tinello, F.; Lante, A. Evaluation of antibrowning and antioxidant activities in unripe grapes recovered during bunch thinning. Aust. J. Grape Wine Res. 2017, 23, 33–41. [Google Scholar] [CrossRef]
- Echegaray, N.; Gómez, B.; Barba, F.J.; Franco, D.; Estévez, M.; Carballo, J.; Marszałek, K.; Lorenzo, J.M. Chestnuts and by-products as source of natural antioxidants in meat and meat products: A review. Trends Food Sci. Technol. 2018, 82, 110–121. [Google Scholar] [CrossRef]
- Tinello, F.; Lante, A. Recent advances in controlling polyphenol oxidase activity of fruit and vegetable products. Innov. Food Sci. Emerg. Technol. 2018, 50, 73–83. [Google Scholar] [CrossRef]
- Gallego, R.; Bueno, M.; Herrero, M. Sub-and supercritical fluid extraction of bioactive compounds from plants, food-by-products, seaweeds and microalgae—An update. TrAC Trend. Anal. Chem. 2019, 116, 198–213. [Google Scholar] [CrossRef]
- Rodríguez-Pérez, C.; García-Villanova, B.; Guerra-Hernández, E.; Verardo, V. Grape seeds proanthocyanidins: An overview of in vivo bioactivity in animal models. Nutrients 2019, 11, 2435. [Google Scholar] [CrossRef] [PubMed]
- Romani, A.; Ieri, F.; Urciuoli, S.; Noce, A.; Marrone, G.; Nediani, C.; Bernini, R. Health effects of phenolic compounds found in extra-virgin olive oil, by-products, and leaf of Olea europaea L. Nutrients 2019, 11, 1776. [Google Scholar] [CrossRef] [PubMed]
- Roselló-Soto, E.; Barba, F.J.; Lorenzo, J.M.; Munekata, P.E.; Gómez, B.; Moltó, J.C. Phenolic profile of oils obtained from “horchata” by-products assisted by supercritical-CO2 and its relationship with antioxidant and lipid oxidation parameters: Triple TOF-LC-MS-MS characterization. Food Chem. 2019, 274, 865–871. [Google Scholar] [CrossRef] [PubMed]
- Vella, F.M.; Cautela, D.; Laratta, B. Characterization of polyphenolic compounds in cantaloupe melon by-products. Foods 2019, 8, 196. [Google Scholar] [CrossRef]
- Campos, D.A.; Ribeiro, T.B.; Teixeira, J.A.; Pastrana, L.; Pintado, M.M. Integral valorization of pineapple (Ananas comosus L.) by-products through a green chemistry approach towards added value ingredients. Foods 2020, 9, 60. [Google Scholar] [CrossRef]
- Tinello, F.; Vendramin, V.; Barros Divino, V. Co-fermentation of onion and whey: A promising synbiotic combination. J. Funct. Foods 2017, 39, 233–237. [Google Scholar] [CrossRef]
- Tinello, F.; Mihaylova, D.; Lante, A. Effect of dipping pretreatment with unripe grape juice on dried “Golden delicious” apple slices. Food Bioproc. Technol. 2018, 11, 2275–2285. [Google Scholar] [CrossRef]
- Rojo-Poveda, O.; Barbosa-Pereira, L.; Mateus-Reguengo, L.; Bertolino, M.; Stévigny, C.; Zeppa, G. Effects of particle size and extraction methods on cocoa bean shell functional beverage. Nutrients 2019, 11, 867. [Google Scholar] [CrossRef]
- Oroian, M.; Escriche, I. Antioxidants: Characterization, natural sources, extraction and analysis. Food Res. Int. 2015, 74, 10–36. [Google Scholar] [CrossRef]
- Chen, I.N.; Chang, C.C.; Ng, C.C.; Wang, C.Y.; Shyu, Y.T.; Chang, T.L. Antioxidant and antimicrobial activity of Zingiberaceae plants in Taiwan. Plant Food Hum. Nutr. 2008, 63, 15–20. [Google Scholar] [CrossRef]
- Hu, J.; Guo, Z.; Glasius, M.; Kristensen, K.; Xiao, L.; Xu, X. Pressurized liquid extraction of ginger (Zingiber officinale Roscoe) with bioethanol: An efficient and sustainable approach. J. Chromatogr. A 2011, 1218, 5765–5773. [Google Scholar] [CrossRef] [PubMed]
- Tzeng, T.F.; Liou, S.S.; Chang, C.J.; Liu, I.M. 6-gingerol protects against nutritional steatohepatitis by regulating key genes related to inflammation and lipid metabolism. Nutrients 2015, 7, 999–1020. [Google Scholar] [CrossRef] [PubMed]
- Mao, Q.Q.; Xu, X.Y.; Cao, S.Y.; Gan, R.Y.; Corke, H.; Li, H.B. Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe). Foods 2019, 8, 185. [Google Scholar] [CrossRef] [PubMed]
- Yeh, I.; Chen, S.C.; Yen, M.C.; Wu, Y.H.; Hung, C.H.; Kuo, P.L. 6-Shogaol suppresses 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP)-induced human 786-O renal cell carcinoma osteoclastogenic activity and metastatic potential. Nutrients 2019, 11, 2306. [Google Scholar] [CrossRef] [PubMed]
- Osorio-Tobón, J.F.; Carvalho, P.I.; Barbero, G.F.; Nogueira, G.C.; Rostagno, M.A.; de Almeida Meireles, M.A. Fast analysis of curcuminoids from turmeric (Curcuma longa L.) by high performance liquid chromatography using a fused-core column. Food Chem. 2016, 200, 167–174. [Google Scholar] [CrossRef]
- Hewlings, S.J.; Kalman, D.S. Curcumin: A review of its’ effects on human health. Foods 2017, 6, 92. [Google Scholar] [CrossRef]
- Rauf, A.; Imran, M.; Orhan, I.E.; Bawazeer, S. Health perspectives of a bioactive compound curcumin: A review. Trends Food Sci. Technol. 2018, 74, 33–45. [Google Scholar] [CrossRef]
- Di Meo, F.; Margarucci, S.; Galderisi, U.; Crispi, S.; Peluso, G. Curcumin, gut microbiota, and neuroprotection. Nutrients 2019, 11, 2426. [Google Scholar] [CrossRef]
- Giordano, A.; Tommonaro, G. Curcumin and cancer. Nutrients 2019, 11, 2376. [Google Scholar] [CrossRef]
- Den Hartogh, D.J.; Gabriel, A.; Tsiani, E. Antidiabetic properties of curcumin I: Evidence from in vitro studies. Nutrients 2020, 12, 118. [Google Scholar] [CrossRef]
- Tinello, F.; Lante, A. Valorisation of ginger and turmeric peels as source of natural antioxidants. Plant Food Hum. Nutr. 2019, 74, 443–445. [Google Scholar] [CrossRef] [PubMed]
- Ghasemzadeh, A.; Jaafar, H.Z.; Rahmat, A. Antioxidant activities, total phenolics and flavonoids content in two varieties of Malaysia young ginger (Zingiber officinale Roscoe). Molecules 2010, 15, 4324–4333. [Google Scholar] [CrossRef] [PubMed]
- Pawar, N.; Pai, S.; Nimbalkar, M.; Dixit, G. RP-HPLC analysis of phenolic antioxidant compound 6-gingerol from different ginger cultivars. Food Chem. 2011, 126, 1330–1336. [Google Scholar] [CrossRef]
- Li, Y.; Hong, Y.; Han, Y.; Wang, Y.; Xia, L. Chemical characterization and antioxidant activities comparison in fresh, dried, stir-frying and carbonized ginger. J. Chromatogr. B 2016, 1011, 223–232. [Google Scholar] [CrossRef]
- An, K.; Zhao, D.; Wang, Z.; Wu, J.; Xu, Y.; Xiao, G. Comparison of different drying methods on Chinese ginger (Zingiber officinale Roscoe): Changes in volatiles, chemical profile, antioxidant properties, and microstructure. Food Chem. 2016, 197, 1292–1300. [Google Scholar] [CrossRef]
- Singh, G.; Kapoor, I.P.S.; Singh, P.; De Heluani, C.S.; De Lampasona, M.P.; Catalan, C.A. Comparative study of chemical composition and antioxidant activity of fresh and dry rhizomes of turmeric (Curcuma longa Linn.). Food Chem. Toxicol. 2010, 48, 1026–1031. [Google Scholar] [CrossRef]
- AOCS. Official Methods and Recommended Practices of the AOCS, 6th ed.; AOCS: Champaign, IL, USA, 2012. [Google Scholar]
- Codex Alimentarius. General Standard for Food Additives (Codex Stan 192-1995). Available online: http://www.fao.org/fao-who-codexalimentarius/codex-texts/dbs/gsfa/en/ (accessed on 16 November 2020).
- Lee, J.; Lee, Y.; Choe, E. Temperature dependence of the autoxidation and antioxidants of soybean, sunflower, and olive oil. Eur. Food Res. Technol. 2007, 226, 239–246. [Google Scholar] [CrossRef]
- Güzel, S.; Herken, E.N.; Erel, O. Total antioxidant capacity and total phenol contents of Turkish edible oils. Akad. Gıda 2009, 7, 13–17. [Google Scholar]
- Farhoosh, R.; Einafshar, S.; Sharayei, P. The effect of commercial refining steps on the rancidity measures of soybean and canola oils. Food Chem. 2009, 115, 933–938. [Google Scholar] [CrossRef]
- Si, W.; Chen, Y.P.; Zhang, J.; Chen, Z.Y.; Chung, H.Y. Antioxidant activities of ginger extract and its constituents toward lipids. Food Chem. 2018, 239, 1117–1125. [Google Scholar] [CrossRef]
- Ribas-Agustí, A.; Martín-Belloso, O.; Soliva-Fortuny, R.; Elez-Martínez, P. Food processing strategies to enhance phenolic compounds bioaccessibility and bioavailability in plant-based foods. Crit. Rev. Food Sci. Nutr. 2018, 58, 2531–2548. [Google Scholar] [CrossRef] [PubMed]
- Stanić, Z. Curcumin, a compound from natural sources, a true scientific challenge—A review. Plant Foods Hum. Nutr. 2017, 72, 1–12. [Google Scholar] [CrossRef]
- Ak, T.; Gülçin, İ. Antioxidant and radical scavenging properties of curcumin. Chem. Biol. Interact. 2008, 174, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Tinello, F.; Lante, A. Accelerated storage conditions effect on ginger-and turmeric-enriched soybean oils with comparing a synthetic antioxidant BHT. LWT-Food Sci. Technol. 2020, 131, 109797. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Park, C.Y.; Lee, K.Y.; Gul, K.; Rahman, M.S.; Kim, A.N.; Chun, J.; Kimb, H.J.; Choi, S.G. Phenolics and antioxidant activity of aqueous turmeric extracts as affected by heating temperature and time. LWT-Food Sci. Technol. 2019, 105, 149–155. [Google Scholar] [CrossRef]
Parameters | Soybean Oils 2 | |||||
---|---|---|---|---|---|---|
GC | GP | GR | TC | TP | TR | |
Cycle 1 | ||||||
Total polyphenols (mg GAE/g) | 3.00 ± 0.08 b | 3.59 ± 0.25 b | 3.75 ± 0.10 b | 3.46 ± 0.30 b | 9.19 ± 0.73 a | 8.53 ± 0.44 a |
6-gingerol (µg/g) | 1156.50 ± 7.00 c | 1734.58 ± 17.00 a | 1352.44 ± 11.00 b | – | – | – |
6-shogaol (µg/g) | 37.43 ± 1.00 a | 20.00 ± 0.60 b | 13.75 ± 0.50 c | – | – | – |
Curcumin (µg/g) | – | – | – | 1112.62 ± 5.00 a | 5890.77 ± 18.00 b | 6032.87 ± 23.00 c |
Cycle 2 | ||||||
Total polyphenols (mg GAE/g) | 2.05 ± 0.08 c | 2.97 ± 0.27 b | 1.92 ± 0.12 c | 2.82 ± 0.08 b | 3.91 ± 0.34 a | 4.30 ± 0.25 a |
6-gingerol (µg/g) | 342.68 ± 3.00 b | 1213.93 ± 12.00 a | 226.74 ± 4.00 c | – | – | – |
6-shogaol (µg/g) | 37.79 ± 0.70 a | 19.15 ± 0.50 b | 11.97 ± 0.30 c | – | – | – |
Curcumin (µg/g) | – | – | – | 908.57 ± 9.00 c | 1427.36 ± 15.00 a | 1380.96 ± 13.00 b |
Cycle 3 | ||||||
Total polyphenols (mg GAE/g) | 1.45 ± 0.04 c | 2.24 ± 0.07 a | 1.29 ± 0.01 c | 2.33 ± 0.04 a | 1.78 ± 0.10 b | 1.83 ± 0.03 b |
6-gingerol (µg/g) | 44.84 ± 0.30 b | 364.10 ± 6.00 a | 3.22 ± 0.03 c | – | – | – |
6-shogaol (µg/g) | 36.68 ± 0.20 a | 19.49 ± 0.10 b | 8.64 ± 0.04 c | – | – | – |
Curcumin (µg/g) | – | – | – | 369.58 ± 7.00 a | 263.49 ± 3.00 b | 158.59 ± 2.00 c |
Parameters | Soybean Oils 2 | ||||||
---|---|---|---|---|---|---|---|
BHT | GC | GP | GR | TC | TP | TR | |
Cycle 1 | |||||||
DPPH (mg TE/g) | 0.15 ± 0.01 e | 3.30 ± 0.17 c | 3.64 ± 0.33 c | 3.46 ± 0.15 c | 1.89 ± 0.29 d | 7.69 ± 0.38 b | 8.71 ± 0.28 a |
FRAP (mg TE/g) | 1.32 ± 0.03 f | 5.76 ± 0.22 d | 9.80 ± 0.51 a | 6.83 ± 0.14 c | 2.06 ± 0.08 e | 9.03 ± 0.20 b | 6.98 ± 0.20 c |
Cycle 2 | |||||||
DPPH (mg TE/g) | 0.15 ± 0.01 d | 1.34 ± 0.01 bc | 2.04 ± 0.25 b | 1.28 ± 0.22 c | 1.41 ± 0.11 bc | 3.13 ± 0.39 a | 2.79 ± 0.37 a |
FRAP (mg TE/g) | 1.32 ± 0.03 c | 1.59 ± 0.05 c | 4.32 ± 0.40 a | 1.43 ± 0.05 c | 1.44 ± 0.01 c | 4.09 ± 0.08 a | 2.41 ± 0.02 b |
Cycle 3 | |||||||
DPPH (mg TE/g) | 0.15 ± 0.01 e | 0.25 ± 0.01 de | 0.79 ± 0.05 a | 0.30 ± 0.02 d | 0.63 ± 0.01 b | 0.44 ± 0.01 c | 0.70 ± 0.07 ab |
FRAP (mg TE/g) | 1.32 ± 0.03 b | 0.53 ± 0.02 e | 2.45 ± 0.05 a | 0.29 ± 0.01 f | 0.84 ± 0.01 c | 0.57 ± 0.01 e | 0.71 ± 0.01 d |
Parameters | Soybean Oils 2 | |||||||
---|---|---|---|---|---|---|---|---|
C | BHT | GC | GP | GR | TC | TP | TR | |
Cycle 1 | ||||||||
IP (h) | 4.71 ± 0.10 f | 5.04 ± 0.36 f | 7.39 ± 0.19 d | 8.25 ± 0.16 cd | 7.60 ± 0.18 bc | 6.15 ± 0.13 e | 8.80 ± 0.18 b | 10.11 ± 0.58 a |
Cycle 2 | ||||||||
IP (h) | 4.71 ± 0.10 a | 5.04 ± 0.36 a | 3.50 ± 0.24 b | 3.70 ± 0.08 b | 3.17 ± 0.11 bc | 2.73 ± 0.19 c | 3.23 ± 0.04 bc | 3.21 ± 0.10 bc |
Cycle 3 | ||||||||
IP (h) | 4.71 ± 0.10 a | 5.04 ± 0.36 a | 2.24 ± 0.02 d | 2.87 ± 0.07 b | 2.40 ± 0.12 cd | 2.36 ± 0.01 cd | 1.72 ± 0.10 e | 2.79 ± 0.03 bc |
Sample Availability: Samples of the compounds are available from the authors. | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tinello, F.; Zannoni, S.; Lante, A. Antioxidant Properties of Soybean Oil Supplemented with Ginger and Turmeric Powders. Appl. Sci. 2020, 10, 8438. https://doi.org/10.3390/app10238438
Tinello F, Zannoni S, Lante A. Antioxidant Properties of Soybean Oil Supplemented with Ginger and Turmeric Powders. Applied Sciences. 2020; 10(23):8438. https://doi.org/10.3390/app10238438
Chicago/Turabian StyleTinello, Federica, Stefania Zannoni, and Anna Lante. 2020. "Antioxidant Properties of Soybean Oil Supplemented with Ginger and Turmeric Powders" Applied Sciences 10, no. 23: 8438. https://doi.org/10.3390/app10238438
APA StyleTinello, F., Zannoni, S., & Lante, A. (2020). Antioxidant Properties of Soybean Oil Supplemented with Ginger and Turmeric Powders. Applied Sciences, 10(23), 8438. https://doi.org/10.3390/app10238438