Measuring the Hyperfine Splitting and Deriving the Hyperfine Interaction Constants of the Cesium 5p67d 2D5/2 Excited State
Abstract
1. Introduction
2. Relevant Principles
2.1. Hyperfine Splitting, Momentum Quantum Number, and Hyperfine Interaction Constants
2.2. Spectroscopic Schemes
3. Experimental Setup
4. Optimization of Experimental Parameters
4.1. Comparison of Optical-optical Double Resonance (OODR) and Double-resonance Optical Pumping (DROP) Spectroscopic Schemes
4.2. Effect of the Probe Laser’s Linewidth
4.3. Electromagnetically-induced Transparency (EIT)-assisted DROP Spectra
4.4. Effect of the Laser Beam’s Intensity
5. Experimental Results and Discussion
6. Summery and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Li, R.; Wu, Y.; Rui, Y.; Li, B.; Jiang, Y.; Ma, L.; Wu, H. Absolute frequency measurement of 6Li D lines with kHz-level uncertainty. Phys. Rev. Lett. 2020, 124, 063002. [Google Scholar] [CrossRef] [PubMed]
- Ray, T.; Gupta, R.K.; Gokhroo, V.; Everett, J.L.; Nieddu, T.; Rajasree, K.S.; Chormaic, S.N. Observation of the 87Rb 5S1/2 to 4D3/2 electric quadrupole transition at 516.6 nm mediated via an optical nanofiber. New J. Phys. 2020, 22, 062001. [Google Scholar] [CrossRef]
- Yuan, J.P.; Wu, C.H.; Li, Y.H.; Wang, L.R.; Zhang, Y.; Xiao, L.T.; Jia, S.T. Controllable electromagnetically induced grating in a cascade-type atomic system. Front. Phys. 2019, 14, 52603. [Google Scholar] [CrossRef]
- Zheng, X.; Sun, Y.; Chen, J.; Jiang, W.; Pachucki, K.; Hu, S. Measurement of the frequency of the 23S–23P transition of 4He. Phys. Rev. Lett. 2017, 119, 263002. [Google Scholar] [CrossRef]
- Gerginov, V.; Derevianko, A.; Tanner, C.E. Observation of the nuclear magnetic octupole moment of Cs 133. Phys. Rev. Lett. 2003, 91, 072501. [Google Scholar] [CrossRef]
- Wood, C.S.; Bennett, S.C.; Cho, D.; Masterson, B.P.; Roberts, J.L.; Tanner, C.E.; Wieman, C.E. Measurement of parity nonconservation and an anapole moment in cesium. Science 1997, 275, 1759–1763. [Google Scholar] [CrossRef]
- Porsev, S.G.; Beloy, K.; Derevianko, A. Precision determination of electroweak coupling from atomic parity violation and implications for particle physics. Phys. Rev. Lett. 2009, 102, 181601. [Google Scholar] [CrossRef] [PubMed]
- Kuchiev, M.Y.; Flambaum, V.V. Influence of perturbations on the electron wave function inside the nucleus. J. Phys. B At. Mol. Opt. Phys. 2002, 35, 4101. [Google Scholar] [CrossRef][Green Version]
- Kozlov, M.G.; Porsev, S.G.; Tupitsyn, I.I. High accuracy calculation of 6S-7S parity nonconserving amplitude in Cs. Phys. Rev. Lett. 2001, 86, 3253–3260. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, B.K.; Gopakumar, G.; Chaudhuri, R.K.; Das, B.P.; Merlitz, H.; Mahapatra, U.S.; Mukherjee, D. Hyperfine interactions in 137Ba+ and the accuracies of the neutral weak interaction matrix elements. Phys. Rev. A 2003, 68, 040501. [Google Scholar] [CrossRef]
- Sahoo, B.K.; Das, B.P. Constraints on new physics from an improved calculation of parity violation in 133Cs. arXiv 2020, arXiv:2008.08941v1. [Google Scholar]
- Safronova, M.S.; Clark, C.W. Inconsistencies between lifetime and polarizability measurements in Cs. Phys. Rev. A 2004, 69, 361. [Google Scholar] [CrossRef]
- Safronova, M.S.; Safronova, U.I.; Clark, C.W. Magicwavelengths, matrix elements, polarizabilities, and lifetimes of Cs. Phys. Rev. A 2016, 94, 012505. [Google Scholar] [CrossRef]
- Dzuba, V.A.; Flambaum, V.V.; Ginges, J.S. Calculations of parity-nonconserving s-d amplitudes in Cs, Fr, Ba+, and Ra+. Phys. Rev. A 2001, 63, 062101. [Google Scholar] [CrossRef]
- Heshamia, K.; Englanda, D.G.; Humphreysb, P.C.; Bustarda, P.J.; Acostac, V.M.; Nunnb, J.; Sussmana, B.J. Quantum memories: Emerging applications and recent advances. J. Mod. Opt. 2016, 63, 2005–2028. [Google Scholar] [CrossRef]
- Yang, B.D.; Liang, Q.B.; He, J.; Zhang, T.C.; Wang, J.M. Narrow-linewidth double-resonance optical pumping spectrum due to electromagnetically induced transparency in ladder-type inhomogeneously broadened media. Phys. Rev. A 2010, 81, 043803. [Google Scholar] [CrossRef]
- Sinclair, A.G.; Mcdonald, B.D.; Riis, E.; Duxbury, G. Double resonance spectroscopy of laser-cooled Rb atoms. Opt. Commun. 1994, 106, 207–212. [Google Scholar] [CrossRef]
- Fendel, P.; Bergeson, S.D.; Udem, T.; Hänsch, T.W. Two-photon frequency comb spectroscopy of the 6S-8S transition in cesium. Opt. Lett. 2007, 32, 701–703. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.P.; Dong, S.C.; Wu, C.H.; Wang, L.R.; Xiao, L.T.; Jia, S.T. Optically tunable grating in a V + Ξ conguration involving a Rydberg state. Opt. Express 2020, 28, 23820–23838. [Google Scholar] [CrossRef]
- Grove, T.T.; Sanchez-Villicana, V.; Duncan, B.C.; Maleki, S.; Gould, P.L. Two-photon two-color diode laser spectroscopy of the Rb 5D5/2 state. Phys. Scr. 1995, 52, 271–276. [Google Scholar] [CrossRef]
- Auzinsh, M.; Blushs, K.; Ferber, R.; Gahbauer, F.; Jarmola, A.; Tamanis, M. Electric field induced hyperfine level-crossings in (nD) Cs at two-step laser excitation: Experiment and theory. Opt. Commun. 2006, 264, 333. [Google Scholar] [CrossRef][Green Version]
- Wang, J.; Liu, H.F.; Yang, G.; Yang, B.D.; Wang, J.M. Determination of the hyperfine structure constants of the 87Rb and 85Rb 4D5/2 state and the isotope hyperfine anomaly. Phys. Rev. A 2014, 90, 052505. [Google Scholar] [CrossRef]
- Wang, J.; Liu, H.F.; Yang, B.D.; He, J.; Wang, J.M. Determining the hyperfine structure constants of cesium 8S1/2 state aided by atomic coherence. Meas. Sci. Technol. 2014, 25, 035501. [Google Scholar] [CrossRef][Green Version]
- Yang, G.; Wang, J.; Wang, J.M. Determination of the hyperfine coupling constants of the 5D5/2 state of 85Rb atoms by using high signal-to-noise ratio electromagnetically-induced transparency spectra. Acta Phys. Sin. 2017, 66, 103201. (In Chinese) [Google Scholar]
- He, Y.H.; Fan, J.B.; Hao, L.P.; Jiao, Y.C.; Zhao, J.M. Precise measurement of hyperfine structure of cesium 7S1/2 excited state. Appl. Sci. 2020, 10, 525. [Google Scholar] [CrossRef]
- Bulos, B.R.; Gupta, R.; Moe, G.; Tsekeris, P. Hyperfine structure determination of the 7D5/2 state of 133Cs. Phys. Rev. A 1967, 55, 407–408. [Google Scholar]
- Lee, Y.C.; Chang, Y.H.; Chang, Y.Y.; Chen, Y.Y.; Tsai, C.C.; Chui, H.C. Hyperfine coupling constants of cesium 7D states using two-photon spectroscopy. Appl. Phys. B 2011, 105, 391–397. [Google Scholar] [CrossRef]
- Stalnaker, J.E.; Mbele, V.; Gerginov, V.; Fortier, T.M.; Tanner, C.E. Femto-second frequency comb measurement of absolute frequencies and hyperfine coupling constants in cesium vapor. Phys. Rev. A 2010, 81, 043840. [Google Scholar] [CrossRef]
- Wang, S.D.; Yuan, J.P.; Wang, L.R.; Xiao, L.T.; Jia, S.T. Investigation on the Cs 6S1/2 to 7D electric quadrupole transition via monochromatic two-photon process at 767 nm. arXiv 2020, arXiv:2008.09739v1. [Google Scholar]
- Foot, C.J. Atomic Physics; Oxford University Press: New York, NY, USA, 2005; pp. 97–119. [Google Scholar]
- Yang, G.; Wang, J.; Yang, B.D.; Wang, J.M. Determination of the hyperfine coupling constant of the cesium 7S1/2 state. Laser Phys. Lett. 2016, 13, 085702. [Google Scholar] [CrossRef]
- Yang, B.D.; Gao, J.; Zhang, T.C.; Wang, J.M. Electromagnetically induced transparency without a Doppler background in a multilevel ladder-type cesium atomic system. Phys. Rev. A 2011, 83, 013818. [Google Scholar] [CrossRef]
- Gea-Banacloche, J.; Li, Y.Q.; Jin, S.Z.; Xiao, M. Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment. Phys. Rev. A 1995, 51, 576. [Google Scholar] [CrossRef] [PubMed]
- Auzinsh, M.; Blushs, K.; Ferber, R.; Gahbauer, F.; Jarmola, A.; Safronova, M.S. Level-crossing spectroscopy of the 7, 9, and 10D5/2 states of 133Cs and validation of relativistic many-body calculations of the polarizabilities and hyperfine constants. Phys. Rev. A 2007, 75, 22502. [Google Scholar] [CrossRef]
Hyperfine Splitting | Measured Splitting Values (MHz) |
---|---|
5p67d 2D5/2 (F” = 6)–(F” = 5): HFS6″–5″ | −10.60(17) |
5p67d 2D5/2 (F” = 5)–(F” = 4): HFS5″–4″ | −8.54(15) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Hou, X.; Bai, J.; Wang, J. Measuring the Hyperfine Splitting and Deriving the Hyperfine Interaction Constants of the Cesium 5p67d 2D5/2 Excited State. Appl. Sci. 2020, 10, 8178. https://doi.org/10.3390/app10228178
Wang Z, Hou X, Bai J, Wang J. Measuring the Hyperfine Splitting and Deriving the Hyperfine Interaction Constants of the Cesium 5p67d 2D5/2 Excited State. Applied Sciences. 2020; 10(22):8178. https://doi.org/10.3390/app10228178
Chicago/Turabian StyleWang, Zerong, Xiaokai Hou, Jiandong Bai, and Junmin Wang. 2020. "Measuring the Hyperfine Splitting and Deriving the Hyperfine Interaction Constants of the Cesium 5p67d 2D5/2 Excited State" Applied Sciences 10, no. 22: 8178. https://doi.org/10.3390/app10228178
APA StyleWang, Z., Hou, X., Bai, J., & Wang, J. (2020). Measuring the Hyperfine Splitting and Deriving the Hyperfine Interaction Constants of the Cesium 5p67d 2D5/2 Excited State. Applied Sciences, 10(22), 8178. https://doi.org/10.3390/app10228178