Temperature and Pulse-Energy Range Suitable for Femtosecond Pulse Transmission in Si Nanowire Waveguide
Abstract
1. Introduction
2. Measurement Details
3. Experimental Results
4. Analysis and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Almeida, V.R.; Barrios, C.A.; Panepucci, R.R.; Lipson. M. All-optical control of light on a silicon chip. Nature 2004, 431, 1081–1084. [Google Scholar] [CrossRef]
- Dai, D.; Bowers, J.E. Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires. Opt. Express 2011, 19, 10940–10949. [Google Scholar] [CrossRef]
- Foster, M.A.; Turner, A.C.; Lipson, M.; Gaeta, A.L. Nonlinear optics in photonic nanowires. Opt. Express 2008, 16, 1300–1320. [Google Scholar] [CrossRef] [PubMed]
- Velasco, A.V.; Cheben, P.; Bock, P.J.; Delâge, A.; Schmid, J.H.; Lapointe, J.; Janz, S.; Calvo, M.L.; Xu, D.; Czyk, M.A.F.; et al. High-resolution Fourier-transform spectrometer chip with microphotonic silicon spiral waveguides. Opt. Lett. 2013, 38, 706–708. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Xu, W.; Zhu, Z.H.; Ye, W.M.; Yuan, X.D.; Zeng, C. Wave propagation in deep-subwavelength mode waveguides. Opt. Lett. 2012, 37, 2826–2828. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.T.H.; Sun, P.C.; Fainman, Y. Monolithic nonlinear pulse compressor on a silicon chip. Nat. Commun. 2010, 1, 116. [Google Scholar] [CrossRef]
- Foster, M.A.; Gaeta, A.L.; Cao, Q.; Trebino, R. Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires. Opt. Express 2005, 13, 6848–6855. [Google Scholar] [CrossRef]
- Zhou, H.; Huang, S.; Li, X.; McMillan, J.F.; Zhang, C.; Wong, K.K.; Yu, M.; Lo, G.; Kwong, D.; Qiu, K.; et al. Real-time dynamics and cross-correlation gating spectroscopy of free-carrier Drude slow-light solitons. Light Sci. Appl. 2017, 6, P49–P56. [Google Scholar] [CrossRef]
- Driscoll, J.B.; Ophir, N.; Grote, R.R.; Dadap, J.I.; Panoiu, N.C.; Bergman, K.; Osgood, R.M. Width-modulation of Si photonic wires for quasi-phase-matching of four-wave-mixing: Experimental and theoretical demonstration. Opt. Express 2012, 20, 9227–9242. [Google Scholar] [CrossRef]
- McMillan, J.F.; Yu, M.; Kwong, D.-L.; Wong, C.W. Observations of four-wave mixing in slow-light silicon photonic crystal waveguides. Opt. Express 2010, 18, 15484–15497. [Google Scholar] [CrossRef][Green Version]
- Kuyken, B.; Verheyen, P.; Tannouri, P.; Liu, X.; Campenhout, J.V.; Baets, R.; Green, W.M.J.; Roelkens, G. Generation of 3.6 μm radiation and telecom-band amplification by four-wave mixing in a silicon waveguide with normal group velocity dispersion. Opt. Lett. 2014, 39, 1349–1352. [Google Scholar] [CrossRef]
- Yin, L.; Zhang, J.; Fauchet, P.M.; Agrawal, G.P. Optical switching using nonlinear polarization rotation inside silicon waveguides. Opt. Lett. 2009, 34, 476–478. [Google Scholar] [CrossRef]
- Jacome, K.L.; Poulton, C.; Leuthold, J.; Freude, W. Nonlinear silicon-on-insulator waveguides for all-optical signal processing. Opt. Express 2007, 15, 5976–5990. [Google Scholar]
- Husko, C.A.; Rossi, A.; Combrie, S.; Tran, Q.V.; Raineri, F.; Wong, C.W. Ultrafast all-optical modulation in GaAs photonic crystal cavities. Appl. Phys. Lett. 2009, 94, 021111. [Google Scholar] [CrossRef]
- Colman, P.; Husko, C.; Combrie, S.; Sagnes, I.; Wong, C.W.; de Rossi, A. Temporal solitons and pulse compression in photonic crystal waveguides. Nat. Photonics 2010, 4, 862–868. [Google Scholar] [CrossRef]
- Kondo, K.; Baba, T. Dynamic wavelength conversion in copropagating slow-light pulses. Phys. Rev. Lett. 2014, 112, 223904. [Google Scholar] [CrossRef]
- Wakabayashi, R.; Fujiwara, M.; Yoshino, K.; Nambu, Y.; Sasaki, M.; Aoki, T. Time-bin entangled photon pair generation from Si micro-ring resonator. Opt. Express 2015, 23, 1103–1113. [Google Scholar] [CrossRef]
- Uddin, M.R.; Lingas, N.A.; Nakarmi, B.; Won, Y.H. Waveguide side-wall angle dependant resonance of a Si micro ring-resonato. In Proceedings of the Conference on Lasers and Electro-Optics Pacific Rim Optical Society of America, Busan, Korea, 24–28 August 2015. [Google Scholar]
- Guha, B.; Cardenas, J.; Lipson, M. Athermal silicon microring resonators with titanium oxide cladding. Opt. Express 2013, 21, 26557–26563. [Google Scholar] [CrossRef]
- Teng, J.; Dumon, P.; Bogaerts, W.; Zhang, H.; Jian, X.; Han, X.; Zhao, M.; Morthier, G.; Baets, R. Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides. Opt. Express 2009, 17, 14627–14632. [Google Scholar] [CrossRef]
- Nguyen, H.C.; Sakai, Y.; Shinkawa, M.; Ishikura, N.; Baba, T. Photonic crystal silicon optical modulators carrier-injection and depletion at 10 Gb/s. IEEE J. Quantum Electron. 2012, 48, 210–220. [Google Scholar] [CrossRef]
- Guan, X.; Wang, X.; Frandsen, L.H. Optical temperature sensor with enhanced sensitivity by employing hybrid waveguides in a silicon Mach-Zehnder interferometer. Opt. Express 2016, 24, 16349–16356. [Google Scholar] [CrossRef] [PubMed]
- Klimov, N.N.; Mittal, S.; Berger, M.; Ahmed, Z. On-chip silicon waveguide Bragg grating photonic temperature sensor. Opt. Lett. 2015, 40, 3934–3936. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, K.; Ohsuye, K. Effect of culture temperature on a recombinant CHO cell line producing a Cterminal α-amidating enzyme. Cytotechnology 1998, 26, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Trenti, A.; Borghi, M.; Biasi, S.; Ghulinyan, M.; Ramiro-Manzano, F.; Pucker, G.; Pavesi, L. Thermo-optic coefficient and nonlinear refractive index of silicon oxynitride waveguides. AIP Adv. 2018, 8, 025311. [Google Scholar] [CrossRef]
- Sinclair, G.F.; Tyler, N.A.; Barreto, D.S.J.; Thompson, M.G. Temperature dependence of the Kerr nonlinearity and two-photon absorption in a silicon waveguide at 1.55 μm. Phys. Rev. Appl. 2019, 11, 044084. [Google Scholar] [CrossRef]
- Tanaka, Y.; Tominaka, S.; Kurokawa, T. Precision distance measurement using a twophoton absorption process in a silicon avalanche photodiode with saw-tooth phase modulation. Appl. Opt. 2015, 54, E35–E40. [Google Scholar] [CrossRef]
- Arbabi, A.; Goddard, L.L. Measurements of the refractive indices and thermo-optic coefficients of Si3N4 and SiOx using microring resonances. Opt. Lett. 2013, 38, 3878–3881. [Google Scholar] [CrossRef]
- Uenuma, M.; Moooka, T. Temperature-independent silicon waveguide optical filter. Opt. Lett. 2009, 34, 599–601. [Google Scholar] [CrossRef]
- Guan, X.; Frandsen, L.H. All-silicon interferometer with multimode waveguides for temperature-insensitive filters and compact biosensors. Opt. Express 2019, 27, 753–760. [Google Scholar] [CrossRef]
- Yin, L.; Lin, Q.; Agrawal, G.P. Soliton fission and supercontinuum generation in silicon waveguides. Opt. Lett. 2007, 32, 391–393. [Google Scholar] [CrossRef]
- Fleischer, J.W.; Segev, M.; Efremidis, N.K.; Christodoulides, D.N. Observation of two-dimensional discrete solitons in optically-induced nonlinear photonic lattices. Nature 2003, 422, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Reid, D.T.; Loza-Alvarez, P.; Brown, C.T.A.; Beddard, T.; Sibbett, W. Amplitude and phase measurement of mid-infrared femtosecond pulses by using cross-correlation frequency-resolved optical gating. Opt. Lett. 2000, 25, 1478–1480. [Google Scholar] [CrossRef] [PubMed]
- Parker, D.S.N.; Nunn, A.D.G.; Minns, R.S.; Fielding, H.H. Frequency doubling and fourier domain shaping the output if a femtosecond optical parametric amplifier: Easy access to tuneable femtosecond pulse shapes in the deep ultraviolet. Appl. Phys. B 2009, 94, 181–186. [Google Scholar] [CrossRef]
- Liao, J.; Marko, M.; Li, X.; Jia, H.; Liu, J.; Tan, Y.; Yang, J.; Zhang, Y.; Tang, W.; Yu, M.; et al. Cross-correlation frequency-resolved optical gating and dynamics of temporal solitons in silicon nanowire waveguides. Opt. Lett. 2013, 38, 4401–4404. [Google Scholar] [CrossRef] [PubMed]
- Nikitin, A.A.; Kondrashov, A.V.; Vitko, V.V.; Ryabcev, L.A.; Zaretskaya, G.A.; Cheplagin, N.A.; Konkin, D.A.; Kokolov, A.A.; Babak, L.I.; Ustinov, A.B.; et al. Carrier-induced optical bistability in the silicon micro-ring resonators undercontinuous wave pumping. Opt. Commun. 2020, 480, 126456. [Google Scholar] [CrossRef]
Pulse Energy (pJ) | 12.0 °C | 25.0 °C | 52.8 °C | ||||||
---|---|---|---|---|---|---|---|---|---|
FWHM (fs) | FWHM (fs) | FWHM (fs) | |||||||
Ahead | Back | Total | Ahead | Back | Total | Ahead | Back | Total | |
1.1 | 649.15 | 208.48 | 208.48 | 484.48 | 194.10 | 194.10 | 195.36 | NON | 195.36 |
2.7 | 887.7 | 226.23 | 226.23 | 474.78 | 193.25 | 193.25 | 197.48 | NON | 197.48 |
5.3 | 836.81 | 229.61 | 229.61 | 570.05 | 267.92 | 267.92 | 202.96 | 188.96 | 202.96 |
13.3 | 1135.16 | 273.88 | 273.88 | 1046.80 | 321.30 | 321.30 | 1046.63 | 225.64 | 1046.63 |
26.7 | 1230.85 | 276.72 | 1230.85 | 1126.26 | 246.35 | 246.35 | 1125.00 | 378.96 | 1125.00 |
35.2 | 1353.32 | 271.32 | 1353.32 | 1092.72 | 242.68 | 242.68 | 1339.00 | 301.54 | 1339.00 |
Pulse Energy (pJ) | 12.0 °C | 25.0 °C | 52.8 °C | ||||||
---|---|---|---|---|---|---|---|---|---|
Centroid (nm) | Centroid (nm) | Centroid (nm) | |||||||
Left | Center | Right | Left | Center | Right | Left | Center | Right | |
1.1 | 1548.4 | NON | 1584.3 | 1547.9 | NON | 1585.1 | 1524.5 | 1548.9 | 1582.9 |
2.7 | 1536.9 | NON | 1586.3 | 1544.4 | NON | 1586.9 | 1516.8 | 1546.9 | 1585.6 |
5.3 | 1536.9 | NON | 1586.3 | 1539.6 | NON | 1587.8 | 1506.8 | 1545.7 | 1587.0 |
13.3 | 1527.0 | NON | 1586.2 | 1531.4 | NON | 1587.9 | 1528.9 | NON | 1587.6 |
26.7 | 1520.1 | NON | 1585.3 | 1525.9 | NON | 1587.2 | 1519.3 | NON | 1586.1 |
35.2 | 1517.6 | NON | 1585.1 | 1523.9 | NON | 1586.8 | 1517.4 | NON | 1585.8 |
Pulse Energy (pJ) | 12.0 °C | 25.0 °C | 52.8 °C | ||||||
---|---|---|---|---|---|---|---|---|---|
Centroid (fs) | Centroid (fs) | Centroid (fs) | |||||||
Ahead | Back | Total | Ahead | Back | Total | Ahead | Back | Total | |
1.1 | −423.6 | 463.6 | −14.1 | −674.0 | 153.1 | −199.0 | NON | NON | −842.0 |
2.7 | −126.9 | 1009.6 | 218.9 | −495.1 | 464.7 | −60.1 | NON | NON | −825.3 |
5.3 | −137.2 | 996.5 | 217.5 | −402.6 | 710.8 | 53.1 | −623.7 | −164.3 | −680.3 |
13.3 | 105.4 | 1455.0 | 406.5 | 175.5 | 1105.1 | 224.7 | 101.5 | 1519.8 | 313.1 |
26.7 | 192.9 | 1608.5 | 529.8 | 35.2 | 1474.4 | 384.9 | 346.0 | 1950.2 | 551.9 |
35.2 | 360.6 | 1900.2 | 617.9 | 136.5 | 1619.0 | 454.0 | 582.1 | 2312.6 | 694.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Fu, M.; Yang, H.; Liao, J.; Li, X. Temperature and Pulse-Energy Range Suitable for Femtosecond Pulse Transmission in Si Nanowire Waveguide. Appl. Sci. 2020, 10, 8429. https://doi.org/10.3390/app10238429
Wang X, Fu M, Yang H, Liao J, Li X. Temperature and Pulse-Energy Range Suitable for Femtosecond Pulse Transmission in Si Nanowire Waveguide. Applied Sciences. 2020; 10(23):8429. https://doi.org/10.3390/app10238429
Chicago/Turabian StyleWang, Xiaochun, Meicheng Fu, Heng Yang, Jiali Liao, and Xiujian Li. 2020. "Temperature and Pulse-Energy Range Suitable for Femtosecond Pulse Transmission in Si Nanowire Waveguide" Applied Sciences 10, no. 23: 8429. https://doi.org/10.3390/app10238429
APA StyleWang, X., Fu, M., Yang, H., Liao, J., & Li, X. (2020). Temperature and Pulse-Energy Range Suitable for Femtosecond Pulse Transmission in Si Nanowire Waveguide. Applied Sciences, 10(23), 8429. https://doi.org/10.3390/app10238429