Preparation and Characterization of Licorice-Chitosan Coatings for Postharvest Treatment of Fresh Strawberries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Fruit
2.2. Preparation of Licorice Extracts
2.3. Content of Total Phenolic Compounds (TPC) and Antioxidant Activity
2.4. Determination of Antimicrobial Activity of Licorice Extracts
2.5. HPLC Analysis
2.6. Preparation of Coating Forming Solutions
2.6.1. Rheological Properties of Coating Solutions and Films
Steady-State Shear Test
Oscillatory Test
Preparation of the Film
Creep and Recovery
2.7. Application of Coatings on Strawberry and Quality Parameters
2.7.1. Fungal Decay Percentage
2.7.2. Determination of Weight Loss
2.7.3. Determination of pH and Titratable Acidity (TA)
2.7.4. Content of Total Phenolic Compounds (TPC)
2.7.5. Microbiological Analysis of Strawberries
2.8. Statistical Analysis
3. Results and Discussion
3.1. Extraction Yield of Licorice Extracts and Quantification of Bioactive Compounds
3.2. TPC, Antioxidant and Antimicrobial Activity of Licorice Extracts
3.2.1. TPC and Antioxidant Activity
3.2.2. Antimicrobial Activity
3.2.3. Selection of Licorice Extract for Preparing Edible Coatings
3.3. Rheology of the Edible Coating Solution
3.3.1. Steady Rheological Properties
3.3.2. Dynamic Rheological Properties
3.3.3. Rheological Properties of Edible Film
3.4. Effect of Chitosan-Licorice Edible Coatings on Strawberries’ Quality
3.4.1. Physicochemical Effects
3.4.2. Total Phenolic Compounds Content and Microbiology Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Valdés, A.; Ramos, M.; Beltrán, A.; Jiménez, A.; Garrigós, M.C. State of the Art of Antimicrobial Edible Coatings for Food Packaging Applications. Coatings 2017, 7, 56. [Google Scholar] [CrossRef] [Green Version]
- Elsabee, M.; Abdou, E.S. Chitosan based edible films and coatings: A review. Mater. Sci. Eng. C 2013, 33, 1819–1841. [Google Scholar] [CrossRef] [PubMed]
- Dhall, R.K. Advances in Edible Coatings for Fresh Fruits and Vegetables: A Review. Crit. Rev. Food Sci. Nutr. 2013, 53, 435–450. [Google Scholar] [CrossRef] [PubMed]
- García, M.A.; Pinotti, A.; Martino, M.N.; Zaritzky, N.E. Characterization of Starch and Composite Edible Films and Coatings. In Edible Films and Coatings for Food Applications; Springer: New York, NY, USA, 2009; pp. 169–209. [Google Scholar]
- Silva-Weiss, A.; Bifani, V.; Ihl, M.; Sobral, P.J.A.; Guillén, M.C.G. Structural properties of films and rheology of film-forming solutions based on chitosan and chitosan-starch blend enriched with murta leaf extract. Food Hydrocoll. 2013, 31, 458–466. [Google Scholar] [CrossRef] [Green Version]
- Aguirre-Joya, J.A.; De Leon-Zapata, M.A.; Alvarez-Perez, O.B.; Torres-León, C.; Nieto-Oropeza, D.E.; Ventura-Sobrevilla, J.M.; Aguilar, M.A.; Ruelas-Chacón, X.; Rojas, R.; Ramos-Aguiñaga, M.E.; et al. Basic and Applied Concepts of Edible Packaging for Foods. In Food Packaging and Preservation; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–61. [Google Scholar]
- Ravi Kumar, M.N.V. A review of chitin and chitosan applications. React. Funct. Polym. 2000, 46, 1–27. [Google Scholar] [CrossRef]
- Devlieghere, F.; Vermeulen, A.; Debevere, J. Chitosan: Antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiol. 2004, 21, 703–714. [Google Scholar] [CrossRef]
- Duan, J.; Cherian, G.; Zhao, Y. Quality enhancement in fresh and frozen lingcod (Ophiodon elongates) fillets by employment of fish oil incorporated chitosan coatings. Food Chem. 2010, 119, 524–532. [Google Scholar] [CrossRef]
- Odila Pereira, J.; Soares, J.; Sousa, S.; Madureira, A.R.; Gomes, A.; Pintado, M. Edible films as carrier for lactic acid bacteria. LWT Food Sci. Technol. 2016, 73, 543–550. [Google Scholar] [CrossRef]
- Ghaouth, A.; Arul, J.; Ponnampalam, R.; Boulet, M. Chitosan Coating Effect on Storability and Quality of Fresh Strawberries. J. Food Sci. 1991, 56, 1618–1620. [Google Scholar] [CrossRef]
- Zhang, D.; Quantick, P.C. Antifungal effects of chitosan coating on fresh strawberries and raspberries during storage. J. Hortic. Sci. Biotechnol. 1998, 73, 763–767. [Google Scholar] [CrossRef]
- Duran, M.; Aday, M.S.; Zorba, N.N.D.; Temizkan, R.; Büyükcan, M.B.; Caner, C. Potential of antimicrobial active packaging ‘containing natamycin, nisin, pomegranate and grape seed extract in chitosan coating’ to extend shelf life of fresh strawberry. Food Bioprod. Process. 2016, 98, 354–363. [Google Scholar] [CrossRef]
- Pinzon, M.I.; Sanchez, L.T.; Garcia, O.R.; Gutierrez, R.; Luna, J.C.; Villa, C.C. Increasing shelf life of strawberries (Fragaria ssp) by using a banana starch-chitosan-Aloe vera gel composite edible coating. Int. J. Food Sci. Technol. 2019, 55, 92–98. [Google Scholar] [CrossRef]
- Martínez, K.; Ortiz, M.; Albis, A.; Castañeda, C.G.G.; Valencia, M.E.; Tovar, C.D.G. The Effect of Edible Chitosan Coatings Incorporated with Thymus capitatus Essential Oil on the Shelf-Life of Strawberry (Fragaria x ananassa) during Cold Storage. Biomolecules 2018, 8, 155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahbazi, Y. Application of carboxymethyl cellulose and chitosan coatings containing Mentha spicata essential oil in fresh strawberries. Int. J. Biol. Macromol. 2018, 112, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Apriyanti, D.; Rokhati, N.; Mawarni, N.; Khoiriyah, Z.; Istirokhatun, T. Edible Coating from Green Tea Extract and Chitosan to Preserve Strawberry (Fragaria vesca L.). In Proceedings of the The 24th Regional Symposium on Chemical Engineering (RSCE 2017), Semarang, Indonesia, 15–16 November 2017. [Google Scholar]
- Almenar, E.; Del-Valle, V.; Hernández-Muñoz, P.; Lagarón, J.M.; Catalá, R.; Gavara, R. Equilibrium modified atmosphere packaging of wild strawberries. J. Sci. Food Agric. 2007, 87, 1931–1939. [Google Scholar] [CrossRef]
- Van De Velde, F.; Tarola, A.M.; Güemes, D.; Pirovani, M.E. Bioactive Compounds and Antioxidant Capacity of Camarosa and Selva Strawberries (Fragaria x ananassa Duch.). Foods 2013, 2, 120–131. [Google Scholar] [CrossRef]
- Vu, K.; Hollingsworth, R.G.; Leroux, E.; Salmieri, S.; Lacroix, M. Development of edible bioactive coating based on modified chitosan for increasing the shelf life of strawberries. Food Res. Int. 2011, 44, 198–203. [Google Scholar] [CrossRef]
- Dhital, R.; Mora, N.B.; Watson, D.G.; Kohli, P.; Choudhary, R. Efficacy of limonene nano coatings on post-harvest shelf life of strawberries. LWT 2018, 97, 124–134. [Google Scholar] [CrossRef]
- Oliveira, J.; Da Glória, E.M.; Da Silva, P.P.M.; Baggio, J.S.; Da Silva, P.P.M.; Ambrosio, C.M.; Spoto, M.H.F. Antifungal activity of essential oils associated with carboxymethylcellulose against Colletotrichum acutatum in strawberries. Sci. Hortic. 2019, 243, 261–267. [Google Scholar] [CrossRef]
- Hosseinzadeh, H.; Nassiri-Asl, M. Pharmacological Effects of Glycyrrhiza spp. and Its Bioactive Constituents: Update and Review. Phytother. Res. 2015, 29, 1868–1886. [Google Scholar] [CrossRef]
- Al-Ani, B.M.; Owaid, M.N.; Al-Saeedi, S.S.S. Fungal interaction between Trichoderma spp. and Pleurotus ostreatus on the enriched solid media with licorice Glycyrrhiza glabra root extract. Acta Ecol. Sin. 2018, 38, 268–273. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, X.; True, A.D.; Zhou, L.; Xiong, Y.L. Inhibition of Lipid Oxidation and Rancidity in Precooked Pork Patties by Radical-Scavenging Licorice (Glycyrrhiza glabra) Extract. J. Food Sci. 2013, 78, C1686–C1694. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Chen, S.; Liu, G.; Yang, Q. Quality enhancement in the Japanese sea bass (Lateolabrax japonicas) fillets stored at 4 °C by chitosan coating incorporated with citric acid or licorice extract. Food Chem. 2014, 162, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Madanipour, S.; Alimohammadi, M.; Rezaie, S.; Nabizadeh, R.; Khaniki, G.J.; Hadi, M.; Yousefi, M.; Bidgoli, S.M.; Yousefzadeh, S. Influence of postharvest application of chitosan combined with ethanolic extract of liquorice on shelflife of apple fruit. J. Environ. Health Sci. Eng. 2019, 17, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Samaram, S.; Mirhosseini, H.; Tan, C.P.; Ghazali, H.M.; Bordbar, S.; Serjouie, A. Optimisation of ultrasound-assisted extraction of oil from papaya seed by response surface methodology: Oil recovery, radical scavenging antioxidant activity, and oxidation stability. Food Chem. 2015, 172, 7–17. [Google Scholar] [CrossRef]
- Dzah, C.S.; Duan, Y.; Zhang, H.; Wen, C.; Zhang, J.; Chen, G.; Ma, H. The effects of ultrasound assisted extraction on yield, antioxidant, anticancer and antimicrobial activity of polyphenol extracts: A review. Food Biosci. 2020, 35, 100547. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Ravent6s, R.M. Analysis of total phenols and other oxidations substrates and antioxidants by means of Folin–Ciocalteu reagent. Polyphen. Flavonoids 1974, 25, 152–178. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Quintana, S.E.; Cueva, C.; Villanueva-Bermejo, D.; Moreno-Arribas, M.V.; Fornari, T.; García-Risco, M.R. Antioxidant and antimicrobial assessment of licorice supercritical extracts. Ind. Crop. Prod. 2019, 139, 111496. [Google Scholar] [CrossRef]
- Wei, S.-S.; Yang, M.; Chen, X.; Wang, Q.-R.; Cui, Y.-J. Simultaneous determination and assignment of 13 major flavonoids and glycyrrhizic acid in licorices by HPLC-DAD and Orbirap mass spectrometry analyses. Chin. J. Nat. Med. 2015, 13, 232–240. [Google Scholar] [CrossRef]
- Ali, A.; Muhammad, M.T.M.; Sijam, K.; Siddiqui, Y. Effect of chitosan coatings on the physicochemical characteristics of Eksotika II papaya (Carica papaya L.) fruit during cold storage. Food Chem. 2011, 124, 620–626. [Google Scholar] [CrossRef]
- Torres-León, C.; Vicente, A.; Flores-López, M.L.; Rojas, R.; Serna-Cock, L.; Alvarez-Pérez, O.B.; Aguilar, C.N. Edible films and coatings based on mango (var. Ataulfo) by-products to improve gas transfer rate of peach. LWT 2018, 97, 624–631. [Google Scholar] [CrossRef] [Green Version]
- Steffe, J.F. Rheological Methods in Food Process Engineering, 2nd ed.; Freeman Press: East Lansing, MI, USA, 1996. [Google Scholar]
- AOAC (Association of Official Analytical Chemist). Official Methods of Analysis, 17th ed.; AOAC: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Hajji, S.; Younes, I.; Affes, S.; Boufi, S.; Nasri, M. Optimization of the formulation of chitosan edible coatings supplemented with carotenoproteins and their use for extending strawberries postharvest life. Food Hydrocoll. 2018, 83, 375–392. [Google Scholar] [CrossRef]
- Nieto, J.A.; Santoyo, S.; Prodanov, M.; Reglero, G.; Jaime, L. Valorisation of Grape Stems as a Source of Phenolic Antioxidants by Using a Sustainable Extraction Methodology. Foods 2020, 9, 604. [Google Scholar] [CrossRef] [PubMed]
- Arranz, E.; Villalva, M.; Guri, A.; Ortego-Hernández, E.; Jaime, L.; Reglero, G.; Santoyo, S.; Corredig, M. Protein matrices ensure safe and functional delivery of rosmarinic acid from marjoram (Origanum majorana) extracts. J. Sci. Food Agric. 2019, 99, 2629–2635. [Google Scholar] [CrossRef] [PubMed]
- Kaderides, K.; Goula, A.M.; Adamopoulos, K.G. A process for turning pomegranate peels into a valuable food ingredient using ultrasound-assisted extraction and encapsulation. Innov. Food Sci. Emerg. Technol. 2015, 31, 204–215. [Google Scholar] [CrossRef]
- Anwar, F.; Przybylski, R. Effect of solvents extraction on total phenolics and antioxidant activity of extracts from flaxseed (Linum usitatissimum L.). Acta Sci. Pol. Technol. Aliment. 2012, 11, 293–302. [Google Scholar]
- Yehuda, I.; Madar, Z.; Leikin-Frenkel, A.; Tamir, S. Glabridin, an isoflavan from licorice root, downregulates iNOS expression and activity under high-glucose stress and inflammation. Mol. Nutr. Food Res. 2015, 59, 1041–1052. [Google Scholar] [CrossRef]
- Nassiri, A.M.; Hosseinzadeh, H. Review of pharmacological effects of Glycyrrhiza sp. and its bioactive compounds. Phyther. Res. 2008, 22, 709–724. [Google Scholar]
- Spigno, G.; Tramelli, L.; De Faveri, D.M. Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. J. Food Eng. 2007, 81, 200–208. [Google Scholar] [CrossRef]
- Tian, M.; Yan, H.; Row, K.H. Simultaneous extraction and separation of liquiritin, glycyrrhizic acid, and glabridin from licorice root with analytical and preparative chromatography. Biotechnol. Bioprocess. Eng. 2009, 13, 671–676. [Google Scholar] [CrossRef] [PubMed]
- Xie, P.-J.; Huang, L.-X.; Zhang, C.-H.; You, F.; Zhang, Y.-L. Reduced pressure extraction of oleuropein from olive leaves (Olea europaea L.) with ultrasound assistance. Food Bioprod. Process. 2015, 93, 29–38. [Google Scholar] [CrossRef]
- Khemakhem, I.; Ahmad-Qasem, M.H.; Barrajón-Catalán, E.; Micol, V.; García-Pérez, J.V.; Ayadi, M.A.; Bouaziz, M. Kinetic improvement of olive leaves’ bioactive compounds extraction by using power ultrasound in a wide temperature range. Ultrason. Sonochem. 2017, 34, 466–473. [Google Scholar] [CrossRef]
- Amado, I.R.; Franco, D.; Sánchez, M.; Zapata, C.; Vázquez, J. Optimisation of antioxidant extraction from Solanum tuberosum potato peel waste by surface response methodology. Food Chem. 2014, 165, 290–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villanueva-Bermejo, D.; Zahran, F.; Troconis, D.; Villalva, M.; Reglero, G.; Fornari, T. Selective precipitation of phenolic compounds from Achillea millefolium L. extracts by supercritical anti-solvent technique. J. Supercrit. Fluids 2017, 120, 52–58. [Google Scholar] [CrossRef]
- Thakur, D.; Jain, A.; Ghoshal, G. Evaluation of phytochemical, antioxidant and antimicrobial properties of glycyrrhizin extracted from roots of Glycyrrhiza Glabra. J. Sci. Ind. Res. 2016, 75, 487–494. [Google Scholar]
- Bartnick, D.D.; Mohler, C.M.; Houlihan, M. Methods for the Production of Food Grade Extracts. WO 2006/047404 A3, 4 May 2006. Available online: https://patentscope2.wipo.int/search/en/detail.jsf?docId=WO2006047404 (accessed on 31 October 2020).
- Chen, C.-H.; Kuo, W.-S.; Lai, L.-S. Rheological and physical characterization of film-forming solutions and edible films from tapioca starch/decolorized hsian-tsao leaf gum. Food Hydrocoll. 2009, 23, 2132–2140. [Google Scholar] [CrossRef]
- Haddarah, A.; Bassal, A.; Ismail, A.; Gaiani, C.; Ioannou, I.; Charbonnel, C.; Hamieh, T.; Ghoul, M.; Gaiani, C. The structural characteristics and rheological properties of Lebanese locust bean gum. J. Food Eng. 2014, 120, 204–214. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Z.; Sun, Y.; Wang, X.; Li, L. Effect of α-tocopherol antioxidant on rheological and physicochemical properties of chitosan/zein edible films. LWT 2020, 118, 108799. [Google Scholar] [CrossRef]
- Maranzano, B.J.; Wagner, N.J. The effects of particle size on reversible shear thickening of concentrated colloidal dispersions. J. Chem. Phys. 2001, 114, 10514–10527. [Google Scholar] [CrossRef] [Green Version]
- Maranzano, B.J.; Wagner, N.J. The effects of interparticle interactions and particle size on reversible shear thickening: Hard-sphere colloidal dispersions. J. Rheol. 2001, 45, 1205–1222. [Google Scholar] [CrossRef] [Green Version]
- Peressini, D.; Bravin, B.; Lapasin, R.; Rizzotti, C.; Sensidoni, A. Starch–methylcellulose based edible films: Rheological properties of film-forming dispersions. J. Food Eng. 2003, 59, 25–32. [Google Scholar] [CrossRef]
- Li, C.; Xiang, F.; Wu, K.; Jiang, F.; Ni, X. Changes in microstructure and rheological properties of konjac glucomannan/zein blend film-forming solution during drying. Carbohydr. Polym. 2020, 250, 116840. [Google Scholar] [CrossRef] [PubMed]
- Powles, J.G.; Rickayzen, G.; Heyes, D.M. Purely viscous fluids. Proc. R. Soc. A Math. Phys. Eng. Sci. 1999, 455, 3725–3742. [Google Scholar] [CrossRef]
- Calero, N.; Muñoz, J.; Ramírez, P.; Guerrero, A. Flow behaviour, linear viscoelasticity and surface properties of chitosan aqueous solutions. Food Hydrocoll. 2010, 24, 659–666. [Google Scholar] [CrossRef]
- Lauten, R.A.; Nyström, B. Linear and nonlinear viscoelastic properties of aqueous solutions of cationic polyacrylamides. Macromol. Chem. Phys. 2000, 201, 677–684. [Google Scholar] [CrossRef]
- Rweiab, S.-P.; Chen, Y.-M.; Lin, W.-Y.; Chiang, W.-Y. Synthesis and Rheological Characterization of Water-Soluble Glycidyltrimethylammonium-Chitosan. Mar. Drugs 2014, 12, 5547–5562. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.-F.; Du, Y.; Hu, X.-W.; Shi, X.-W.; Kennedy, J.F. Rheological characterisation of a novel thermosensitive chitosan/poly(vinyl alcohol) blend hydrogel. Carbohydr. Polym. 2007, 67, 491–499. [Google Scholar] [CrossRef]
- Fabra, M.J.; Jiménez, A.; Atarés, L.; Talens, P.; Chiralt, A. Effect of Fatty Acids and Beeswax Addition on Properties of Sodium Caseinate Dispersions and Films. Biomacromolecules 2009, 10, 1500–1507. [Google Scholar] [CrossRef]
- Huang, J.; Zeng, S.; Xiong, S.; Huang, Q. Steady, dynamic, and creep-recovery rheological properties of myofibrillar protein from grass carp muscle. Food Hydrocoll. 2016, 61, 48–56. [Google Scholar] [CrossRef]
- Toker, O.S.; Karaman, S.; Yuksel, F.; Dogan, M.; Kayacier, A.; Yilmaz, M.T. Temperature Dependency of Steady, Dynamic, and Creep-Recovery Rheological Properties of Ice Cream Mix. Food Bioprocess. Technol. 2013, 6, 2974–2985. [Google Scholar] [CrossRef]
- Martelli, M.R.; Barros, T.T.; De Moura, M.R.; Mattoso, L.H.C.; Assis, O.B.G. Effect of Chitosan Nanoparticles and Pectin Content on Mechanical Properties and Water Vapor Permeability of Banana Puree Films. J. Food Sci. 2013, 78, N98–N104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vargas, M.; Chiralt, A.; Albors, A.; González-Martínez, C. Effect of chitosan-based edible coatings applied by vacuum impregnation on quality preservation of fresh-cut carrot. Postharvest Biol. Technol. 2009, 51, 263–271. [Google Scholar] [CrossRef]
- Alquezar, B.; Mesejo, C.; Alferez, F.; Agustí, M.; Zacarias, L. Morphological and ultrastructural changes in peel of ‘Navelate’ oranges in relation to variations in relative humidity during postharvest storage and development of peel pitting. Postharvest Biol. Technol. 2010, 56, 163–170. [Google Scholar] [CrossRef]
- Alferez, F.; Alquezar, B.; Burns, J.K.; Zacarias, L. Variation in water, osmotic and turgor potential in peel of ‘Marsh’ grapefruit during development of postharvest peel pitting. Postharvest Biol. Technol. 2010, 56, 44–49. [Google Scholar] [CrossRef]
- Petriccione, M.; Mastrobuoni, F.; Pasquariello, M.S.; Zampella, L.; Nobis, E.; Capriolo, G.; Scortichini, M. Effect of Chitosan Coating on the Postharvest Quality and Antioxidant Enzyme System Response of Strawberry Fruit during Cold Storage. Foods 2015, 4, 501–523. [Google Scholar] [CrossRef] [Green Version]
- Ventura-Aguilar, R.I.; Bautista-Baños, S.; Flores-García, G.; Zavaleta-Avejar, L. Impact of chitosan based edible coatings functionalized with natural compounds on Colletotrichum fragariae development and the quality of strawberries. Food Chem. 2018, 262, 142–149. [Google Scholar] [CrossRef]
- Muley, A.B.; Singhal, R.S. Extension of postharvest shelf life of strawberries (Fragaria ananassa) using a coating of chitosan-whey protein isolate conjugate. Food Chem. 2020, 329, 127213. [Google Scholar] [CrossRef]
- Gomes, M.D.S.; Cardoso, M.D.G.; Guimarães, A.C.G.; Guerreiro, A.C.; Gago, C.M.L.; Boas, E.V.D.B.V.; Dias, C.M.B.; Manhita, A.C.C.; Faleiro, M.L.; Miguel, M.G.C.; et al. Effect of edible coatings with essential oils on the quality of red raspberries over shelf-life. J. Sci. Food Agric. 2017, 97, 929–938. [Google Scholar] [CrossRef]
Sample | Solvent | Temperature °C | Yield % |
---|---|---|---|
ELe25 | Ethanol | 25 | 3.85 ± 0.46 d |
MLe25 | Methanol | 25 | 9.08 ± 2.77 c |
EWLe25 | Ethanol:water (50:50 v/v) | 25 | 25.14 ± 1.07 a |
MWLe25 | Methanol:water (50:50 v/v) | 25 | 15.69 ± 2.93 b |
ELe50 | Ethanol | 50 | 3.69 ± 0.14 d |
MLe50 | Methanol | 50 | 9.94 ± 2.08 c |
EWLe50 | Ethanol:water (50:50 v/v) | 50 | 24.75 ± 0.76 a |
MWLe50 | Methanol:water (50:50 v/v) | 50 | 23.36 ± 0.18 a |
Sample | Liquiritin | Glabridin | Glycyrrhizin | Isoliquiritigenin | Liquiritigenin |
---|---|---|---|---|---|
ELe25 | 0.60 ± 0.01 a | 55.80 ± 5.03 a | 17.30 ± 1.56 c | 0.87 ±0.03 a | 0.95 ± 0.10 c |
MLe25 | 0.60 ± 0.01 a | 21.35 ± 0.72 b | 53.45 ± 0.85 b,c | 0.60 ± 0.01 a | 2.00 ± 0.01 b |
EWLe25 | 0.70 ± 0.07 a | 2.73 ± 0.12 c | 159.50 ± 12.51 a | 0.40 ± 0.01 a | 3.95 ± 0.30 a |
MWLe25 | 0.80 ± 0.01 a | 1.00 ± 0.02 c | 123.85 ± 10.11 a,b | 0.40 ± 0.01 a | 3.30 ± 0.35 a,b |
ELe50 | 1.10 ± 0.12 a | 55.13 ± 2.77 a | 13.60 ± 0.23 c | 0.60 ± 0.01 a | 1.00 ± 0.01 c |
MLe50 | 1.00 ± 0.06 a | 24.40 ± 0.90 b | 96.80 ± 4.27 b,c | 1.60 ± 0.09 a | 2.60 ± 0.22 b |
EWLe50 | 0.60 ± 0.01 a | 2.45 ± 0.03 c | 145.10 ± 10.23 a | 0.40 ± 0.01 a | 3.45 ± 0.30 a |
MWLe50 | 0.80 ± 0.01 a | 0.80 ± 0.07 c | 133.40 ± 15.24 a,b | 0.40 ± 0.00 a | 3.60 ± 0.46 a,b |
Sample | TPC (mg GAE/g) | DPPH (µmol Trolox/g) | E. coli IC50 (mg/mL) | S. aureus IC50 (mg/mL) |
---|---|---|---|---|
ELe25 | 144.25 ± 3.03 a | 447.37 ± 1.83 a | >2.5 | >2.5 |
MLe25 | 104.05 ± 0.22 a,b | 210.77 ± 0.17 a,b | >2.5 | >2.5 |
EWLe25 | 80.36 ± 3.67 b | 86.92 ± 0.99 b | 1.21 ± 0.03b | 1.38 ± 0.11 a |
MWLe25 | 59.09 ± 5.40 b | 68.01 ± 1.26 b | 1.09 ± 0.10ab | 1.56 ± 0.06 c |
ELe50 | 162.20 ± 1.30 a | 546. 52 ± 2.16 a | >2.5 | >2.5 |
MLe50 | 126.20 ± 2.88 a,b | 277.50 ± 0.24 a,b | > 2.5 | >2.5 |
EWLe50 | 85.71 ± 3.07 b | 102.52 ± 0.49 b | 0.84 ± 0.04b | 1.43 ± 0.06 d |
MWLe50 | 79.14 ± 2.16 a,b | 62.18 ± 1.28 b | 0.97 ± 0.03b | 1.93 ± 0.01 b |
Treatment | K (Pa·sn) | R2 | ||
---|---|---|---|---|
Ch | 0.469 ± 0.015 | 0.795 ± 0.005 | 0.998 | 0.2 |
Ch + LE-1 | 3.72 × 10−4 ± 0.001 | 1.436 ± 0.018 | 0.994 | 0.0047 |
Ch + LE-5 | 1.76 × 10−4 ± 0.001 | 1.503 ± 0.012 | 0.998 | 0.0021 |
Table 1 | (mPa−1) | (mPa−1) | (Pa·s) | R2 | Recovery (%) | |
---|---|---|---|---|---|---|
Ch | 3.793 | 1.408 | 4864.0 | 1.282× 106 | 0.998 | 35.82 |
Ch + LE-1 | 0.482 | 0.481 | 906.3 | 1.878× 106 | 0.999 | 83.78 |
Ch + LE-5 | 0.801 | 0.6258 | 340.8 | 4.252× 105 | 0.997 | 51.09 |
Treatment | TPC (mg GAE/g) | |
---|---|---|
Day 1 | Day 10 | |
Uncoated | 1.41 ± 0.12 | 0.97 ± 0.04 |
Ch | 1.28 ± 0.06 | 0.99 ± 0.08 |
Ch + LE-1 | 1.52 ± 0.10 | 1.32 ± 0.05 |
Ch + LE-5 | 1.44 ± 0.02 | 1.38 ± 0.35 |
Bacteria and Yeasts | Treatment | Total Viable Count (Log CFU/g) on Day 6 of Cold Storage |
---|---|---|
Mesophilic | Uncoated | 7.0 ± 2.0 |
Ch | 4.5 ± 0.7 | |
Ch + LE-1 | n.g. | |
Ch + LE-5 | n.g. | |
Psychrophilic | Uncoated | 4.0 ± 0.01 |
Ch | 4.0 ± 0.01 | |
Ch + LE-1 | n.g. | |
Ch + LE-5 | n.g. | |
Yeasts | Uncoated | 4.0 ± 0.01 |
Ch | 4.0 ± 0.01 | |
Ch + LE-1 | n.g. | |
Ch + LE-5 | n.g. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quintana, S.E.; Llalla, O.; García-Zapateiro, L.A.; García-Risco, M.R.; Fornari, T. Preparation and Characterization of Licorice-Chitosan Coatings for Postharvest Treatment of Fresh Strawberries. Appl. Sci. 2020, 10, 8431. https://doi.org/10.3390/app10238431
Quintana SE, Llalla O, García-Zapateiro LA, García-Risco MR, Fornari T. Preparation and Characterization of Licorice-Chitosan Coatings for Postharvest Treatment of Fresh Strawberries. Applied Sciences. 2020; 10(23):8431. https://doi.org/10.3390/app10238431
Chicago/Turabian StyleQuintana, Somaris E., Olimpia Llalla, Luis A. García-Zapateiro, Mónica R. García-Risco, and Tiziana Fornari. 2020. "Preparation and Characterization of Licorice-Chitosan Coatings for Postharvest Treatment of Fresh Strawberries" Applied Sciences 10, no. 23: 8431. https://doi.org/10.3390/app10238431
APA StyleQuintana, S. E., Llalla, O., García-Zapateiro, L. A., García-Risco, M. R., & Fornari, T. (2020). Preparation and Characterization of Licorice-Chitosan Coatings for Postharvest Treatment of Fresh Strawberries. Applied Sciences, 10(23), 8431. https://doi.org/10.3390/app10238431