Characterization and Optimal Design of Silicon-Rich Nitride Nonlinear Waveguides for 2 μm Wavelength Band
Abstract
:1. Introduction
2. Structure and Fabrication
3. Linear and Nonlinear Characterizations
3.1. Linear Characterizations
3.2. Nonlinear Characterizations
4. Optimal Design for the Maximal Nonlinear Energy Efficiency
5. Optimal Design for a Superbroad FWM Conversion Bandwidth
6. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gunning, F.; Corbett, B. Time to Open the 2-μm Window? Opt. Photonics News 2019, 30, 42–47. [Google Scholar] [CrossRef]
- Su, Y.; Wang, W.; Hu, X.; Hu, H.; Huang, X.; Wang, Y.; Si, J.; Xie, X.; Han, B.; Feng, H.; et al. 10 Gbps DPSK transmission over free-space link in the mid-infrared. Opt. Express 2018, 26, 34515–34528. [Google Scholar] [CrossRef] [PubMed]
- Tuan, T.H.; Nishiharaguchi, N.; Suzuki, T.; Ohishi, Y. Mid-infrared transmission by a tellurite hollow core optical fiber. Opt. Express 2019, 27, 30576–30588. [Google Scholar] [CrossRef]
- Lamy, M.; Finot, C.; Fatome, J.; Arocas, J.; Weeber, J.-C.; Hammani, K. Demonstration of High-Speed Optical Transmission at 2 µm in Titanium Dioxide Waveguides. Appl. Sci. 2017, 7, 631. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.; Luo, J.; Sun, B.; Ramalingam, V.L.; Yu, X.; Wang, Q.; Yu, F.; Knight, J.C. 45W 2 µm nanosecond pulse delivery using antiresonant hollow-core fiber. In Proceedings of the Conference on Lasers and Electro-Optics: Science and Innovations, San Jose, CA, USA, 13–18 May 2018. [Google Scholar]
- Kong, D.; Liu, Y.; Ren, Z.; Jung, Y.; Pu, M.; Yvind, K.; Galili, M.; Oxenløwe, L.K.; Richardson, D.J.; Hu, H. Generation and Coherent Detection of 2-µm-band WDM-QPSK Signals by On-chip Spectral Translation. In Proceedings of the Optical Fiber Communication Conference (OFC), San Diego, CA, USA, 8–12 March 2020. [Google Scholar]
- Li, Z.; Heidt, A.M.; Daniel, J.M.O.; Jung, Y.; Alam, S.U.; Richardson, D.J. Thulium-doped fiber amplifier for optical communications at 2 μm. Opt. Express 2013, 21, 9289–9297. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, G.P. Nonlinear Fiber Optics, 3rd ed.; Academic: Boston, MA, USA, 2001. [Google Scholar]
- Geng, J.; Wang, Q.; Jiang, S. 2μm fiber laser sources and their applications. In Proceedings of the NanOphotonics and Macrophotonics for Spacel Envgineering + Applicationments V, San Diego, CA, USA, 13 September 2011. [Google Scholar]
- Yang, C.-A.; Xie, S.-W.; Zhang, Y.; Shang, J.-M.; Huang, S.-S.; Yuan, Y.; Shao, F.-H.; Zhang, Y.; Xu, Y.; Niu, Z.-C. High-power, high-spectral-purity GaSb-based laterally coupled distributed feedback lasers with metal gratings emitting at 2 μm. Appl. Phys. Lett. 2019, 114, 021102. [Google Scholar] [CrossRef]
- Cao, W.; Hagan, D.; Thomson, D.J.; Nedeljkovic, M.; Littlejohns, C.G.; Knights, A.; Alam, S.-U.; Wang, J.; Gardes, F.Y.; Zhang, W.; et al. High-speed silicon modulators for the 2 μm wavelength band. Optica 2018, 5, 1055–1062. [Google Scholar] [CrossRef]
- Richardson, D.J. New optical fibres for high-capacity optical communications. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20140441. [Google Scholar] [CrossRef] [Green Version]
- Ryckeboer, E.; Gassenq, A.; Muneeb, M.; Hattasan, N.; Pathak, S.; Cerutti, L.; Rodriguez, J.; Tournié, E.; Bogaerts, W.; Baets, R.; et al. Silicon-on-insulator spectrometers with integrated GaInAsSb photodiodes for wide-band spectroscopy from 1510 to 2300 nm. Opt. Express 2013, 21, 6101–6108. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Z.; Li, D.; Yao, Y.; Du, J.; He, Z.; Xu, K. Thermo-Optic Tunable Silicon Arrayed Waveguide Grating at 2-μm Wavelength Band. IEEE Photonics J. 2020, 12, 1–8. [Google Scholar] [CrossRef]
- Wang, R.; Vasiliev, A.; Muneeb, M.; Malik, A.; Sprengel, S.; Boehm, G.; Amann, M.-C.; Šimonytė, I.; Vizbaras, A.; Vizbaras, K.; et al. III–V-on-silicon photonic integrated circuits for spectroscopic sensing in the 2–4 μm wavelength range. Sensors 2017, 17, 1788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, S.; Wang, W.; Huang, Y.-C.; Dong, Y.; Masudy-Panah, S.; Wang, H.; Gong, X.; Yeo, Y.-C. High-speed photo detection at two-micron-wavelength: Technology enablement by GeSn/Ge multiple-quantum-well photodiode on 300 mm Si substrate. Opt. Express 2019, 27, 5798–5813. [Google Scholar] [CrossRef]
- Leuthold, J.; Koos, C.; Freude, W. Nonlinear silicon photonics. Nat. Photonics 2010, 4, 535–544. [Google Scholar] [CrossRef]
- Espinola, R.L.; Dadap, J.I.; Osgood, J.R.M.; McNab, S.J.; Vlasov, Y.A. C-band wavelength conversion in silicon photonic wire waveguides. Opt. Express 2005, 13, 4341–4349. [Google Scholar] [CrossRef]
- Lin, Q.; Painter, O.J.; Agrawal, G.P. Nonlinear optical phenomena in silicon waveguides: Modeling and applications. Opt. Express 2007, 15, 16604–16644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moss, D.J.; Morandotti, R.; Gaeta, A.L.; Lipson, M. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photonics 2013, 7, 597–607. [Google Scholar] [CrossRef] [Green Version]
- Blumenthal, D.J.; Heideman, R.; Geuzebroek, D.; Leinse, A.; Roeloffzen, C.G.H. Silicon Nitride in Silicon Photonics. Proc. IEEE 2018, 106, 2209–2231. [Google Scholar] [CrossRef] [Green Version]
- Bristow, A.D.; Rotenberg, N.; Van Driel, H.M. Two-photon absorption and Kerr coefficients of silicon for 850–2200nm. Appl. Phys. Lett. 2007, 90, 191104. [Google Scholar] [CrossRef]
- Soref, R.; Emelett, S.J.; Buchwald, W.R. Silicon waveguided components for the long-wave infrared region. J. Opt. A Pure Appl. Opt. 2006, 8, 840–848. [Google Scholar] [CrossRef] [Green Version]
- Lamy, M.; Finot, C.; Colman, P.; Fatome, J.; Millot, G.; Roelkens, G.; Kuyken, B.; Hammani, K. Silicon waveguides for high-speed optical transmissions and parametric conversion around 2 μm. IEEE Photonics Tech. Lett. 2019, 31, 165–168. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Jr, R.M.O.; Vlasov, Y.A.; Green, W.M.J. Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides. Nat. Photonics 2010, 4, 557–560. [Google Scholar] [CrossRef]
- Griffith, A.G.; Lau, R.K.W.; Cardenas, J.; Okawachi, Y.; Mohanty, A.; Fain, R.; Lee, Y.H.D.; Yu, M.; Phare, C.T.; Poitras, C.B.; et al. Silicon-chip mid-infrared frequency comb generation. Nat. Commun. 2015, 6, 6299. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, M.H.P.; Herkommer, C.; Liu, J.; Morais, T.; Zervas, M.; Geiselmann, M.; Kippenberg, T.J. Photonic Damascene Process for Low-Loss, High-Confinement Silicon Nitride Waveguides. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1–11. [Google Scholar] [CrossRef]
- Lamy, M.; Finot, C.; Fatome, J.; Weeber, J.C.; Millot, G.; Kuyken, B.; Roelkens, G.; Brun, M.; Labeye, P.; Nicolleti, S.; et al. High speed optical transmission at 2 μm in subwavelength waveguides made of various materials. In Proceedings of the Integrated Photonics Research, Silicon and Nanophotonics, Zurich, Switzerland, 2–5 July 2018. [Google Scholar]
- Lacava, C.; Stankovic, S.; Khokhar, A.Z.; Bucio, T.D.; Gardes, F.Y.; Reed, G.T.; Richardson, D.J.; Petropoulos, P. Si-rich Silicon Nitride for Nonlinear Signal Processing Applications. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Krückel, C.J.; Fülöp, A.; Klintberg, T.; Bengtsson, J.; Andrekson, P.A.; Torres-Company, V. Linear and nonlinear characterization of low-stress high-confinement silicon-rich nitride waveguides: Erratum. Opt. Express 2017, 25, 7443–7444. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Pu, M.; Zhou, B.; Krückel, C.J.; Fülöp, A.; Torres-Company, V.; Bache, M. Octave-spanning supercontinuum generation in a silicon-rich nitride waveguide. Opt. Lett. 2016, 41, 2719. [Google Scholar] [CrossRef] [Green Version]
- Ye, Z.; Fülöp, A.; Helgason, Ó.B.; Andrekson, P.A.; Torres-Company, V. Low-loss high-Q silicon-rich silicon nitride microresonators for Kerr nonlinear optics. Opt. Lett. 2019, 44, 3326–3329. [Google Scholar] [CrossRef] [Green Version]
- Mitrovic, M.; Guan, X.; Ji, H.; Oxenløwe, L.K.; Frandsen, L.H. Four-wave mixing in silicon-rich nitride waveguides. In Proceedings of the Frontiers in Optics, San Jose, CA, USA, 18–22 October 2015. [Google Scholar]
- Wang, X.; Guan, X.; Gao, S.; Hu, H.; Oxenløwe, L.K.; Frandsen, L.H. Silicon/silicon-rich nitride hybrid-core waveguide for nonlinear optics. Opt. Express 2019, 27, 23775–23784. [Google Scholar] [CrossRef]
- Ooi, K.J.A.; Ng, D.K.T.; Wang, T.; Chee, A.K.L.; Ng, S.K.; Wang, Q.; Ang, L.K.; Agarwal, A.; Kimerling, L.C.; Tan, D.T.H. Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge. Nat. Commun. 2017, 8, 13878. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Ng, D.K.T.; Ng, S.-K.; Toh, Y.-T.; Chee, A.K.L.; Chen, G.F.R.; Wang, Q.; Tan, D.T.H. Supercontinuum generation in bandgap engineered, back-end CMOS compatible silicon rich nitride waveguides. Laser Photonics Rev. 2015, 9, 498–506. [Google Scholar] [CrossRef]
- Choi, J.W.; Sohn, B.-U.; Chen, G.F.R.; Ng, D.K.T.; Tan, D.T.H. Soliton-effect optical pulse compression in CMOS-compatible ultra-silicon-rich nitride waveguides. APL Photonics 2019, 4, 110804. [Google Scholar] [CrossRef]
- Sahin, E.; Blanco-Redondo, A.; Xing, P.; Ng, D.K.T.; Png, C.E.; Tan, D.T.H.; Eggleton, B.J. Bragg Soliton Compression and Fission on CMOS-Compatible Ultra-Silicon-Rich Nitride. Laser Photonics Rev. 2019, 13, 1900114. [Google Scholar] [CrossRef]
- Lamy, M.; Finot, C.; Parriaux, A.; Lacava, C.; Bucio, T.D.; Gardes, F.Y.; Millot, G.; Petropoulos, P.; Hammani, K. Si-rich Si nitride waveguides for optical transmissions and toward wavelength conversion around 2 μm. Appl. Opt. 2019, 58, 5165–5169. [Google Scholar] [CrossRef]
- Cheng, M.-C.; Chang, C.-P.; Huang, W.-S.; Huang, R.-S. Ultralow-stress silicon-rich nitride films for microstructure fabrication. Sens. Mater. 1999, 11, 349–358. [Google Scholar]
- Jin, Q.; Lu, J.; Li, X.; Yan, Q.; Gao, Q.; Gao, S. Performance evaluation of four-wave mixing in a graphene-covered tapered fiber. J. Opt. 2016, 18, 075502. [Google Scholar] [CrossRef]
- Yap, K.P.; Delage, A.; Lapointe, J.; Lamontagne, B.; Schmid, J.H.; Waldron, P.; Syrett, B.A.; Janz, S. Correlation of Scattering Loss, Sidewall Roughness and Waveguide Width in Silicon-on-Insulator (SOI) Ridge Waveguides. J. Light. Technol. 2009, 27, 3999–4008. [Google Scholar] [CrossRef]
- Payne, F.P.; Lacey, J.P.R. A theoretical analysis of scattering loss from planar optical waveguides. Opt. Quantum Electron. 1994, 26, 977–986. [Google Scholar] [CrossRef]
- Afshar, S.; Monro, T.M. A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity. Opt. Express 2009, 17, 2298–2318. [Google Scholar] [CrossRef] [Green Version]
- Tan, D.T.H.; Ooi, K.J.A.; Ng, D.K.T. Nonlinear optics on silicon-rich nitride—A high nonlinear figure of merit CMOS platform [Invited]. Photonics Res. 2018, 6, B50–B66. [Google Scholar] [CrossRef]
- Ebendorff-Heidepriem, H.; Petropoulos, P.; Asimakis, S.; Finazzi, V.; Moore, R.C.; Frampton, K.; Koizumi, F.; Richardson, D.J.; Monro, T.M. Bismuth glass holey fibers with high nonlinearity. Opt. Express 2004, 12, 5082–5087. [Google Scholar] [CrossRef] [Green Version]
Measured α (dB/cm) | Calculated α (dB/cm) | γ (W−1 m−1) | n2 (m2/W) | |
---|---|---|---|---|
h = 230 nm, w = 840 nm | 1.7 ± 1.6 | 1.8 | 3.74 | 1.77 × 10−18 |
h = 230 nm, w = 1360 nm | 2.1 ± 1.0 | 1.9 | 2.90 | 1.30 × 10−18 |
h = 380 nm, w = 950 nm | 1.7 ± 1.0 | 2.1 | 2.79 | 0.87 × 10−18 |
h = 380 nm, w = 1350 nm | 2.3 ± 1.0 | 2.1 | 2.49 | 0.80 × 10−18 |
h = 640 nm, w = 800 nm | 3.3 ± 1.4 | 3.3 | 5.98 | 1.24 × 10−18 |
h = 640 nm, w = 1320 nm | 2.7 ± 0.9 | 2.6 | 4.62 | 1.13 × 10−18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tu, Z.; Chen, D.; Hu, H.; Gao, S.; Guan, X. Characterization and Optimal Design of Silicon-Rich Nitride Nonlinear Waveguides for 2 μm Wavelength Band. Appl. Sci. 2020, 10, 8087. https://doi.org/10.3390/app10228087
Tu Z, Chen D, Hu H, Gao S, Guan X. Characterization and Optimal Design of Silicon-Rich Nitride Nonlinear Waveguides for 2 μm Wavelength Band. Applied Sciences. 2020; 10(22):8087. https://doi.org/10.3390/app10228087
Chicago/Turabian StyleTu, Zhihua, Daru Chen, Hao Hu, Shiming Gao, and Xiaowei Guan. 2020. "Characterization and Optimal Design of Silicon-Rich Nitride Nonlinear Waveguides for 2 μm Wavelength Band" Applied Sciences 10, no. 22: 8087. https://doi.org/10.3390/app10228087
APA StyleTu, Z., Chen, D., Hu, H., Gao, S., & Guan, X. (2020). Characterization and Optimal Design of Silicon-Rich Nitride Nonlinear Waveguides for 2 μm Wavelength Band. Applied Sciences, 10(22), 8087. https://doi.org/10.3390/app10228087