Autonomous Underwater Vehicle Powered by Direct Methanol Fuel Cell-Based Power Plants: A Quick Preliminary Design Model
Abstract
1. Introduction
2. The Quick Preliminary Design Model
2.1. Hull Forms
2.2. Propulsion Power
2.3. Arrangement
2.4. Pressure Hulls
2.5. Payload, BoP and Auxiliary Equipment
2.6. Operational Profile and Power Plant Hybridization
is characterized by a phase with a high power demand and a much longer duration than the low power demand phase. This pattern can be applied to an AUV scanning the seabed with a side-scan sonar in a rectangular scan pattern. Profile
is the opposite, a power demand with short peaks and long standby periods. It can correspond to a surveillance AUV that takes and transmits data from the environment during short periods and remains in a standby state for the remainder of the time.
than in profile
in terms of delivered power. In both cases, the hybridization will be sized in such a way that during low power consumption the fuel cell recharges the batteries and, at the same time, the fuel cell operates near the desired working point. In this paper, this working point is that which is close to the maximum efficiency. For a given power output, this decision results in larger and heavier stacks. However, in this case, the influence on the design of the volume and mass of the reactants and products is higher than those of the fuel cell. Thus, the result is more compact global designs for a given endurance.2.7. Power Plant
connected in parallel to a set of Li-Ion batteries
, thereby forming a hybridized system. This hybrid system is connected to a power bus
that distributes the electrical power to the consumers. To refrigerate the power plant, the sea
is used as a heat sink. The stack cooling loop consists of an open heat exchanger located outside the AUV
, a cooling pump
, and a reservoir that is also used also as an expansion vessel
. The methanol is stored in its pure state in a specific tank
that is equipped with a pressure equalization valve to avoid undesired vacuum effects due to emptying the tank. In the case of an emergency or shut down, this tank is automatically isolated by a normally-closed solenoid valve
. The concentration of methanol in the anode circuit is maintained at the desired value, cMeOH, by a concentration sensor
that is installed inside a methanol reservoir
, which acts also as gas separator. This sensor controls the methanol feeding pump
. The anode flow is impelled by a pump
placed at the inlet of the anode to avoid cavitation due to the presence of CO2 bubbles. The CO2 that leaves the reservoir is impelled by a a blower
through the CO2 Capture System (CO2CO)
where it is captured by the adsorbent material. The excess stream is led to a heat exchanger
where the heat produced inside the CO2CS is evacuated. After cooling, this stream is blended with the CO2 stream coming from the reservoir and recirculated through the CO2CS. This loop allows both refrigerating the CO2CS and reducing the temperature of the stream coming from the reservoir, thereby favouring the CO2 capture. A cooling loop consisting of an open heat exchanger located outside the AUV
, a cooling pump
, and a reservoir
evacuates the heat of the CO2CS to the sea. Regarding the oxygen reduced at the cathode of the fuel cell, it is stored as compressed pure oxygen at 35 MPa in a cylinder
equipped with a pressure reduction valve that lowers the pressure to 2 MPa
. The reason for using compressed oxygen is its simplicity. The use of pure oxygen rather than air leads to a more compact oxygen storage system for the same endurance. The oxygen is released by a low flow electronic pressure regulator
that reduces the O2 pressure to 100 kPa. This O2 enters into a loop connected to the cathode where a blower
keeps the stream circulating. The water produced in the cathode and the excess of oxygen are directed to a gas separator
similar to the CO2 separator in the anode loop
. The excess oxygen is led to the blower
and recirculated to the fuel cell. The water produced is distributed by means of a dedicated pump
and a set of four 3-way valves
to the anode loop or to the water storing tanks
that form the trimming system. These tanks are located at the ends of the central pressure hull, thereby maximizing the righting momentum. This configuration allows both managing the trim of the AUV and refilling the anode circuit with just a single conventional pump. The anode gas separator
also acts as a solution reservoir allowing an intermittent refilling of water from the cathode and, in this way, the operation of the trim control system. Finally, the installation is managed by the corresponding electronic control and management system
. This system implements a control algorithm to manage the power plant. In this sense, works as those published by Karaoglan et al. [28] and Wilhelm et al. [29] can be used.
.
and
consist of a partially-filled vertical cylinder as in the work of Dohle et al. [32]. The mixed stream enters into the separator through a downward pointing tube in the upper part, which facilitates the separation of two phases: gas and liquid. The liquid phase is drained by the lower part of the cylinder. The gaseous phase proceeds upwards. In the upper part of the cylinder, a hydrophobic membrane separates the CO2 or O2 from the gaseous water that condenses and falls downward. Finally, the clean gas leaves the separator through an upper exhaust.2.8. Fuel Cell Stack Sizing and Consumables Calculation
2.9. CO2 Capture System
2.10. Mass and Volume Balances
2.11. The Genetic Algorithm
2.12. Parameters of the Genetic Algorithm
3. Problem Configuration
3.1. Hull Forms and Pressure Hulls Arrangement
3.2. Payload, Auxiliary Equipment and BoP
and
, respectively, their minimum flow must be three times the O2 consumption and CO2 production rates, respectively.
and the O2 low flow electronic pressure regulator
is made by a 1/16” stainless steel pipe (see Figure 5). To estimate the length of the power plant piping “a half central pressure hull length” was assigned to each pipe branch. Finally, the mass of the liquid fluids inside pipes was included in the calculation.3.3. Operational Profile
3.4. Input Values
3.5. Genetic Algorithm
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Payload, Auxiliary Equipment and BoP
| Code | Description | Number | Location | Mass (kg) | Length (mm) | Width (mm) | Height (mm) | Diameter (mm) | Power (W) | Reference |
|---|---|---|---|---|---|---|---|---|---|---|
| SSS-PD | Side Scan Sonar Pods | 2 | Hull 1 | 2.5 | 500 | 46 | 32 | 0 | [59] | |
| SSS | Side Scan Sonar Transducers | 2 | Bph | 1.4 | 180 | 110 | 12 | [59] | ||
| SBP-T | Sub Bottom Profiler Transducer | 1 | Scn | 32.0 | 60 | 470 | 0 | [60] | ||
| SBP | Sub Bottom Profiler Electronics block | 1 | Sph | 10.0 | 400 | 250 | 150 | [60] | ||
| CAM | Still image camera | 1 | Bcn | 0.65 | 99 | 53 | 4.8 | [61] | ||
| TUR | Turbidity sensor | 1 | Bcn | 1.3 | 178 | 63 | 0.9 | [62] | ||
| MBE-P | Multi-beam Echosounder Projector | 1 | Sph | 13.4 | 480 | 109 | 196 | 0 | [63] | |
| MBE-R | Multi-beam Echosounder Receiver | 1 | Sph | 12.9 | 480 | 109 | 190 | 0 | [63] | |
| MBE | Multi-beam Echosounder Interface | 1 | Sph | 2.4 | 280 | 170 | 60 | 100 | [63] |
| Code | Description | Number | Location | Mass (kg) | Length (mm) | Width (mm) | Height (mm) | Diameter (mm) | Power (W) | Reference |
|---|---|---|---|---|---|---|---|---|---|---|
| Group: Navigation | ||||||||||
| IMU | Inertial Measurement Unit | 1 | Bph | 0.055 | 45 | 22 | 39 | 2 | [64] | |
| CMP | Digital Compass | 1 | Bph | 0.204 | 77 | 46 | 16 | 1 | [65] | |
| DVL/ADCP | Doppler velocity log | 1 | Sph | 2.7 | 164 | 114 | 1.3 | [66] | ||
| GNSS | Multi-GNSS receiver Chip | 1 | Bph | 0.001 | 17 | 13 | 3 | 0.3 | [67] | |
| PRS | Pressure Sensor | 1 | Bph | 1.0 | 185 | 40 | 0.4 | [68] | ||
| ALT | Altimeter | 1 | Sph | 1.5 | 230 | 50 | 1.5 | [69] | ||
| STER | Rudder servo motor | 4 | Scn | 0.24 | 81 | 33 | 1.5 | [70] | ||
| STER-G | Rudder servo gearbox | 4 | Scn | 0.156 | 51 | 30 | [71] | |||
| SVCN | Servo controller | 4 | Sph | 0.1 | 75 | 47 | 20 | 1 | [72] | |
| Group: Propulsion | ||||||||||
| PROP | Propulsion chain | 1 | Scn | 3.9 | 305 | 50 | 1 | [73] | ||
| Group:Communications | ||||||||||
| USBL | Underwater Transponder | 1 | Scn | 8.1 | 403 | 110 | 57 | [74] | ||
| WIFI | WiFi connection | 1 | Bph | 0.047 | 89 | 51 | 20 | 3.6 | [75] | |
| ETH | Gigabit Ethernet connection | 1 | Bph | 0.02 | 41 | 25 | [76] | |||
| IRID | Iridium modem | 1 | Bph | 0.17 | 100 | 64 | 16 | 12 | [77] | |
| Group: Data processing | ||||||||||
| MBO | Mother board | 3 | Bph Cph Sph | 0.281 | 102 | 102 | 50 | 10.2 | [78] | |
| HD | Hard disk | 3 | Bph Cph Sph | 0.082 | 101 | 71 | 7 | 3.5 | [79] | |
| Id | Code | Description | Number | Location | Mass (kg) | Length (mm) | Width (mm) | Height (mm) | Diameter (mm) | Power (W) | Reference |
|---|---|---|---|---|---|---|---|---|---|---|---|
![]() | BATT | Auxiliary batteries | 3 | Bph Cph Sph | 1 | 110 | 68 | 38 | [80] | ||
![]() | DC-AC | Power inverter | 1 | Sph | 3.35 | 325 | 165 | 85 | 1 | [81] | |
![]() | DCDC12V | DC/DC converter 24 to 12 V | 2 | Bph Cph | 0.024 | 40 | 23 | 8 | 1 | [82] | |
![]() | DCDC3V | DC/DC converter 24 to 5 V | 2 | Bph Cph | 0.024 | 40 | 23 | 8 | 1 | [83] | |
![]() | DCDC5V | DC/DC converter 24 to 3.3 V | 1 | Bph | 0.024 | 40 | 23 | 8 | 1 | [84] | |
![]() | STKHEX | Stack cooling heat exchanger | 1 | Hull | 5 | ||||||
![]() | STKCOOLPMP | Stack cooling pump | 1 | Cph | 0.34 | 127 | 89 | 100 | 48 | [85] | |
![]() | STKCOOLRSV | Stack cooling loop. Coolant reservoir. | 1 | Cph | 0.365 2 | 80 | 80 | 80 | |||
![]() | MEOHVLV | MeOH tank isolation valve | 1 | Cph | 0.01 | 43 | 10 | 2.5 | [86] | ||
![]() | MCS | MeOH concentration sensor | 1 | Cph | 0.1 | 33 | 68 | 16 | 0.21 | [87] | |
![]() | MEOHRSV | MeOH reservoir and anode separator tank | 1 | Cph | 5 | 0.375 | 180 | ||||
![]() | MEOHPMP | Methanol feeding pump | 1 | Cph | 0.64 | 42 | 42 | 42 | 9 | [88] | |
![]() | ANOPMP | Anode circulation pump | 1 | Cph | 0.032 | 40 | 46 | 25 | 5.8 | [89] | |
![]() | CO2CSBLW | CO2CS circulation blower | 1 | Cph | 0.018 | 37 | 44 | 23 | 0.8 | [90] | |
![]() | CO2CSHEX | CO2CS heat exchanger | 1 | Cph | 1.07 | 172 | 74 | 52 | [91] | ||
![]() | CO2CSOPENHEX | CO2CS open heat exchanger | 1 | Hull | 10 | ||||||
![]() | CO2COPMP | CO2CS cooling pump | 1 | Cph | 0.041 | 46 | 25 | 26 | 5.8 | [92] | |
![]() | CO2CSCOOLRSV | CO2CS cooling loop. Coolant reservoir. | 1 | Cph | 0.365 2 | 80 | 80 | 80 | |||
![]() | PRV | O2 pressure reduction valve | 1 | Cph | 0.23 | 77 | 46 | [93] | |||
![]() | LFEPR | O2 pressure regulator | 1 | Cph | 0.454 | 49 | 32 | 111 | 11.5 | [94] | |
![]() | CATBLW | Cathode circulation blower | 1 | Cph | 0.014 | 37 | 44 | 23 | 0.8 | [90] | |
![]() | CATSEPTNK | Cathode separation tank | 1 | Cph | 5 | 0.375 | 180 | ||||
![]() | H2OPMP | Water pump | 1 | Cph | 0.032 | 40 | 46 | 25 | 5.8 | [89] | |
![]() | CAT3WVLV | 3-way valves | 4 | Cph | 0.272 | 43 | 43 | 110 | 11 | [95] | |
| - | PIPING | Nitrile piping | 1 | Cph | 0.9 | 25,000 | OD:7 ID:4 | [96] | |||
| - | FLUID | Liquid fluid in pipes | 1 | Cph | 0.10 |
| Id | Code | Description | Number | Location | Mass (kg) | Length (mm) | Width (mm) | Height (mm) | Diameter (mm) | Power (W) | Reference |
|---|---|---|---|---|---|---|---|---|---|---|---|
![]() | BATT | Auxiliary batteries | 3 | Bph Cph Sph | 1 | 110 | 68 | 38 | [80] | ||
![]() | DC-AC | Power inverter | 1 | Sph | 3.35 | 325 | 165 | 85 | 1 | [81] | |
![]() | DCDC12V | DC/DC converter 24 to 12 V | 2 | Bph Cph | 0.024 | 40 | 23 | 8 | 1 | [82] | |
![]() | DCDC3V | DC/DC converter 24 to 5 V | 2 | Bph Cph | 0.024 | 40 | 23 | 8 | 1 | [83] | |
![]() | DCDC5V | DC/DC converter 24 to 3.3 V | 1 | Bph | 0.024 | 40 | 23 | 8 | 1 | [84] | |
![]() | STKHEX | Stack cooling heat exchanger | 2 | Hull | 5 | ||||||
![]() | STKCOOLPMP | Stack cooling pump | 2 | Cph | 0.34 | 127 | 89 | 100 | 48 | [85] | |
![]() | STKCOOLRSV | Stack cooling loop. Coolant reservoir. | 1 | Cph | 0.365 2 | 80 | 80 | 80 | |||
![]() | MEOHVLV | MeOH tank isolation valve | 1 | Cph | 0.01 | 43 | 10 | 2.5 | [86] | ||
![]() | MCS | MeOH concentration sensor | 1 | Cph | 0.1 | 33 | 68 | 16 | 0.21 | [87] | |
![]() | MEOHRSV | MeOH reservoir and anode separator tank | 1 | Cph | 5 | 500 | 160 | ||||
![]() | MEOHPMP | Methanol feeding pump | 1 | Cph | 0.64 | 42 | 42 | 42 | 9 | [88] | |
![]() | ANOPMP | Anode circulation pump | 1 | Cph | 0.032 | 40 | 46 | 25 | 5.8 | [89] | |
![]() | CO2CSBLW | CO2CS circulation blower | 1 | Cph | 0.018 | 37 | 44 | 23 | 1.2 | [97] | |
![]() | CO2CSHEX | CO2CS heat exchanger | 1 | Cph | 1.47 | 172 | 74 | 73 | [98] | ||
![]() | CO2CSOPENHEX | CO2CS open heat exchanger | 1 | Hull | 10 | ||||||
![]() | CO2COPMP | CO2CS cooling pump | 1 | Cph | 0.041 | 46 | 25 | 26 | 5.8 | [92] | |
![]() | CO2CSCOOLRSV | CO2CS cooling loop. Coolant reservoir. | 1 | Cph | 0.365 2 | 80 | 80 | 80 | |||
![]() | PRV | O2 pressure reduction valve | 1 | Cph | 0.23 | 77 | 46 | [93] | |||
![]() | LFEPR | O2 pressure regulator | 1 | Cph | 0.454 | 49 | 32 | 111 | 11.5 | [94] | |
![]() | CATBLW | Cathode circulation blower | 1 | Cph | 0.014 | 37 | 44 | 23 | 0.84 | [90] | |
![]() | CATSEPTNK | Cathode separation tank | 1 | Cph | 5 | 500 | 160 | ||||
![]() | H2OPMP | Water pump | 1 | Cph | 0.032 | 40 | 46 | 25 | 5.8 | [89] | |
![]() | CAT3WVLV | 3-way valves | 4 | Cph | 0.272 | 43 | 43 | 110 | 11 | [95] | |
![]() | ANOCTRVLV | Anode inlet control valve | 2 | Cph | 0.272 | 43 | 43 | 110 | 11 | [99] | |
![]() | CATCTRVLV | Cathode inlet control valve | 2 | Cph | 0.272 | 43 | 43 | 110 | 11 | [99] | |
| - | PIPING | Nitrile piping | 1 | Cph | 1.4 | 38125 | OD:7 ID:4 | [96] | |||
| - | FLUID | Liquid fluid in pipes | 1 | Cph | 0.15 |
References
- European Commission. Blue Indicators Online Dashboard. 2020. Available online: https://blueindicators.ec.europa.eu/access-online-dashboard_en (accessed on 15 September 2020).
- Widditsch, H. SPURV-The First Decade. APL-UW 7215, Applied Physics Laboratory University of Washington. 1973, p. 32. Available online: https://apps.dtic.mil/dtic/tr/fulltext/u2/a050816.pdf (accessed on 27 September 2020).
- Wynn, R.B.; Huvenne, V.A.; Le Bas, T.P.; Murton, B.J.; Connelly, D.P.; Bett, B.J.; Ruhl, H.A.; Morris, K.J.; Peakall, J.; Parsons, D.R.; et al. Autonomous Underwater Vehicles (AUVs): Their past, present and future contributions to the advancement of marine geoscience. Mar. Geol. 2014, 352, 451–468. [Google Scholar] [CrossRef]
- Himri, K.; Pi, R.; Ridao, P.; Gracias, N.; Palomer, A.; Palomeras, N. Object Recognition and Pose Estimation using Laser scans for Advanced Underwater Manipulation. In Proceedings of the AUV 2018—2018 IEEE/OES Autonomous Underwater Vehicle Workshop, Proceedings, Porto, Portugal, 6–9 November 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Alam, K.; Ray, T.; Anavatti, S.G. A brief taxonomy of autonomous underwater vehicle design literature. Ocean. Eng. 2014, 88, 627–630. [Google Scholar] [CrossRef]
- Kongsberg Maritime. Autonomous Underwater Vehicle: The HUGIN Family. 2017. Available online: https://www.km.kongsberg.com/ks/web/nokbg0397.nsf/AllWeb/A6A2CC361D3B9653C1256D71003E97D5/$file/HUGIN_Family_brochure_r2_lr.pdf (accessed on 27 September 2020).
- Tangirala, S.; Dzielski, J. A Variable Buoyancy Control System for a Large AUV. IEEE J. Ocean. Eng. 2007, 32, 762–771. [Google Scholar] [CrossRef]
- U.S. Navy. The Navy Unmanned Undersea Vehicle (UUV) Master Plan; Technical Report; U.S. Navy: Washington, DC, USA, 2004.
- Villalba-Herreros, A.; Arévalo-Fuentes, J.; Bloemen, G.; Abad, R.; Leo, T.J. Fuel Cells Applied to Autonomous Underwater Vehicles. Endurance Expansion Opportunity; IMAN, 2017, Guedes, C., Teixeira, A.P., Eds.; CRC Press/Balkema: Leiden, The Netherlands, 2017; Volume 2, pp. 871–879. [Google Scholar]
- Weydahl, H.; Gilljam, M.; Lian, T.; Johannessen, T.C.; Holm, S.I.; Hasvold, J.Ø. Fuel cell systems for long-endurance autonomous underwater vehicles - challenges and benefits. Int. J. Hydrogen Energy 2019. [Google Scholar] [CrossRef]
- Gao, F.; Kabalo, M.; Rylko, M.S.; Blunier, B.; Yamamoto, I.; Aoki, T.; Tsukioka, S.; Yoshida, H.; Hyakudome, T.; Sawa, T.; et al. Fuel Cell System of AUV “Urashima”. IEEE 2004, 3, 1732–1737. [Google Scholar] [CrossRef]
- Burke, A.A.; Carreiro, L.G. Solid Oxide Fuel Cells in Unmanned Undersea Vehicle Applications. 2008. Available online: http://www.netl.doe.gov/filelibrary/events/2008/seca/presentations/9_Alan_Burke_UnderSeaVehicle.pdf (accessed on 18 September 2020).
- SBIR STTR. JP-10 Based SOFC Power Generator for Undersea Vehicles. 2007. Available online: https://www.sbir.gov/content/jp-10-based-sofc-power-generator-undersea-vehicles-0 (accessed on 18 September 2020).
- Andrew, L.D.; Rand, D.A.J. Fuel Cell Systems Explained; WILEY: New York, NY, USA, 2018; p. 479. [Google Scholar]
- Weise, T. Global Optimization Algorithms. Theory and Application, 2nd ed.; Self-Published: Kassel, Germany, 2009; Volume 1, p. 820. [Google Scholar]
- Gao, T.; Wang, Y.; Pang, Y.; Cao, J. Hull shape optimization for autonomous underwater vehicles using CFD. Eng. Appl. Comput. Fluid Mech. 2016, 10, 599–607. [Google Scholar] [CrossRef]
- Myring, D.F. A Theoretical Study of Body Drag in Subcritical Axisymmetric Flow. Aeronaut. Q. 1976, 27, 186–194. [Google Scholar] [CrossRef]
- Ignacio, L.C.; Victor, R.R.; Francisco, D.R.R.; Pascoal, A. Optimized design of an autonomous underwater vehicle, for exploration in the Caribbean Sea. Ocean. Eng. 2019, 187, 106184. [Google Scholar] [CrossRef]
- Chen, X.; Wang, P.; Zhang, D.; Dong, H. Gradient-based multidisciplinary design optimization of an autonomous underwater vehicle. Appl. Ocean. Res. 2018, 80, 101–111. [Google Scholar] [CrossRef]
- Stevenson, P.; Furlong, M.; Dormer, D. AUV shapes—Combining the Practical and Hydrodynamic Considerations. In Proceedings of the OCEANS 2007—Europe, Aberdeen, UK, 18–21 June 2007; number 070312. pp. 1–6. [Google Scholar] [CrossRef]
- Martz, M. Preliminary Design of an Autonomous Underwater Vehicle Using a Multiple-Objective Genetic Optimizer; Faculty of Virginia Polytechnic Institute: Blacksburg, VA, USA, 2008; Available online: https://vtechworks.lib.vt.edu/handle/10919/33291 (accessed on 16 September 2020).
- ITTC. Recommended Procedures ITTC—Testing and Extrapolation Methods Resistance. Resistance Test. 2017. Available online: https://www.ittc.info/media/8017/75-02-03-014.pdf (accessed on 10 September 2020).
- ITTC. Resistance Uncertainty Analysis, Example for Resistance Test; ITTC: Montreal, QC, Canada, 2002. [Google Scholar]
- Sangekar, M.; Chitre, M.; Koay, T.B. Hardware architecture for a modular autonomous underwater vehicle STARFISH. In Proceedings of the Oceans 2008, Quebec City, QC, Canada, 15–18 September 2008. [Google Scholar] [CrossRef]
- ABS. Rules for Building and Classing Underwater Systems and Hyperbaric Facilities 2018, 2018 ed.; American Bureau of Shipping: Spring, PA, USA, 2018. [Google Scholar]
- Cai, Q.; Brett, D.J.L.; Browning, D.; Brandon, N.P. A sizing-design methodology for hybrid fuel cell power systems and its application to an unmanned underwater vehicle. J. Power Sources 2010, 195, 6559–6569. [Google Scholar] [CrossRef]
- Hannan, M.; Hoque, M.; Mohamed, A.; Ayob, A. Review of energy storage systems for electric vehicle applications: Issues and challenges. Renew. Sustain. Energy Rev. 2017, 69, 771–789. [Google Scholar] [CrossRef]
- Karaoğlan, M.U.; İnce, A.C.; Colpan, C.O.; Glüsen, A.; Kuralay, N.S.; Müller, M.; Stolten, D. Simulation of a hybrid vehicle powertrain having direct methanol fuel cell system through a semi-theoretical approach. Int. J. Hydrogen Energy 2019, 44, 18981–18992. [Google Scholar] [CrossRef]
- Wilhelm, J.; Blum, L.; Janÿen, H.; Mergel, J.; Stolten, D. Hybridization and Control of Direct Methanol Fuel Cell Systems for Material Handling Applications. In Proceedings of the 18th World Hydrogen Energy Conference 2010—WHEC 2010, Essen, Germany, 16–21 May 2020. [Google Scholar]
- Rabissi, C.; Brightman, E.; Hinds, G.; Casalegno, A. In operando measurement of localised cathode potential to mitigate DMFC temporary degradation. Int. J. Hydrogen Energy 2018, 43, 9797–9802. [Google Scholar] [CrossRef]
- Bresciani, F.; Rabissi, C.; Casalegno, A.; Zago, M.; Marchesi, R. Experimental investigation on DMFC temporary degradation. Int. J. Hydrogen Energy 2014, 39, 21647–21656. [Google Scholar] [CrossRef]
- Dohle, H.; Mergel, J.; Stolten, D. Heat and power management of a direct-methanol-fuel-cell (DMFC) system. J. Power Sources 2002, 111, 268–282. [Google Scholar] [CrossRef]
- Santiago, Ó.; Aranda-Rosales, M.; Navarro, E.; Raso, M.A.; Leo, T.J. Automated design of direct methanol fuel cell stacks: A quick optimization. Int. J. Hydrogen Energy 2019, 44, 10933–10950. [Google Scholar] [CrossRef]
- Depature, C.; Boulon, L.; Sicard, P.; Fournier, M. Simulation model of a multi-stack fuel cell system. In Proceedings of the 2013 15th European Conference on Power Electronics and Applications (EPE), Lille, France, 2–6 September 2013; pp. 1–10. [Google Scholar] [CrossRef]
- Seo, S.H.; Lee, C.S. Effect of Operating Parameters on the Direct Methanol Fuel Cell Using Air or Oxygen As an Oxidant Gas. Energy Fuels 2008, 22, 1212–1219. [Google Scholar] [CrossRef]
- Takagawa, S. Feasibility Study on DMFC Power Source for Underwater Vehicles. In Proceedings of the 2007 Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies, Tokyo, Japan, 17–20 April 2007; pp. 326–330. [Google Scholar] [CrossRef]
- Martínez, I.; Casas, P.A. Simple model for CO2 absorption in a bubbling water column. Braz. J. Chem. Eng. 2012, 29, 107–111. [Google Scholar] [CrossRef]
- Casas Alcaide, P.A.; Martínez Herranz, I. Eliminacion de dioxido de carbono en la propulsion de submarinos. Ph.D. Thesis, Universidad Politécnica de Madrid, Madrid, Spain, 2012. [Google Scholar]
- Encyclopædia Britannica Inc. Adsorption. 2013. Available online: https://www.britannica.com/science/adsorption (accessed on 17 September 2020).
- Zukal, A.; Kubů, M.; Pastva, J. Two-dimensional zeolites: Adsorption of carbon dioxide on pristine materials and on materials modified by magnesium oxide. J. CO2 Util. 2017, 21, 9–16. [Google Scholar] [CrossRef]
- Liu, J.; Thallapally, P.K.; McGrail, B.P.; Brown, D.R.; Liu, J. Progress in adsorption-based CO2 capture by metal-organic frameworks. Chem. Soc. Rev. 2012, 41, 2308–2322. [Google Scholar] [CrossRef]
- Zuluaga, S.; Fuentes-Fernandez, E.M.; Tan, K.; Xu, F.; Li, J.; Chabal, Y.J.; Thonhauser, T. Understanding and controlling water stability of MOF-74. J. Mater. Chem. A 2016, 4, 5176–5183. [Google Scholar] [CrossRef]
- Bao, Z.; Yu, L.; Ren, Q.; Lu, X.; Deng, S. Adsorption of CO2 and CH4 on a magnesium-based metal organic framework. J. Colloid Interface Sci. 2011, 353, 549–556. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Krishna, R.; Chen, B. Metal-organic frameworks with potential for energy-efficient adsorptive separation of light hydrocarbons. Energy Environ. Sci. 2012, 5, 9107–9120. [Google Scholar] [CrossRef]
- Lee, J.S.; Kim, J.H.; Kim, J.T.; Suh, J.K.; Lee, J.M.; Lee, C.H. Adsorption Equilibria of CO2 on Zeolite 13X and Zeolite X/Activated Carbon Composite. J. Chem. Eng. Data 2002, 47, 1237–1242. [Google Scholar] [CrossRef]
- Weisstein, E.W. “Sphere Packing.” From MathWorld—A Wolfram Web Resource. 2020. Available online: https://mathworld.wolfram.com/SpherePacking.html (accessed on 17 September 2020).
- Weisstein, E.W. “Merit function.” From MathWorld—A Wolfram Web Resource. 2020. Available online: https://mathworld.wolfram.com/MeritFunction.html (accessed on 18 September 2020).
- Dragon Plate. What Is Carbon Fiber? 2019. Available online: https://dragonplate.com/what-is-carbon-fiber (accessed on 18 September 2020).
- Lian Innovative. High Efficiency, Low Noise Underwater Thruster. 2019. Available online: http://lianinno.com/underwater-thrusters/ (accessed on 18 September 2020).
- Alseamar, B. Syntactic Foam Blocks. 2019. Available online: https://www.bmti-alseamar.com/buoyancy/syntactic-foam-blocks (accessed on 18 September 2020).
- D’Amore-Domenech, R.; Raso, M.A.; Villalba-Herreros, A.; Santiago, Ó.; Navarro, E.; Leo, T.J. Autonomous underwater vehicles powered by fuel cells: Design guidelines. Ocean. Eng. 2018, 153, 387–398. [Google Scholar] [CrossRef]
- Lemmon, E.W.; Bell, I.H.; Huber, M.L.; McLinden, M.O. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2018. [Google Scholar] [CrossRef]
- ITTC. ITTC—Recommended Procedures. 2011. Available online: https://ittc.info/media/4048/75-02-01-03.pdf (accessed on 15 September 2020).
- Gong, A.; Verstraete, D. Fuel cell propulsion in small fixed-wing unmanned aerial vehicles: Current status and research needs. Int. J. Hydrogen Energy 2017, 42, 21311–21333. [Google Scholar] [CrossRef]
- Diouf, B.; Pode, R. Potential of lithium-ion batteries in renewable energy. Renew. Energy 2015, 76, 375–380. [Google Scholar] [CrossRef]
- Incropera, F.P.; Dewitt, D.P.; Beergman, T.L.; Lavine, A.S. Fundamentals of Heat and Mass Transfer, 6th ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2006. [Google Scholar]
- Saint-Gobain. Versilo Nitrile Flexible, Fluid Transfer Tubing. 2020. Available online: https://www.processsystems.saint-gobain.com/products/versilon-nitrile-flexible-fluid-transfer-tubing (accessed on 17 September 2020).
- Hasvold, O.; Johansen, K. The alkaline aluminium hydrogen peroxide semi-fuel cell for the HUGIN 3000 autonomous underwater vehicle. In Proceedings of the 2002 Workshop on Autonomous Underwater Vehicles, San Antonio, TX, USA, 21–21 June 2002; pp. 89–94. [Google Scholar] [CrossRef]
- Tritech. SeaKing Side Scan Sonar. 2020. Available online: http://www.tritech.co.uk/media/products/side-scan-sonar-seaking-auv-rov.pdf (accessed on 13 September 2020).
- Innomar. SES-2000 AUV Parametric Sub-bottom Profiler. 2020. Available online: http://www.innomar.com/innomar-flyer/Innomar-ses2000-auv.pdf (accessed on 13 September 2020).
- Tritech. Super SeaSpy. 2020. Available online: http://www.tritech.co.uk/media/products/tritech-super-seaspy-colour-ccd-underwater-camera.pdf (accessed on 13 September 2020).
- Seabird. ECO FLNTU. 2020. Available online: https://www.seabird.com/eco-flbb-rtd-backscatter-and-chlorophyll-a-with-real-time-output/product?id=54627915247&callback=pf (accessed on 13 September 2020).
- R2 Sonic. Multibeam Echosounder Specifications. 2020. Available online: https://www.r2sonic.com/wp-content/uploads/2020/03/MBES-Spec-US-03-02-2020.pdf (accessed on 13 September 2020).
- Sensonor. STIM300. 2020. Available online: https://www.r2sonic.com/wp-content/uploads/2020/03/MBES-Spec-US-03-02-2020.pdf (accessed on 14 September 2020).
- Jewell Instruments. ECV Series 3D eCompass. 2020. Available online: http://www.jewellinstruments.com/ecompass-ecv-series/ (accessed on 20 September 2020).
- Nortek. DVL1000—4000 m. 2020. Available online: https://www.nortekgroup.com/products/dvl1000-4000m (accessed on 20 September 2020).
- Furuno. Multi-GNSS Receiver Chip eRideOPUS 7 ePV7010B. 2020. Available online: https://furuno.ent.box.com/s/6iatb3vrpms27qqu5un9eznkqjxbc3ze (accessed on 20 September 2020).
- Valeport. miniIPS—Intelligent Pressure Sensor. 2020. Available online: https://www.valeport.co.uk/products/miniips/ (accessed on 20 September 2020).
- Valeport. VA 500—Altimeter. 2020. Available online: https://www.valeport.co.uk/products/va500-altimeter/ (accessed on 20 September 2020).
- Pittman Motors. EC033A 33mm Brushless DC Motor. 2020. Available online: https://www.haydonkerkpittman.com/products/motors/brushless-dc-motors/ec033a (accessed on 20 September 2020).
- Pittman Motors. G30A 1296:1. 2020. Available online: https://www.haydonkerkpittman.com/products/motors/brushless-dc-motors/ec033a (accessed on 20 September 2020).
- Pittman Motors. Brushless Servo Motor Drives BGE6005A. 2020. Available online: https://www.haydonkerkpittman.com/-/media/ametekhaydonkerk/downloads/products/drives/manual_brushless_motor_drive_bge3508_bge6005.pdf?la=en (accessed on 20 September 2020).
- Lian Innovative. Underwater Thrusters. 2020. Available online: http://lianinno.com/underwater-thrusters/ (accessed on 20 September 2020).
- Evologics. S2CR USBL R12/24. 2020. Available online: https://evologics.de/web/content/15977?unique=a8bd7762e39f425a080ccf0f798d39e966bc5b36 (accessed on 20 September 2020).
- Acksys. WLg-LINK-OEM. 2020. Available online: https://www.acksys.fr/en/product/25-wlg-link-oem/ (accessed on 20 September 2020).
- Macartney. SubConn Ethernet Circular—8 Contacts. 2020. Available online: http://www.macartney.com/what-we-offer/systems-and-products/connectivity/subconn/subconn-ethernet-series/subconn-ethernet-circular-8-contacts/ (accessed on 20 September 2020).
- Quake Global. Q4000 Iridium Modem. 2020. Available online: https://www.quakeglobal.com/system/files/downloads/2017/Q4000%20Marketing%20Data%20Sheet%2C%20Rev%20E.pdf (accessed on 20 September 2020).
- Diamond Systems. GEM-WL8665UE-32G. 2020. Available online: http://www.diamondsystems.com/products/gemini (accessed on 20 September 2020).
- Seagate. Nytro® 1551 SSD 3,84TB. 2020. Available online: http://www.seagate.com/es/es/enterprise-storage/solid-state-drives/nytro-xf1230-sata-ssd/#specs (accessed on 20 September 2020).
- Okoman. 6s2p 24V 6Ah 18650. 2020. Available online: https://es.aliexpress.com/item/4000510922420.html?spm=a2g0o.productlist.0.0.5e935035dhCVP8&algo_pvid=bc4f7198-55c4-48dc-a5cc-2f454be047c5&algo_expid=bc4f7198-55c4-48dc-a5cc-2f454be047c5-1&btsid=0be3764315911526614551400ec55d&ws_ab_test=searchweb0_0,searchweb201602_,searchweb201603_ (accessed on 20 September 2020).
- Edecoa. 1500W-24V. 2020. Available online: https://www.edecoa.com/index.php/e-shop/12v230v-modified-wave/pure-sine-wave/remote-control-1500w-pure-sine-wave-inverter-detail (accessed on 20 September 2020).
- VICOR. DCM3623T36G13C2T00. 2020. Available online: http://www.vicorpower.com/products?productType=cfg&productKey=DCM3623T36G13C2T00 (accessed on 20 September 2020).
- VICOR. DCM3623T36G06A8T00. 2020. Available online: http://www.vicorpower.com/products?productType=cfg&productKey=DCM3623T36G06A8T00 (accessed on 20 September 2020).
- VICOR. DCM3623T50M04A2T70. 2020. Available online: http://www.vicorpower.com/products?productType=cfg&productKey=DCM3623T50M04A2T70 (accessed on 20 September 2020).
- Micropump. GB-P35-DEELE. 2020. Available online: http://www.micropump.com/support_documents/GB_EagleDrive.pdf (accessed on 20 September 2020).
- BMT. 2/2-Wege NC. 2020. Available online: https://www.pumps-valves.eu/fileadmin/datenblaetter/bmt/Axial-Miniatur-Magnetventile.pdf (accessed on 20 September 2020).
- Integrated Sensing Systems Inc. microMSC. 2020. Available online: https://aavos.eu/wp-content/uploads/2017/11/microMCS-Methanol-Concentration-Sensor-AL.pdf (accessed on 20 September 2020).
- TCS Micropumps. R404-ST. 2020. Available online: https://micropumps.co.uk/DATA/pdf/DS47_R404-ST_DATA_SHEET_050220_REV_3.pdf (accessed on 13 September 2020).
- TCS Micropumps. M400K-180-V. 2020. Available online: https://micropumps.co.uk/DATA/pdf/DS04%20-%20M400%20Data%20Sheet%20REV%204%20SMALL.pdf (accessed on 17 September 2020).
- LC-Inc. CFR1B12H. 2020. Available online: https://olc-inc.com/CFR1B.html (accessed on 17 September 2020).
- Alfa Laval. CBH16AQ 20 Plates. 2020. Available online: https://assets.alfalaval.com/documents/p1c78170d/alfa-laval-cb16aq-product-leaflet-en.pdf (accessed on 17 September 2020).
- TCS Micropumpsl. M410K. 2020. Available online: https://www.micropumps.co.uk/DATA/pdf/DS26%20-%20M410%20Data%20Sheet%20REV%201%20SMALL.pdf (accessed on 17 September 2020).
- Tescom. BB-13PL3KUA2. 2020. Available online: https://www.silpac.net/documents/bb_1_series_lit.pdf (accessed on 17 September 2020).
- Kelly Pneumatics. LFR-2524-0505-R8-F. 2020. Available online: https://kellypneumatics.com/download_files/LFRspec.pdf/ (accessed on 20 September 2020).
- Solenoid Solutions Inc. 37B53-1NT-E8F6. 2020. Available online: https://www.solenoidsolutionsinc.com/solenoid-valves/7-series-valves/ (accessed on 20 September 2020).
- Saint Gobaint. VERSILONTM NITRILE 4mm ID. 2020. Available online: https://www.solenoidsolutionsinc.com/solenoid-valves/7-series-valves/ (accessed on 17 September 2020).
- LC-Inc. CFR1B12X. 2020. Available online: https://micropumps.co.uk/DATA/pdf/DS04%20-%20M400%20Data%20Sheet%20REV%204%20SMALL.pdf (accessed on 17 September 2020).
- Alfa Laval. CBH16AQ 30 plates. 2020. Available online: https://assets.alfalaval.com/documents/p1c78170d/alfa-laval-cb16aq-product-leaflet-en.pdf (accessed on 20 September 2020).
- Solenoid Solutions Inc. 27B43-1NT-E8F6. 2020. Available online: https://www.solenoidsolutionsinc.com/solenoid-valves/7-series-valves/ (accessed on 17 September 2020).



, operational profile characterized by long high power demand periods and
, operational profile characterized by short power peaks.
, operational profile characterized by long high power demand periods and
, operational profile characterized by short power peaks.

Fuel cell stack.
Batteries.
Power bus.
Sea water.
Stack cooling heat exchanger.
Stack cooling pump.
Stack cooling loop. Coolant reservoir.
MeOH tank.
MeOH tank isolation valve.
MeOH concentration sensor.
MeOH reservoir and CO2 separation tank.
MeOH feeding pump.
Anode circulation pump.
CO2CS circulation blower.
CO2 Capture System (CO2CS).
CO2CS heat exchanger.
CO2CS cooling heat exchanger.
CO2CS cooling pump.
CO2CS cooling loop. Coolant reservoir.
O2 cylinder.
O2 pressure reduction valve.
O2 low flow electronic pressure regulator.
Cathode circulation blower.
Cathode separation tank.
Multipurpose pump. Anode refilling pump and trimming system pump.
3-way valves.
Trimming tanks (bow and stern).
Electronic control and management system.
Purge circuit.
Syntactic foam.
Fuel cell stack.
Batteries.
Power bus.
Sea water.
Stack cooling heat exchanger.
Stack cooling pump.
Stack cooling loop. Coolant reservoir.
MeOH tank.
MeOH tank isolation valve.
MeOH concentration sensor.
MeOH reservoir and CO2 separation tank.
MeOH feeding pump.
Anode circulation pump.
CO2CS circulation blower.
CO2 Capture System (CO2CS).
CO2CS heat exchanger.
CO2CS cooling heat exchanger.
CO2CS cooling pump.
CO2CS cooling loop. Coolant reservoir.
O2 cylinder.
O2 pressure reduction valve.
O2 low flow electronic pressure regulator.
Cathode circulation blower.
Cathode separation tank.
Multipurpose pump. Anode refilling pump and trimming system pump.
3-way valves.
Trimming tanks (bow and stern).
Electronic control and management system.
Purge circuit.
Syntactic foam.

Fuel cell stack A.
Fuel cell stack B.
Batteries.
Power bus.
Stack cooling pump stack A.
Stack cooling pump stack B.
Anode circulation pump.
Cathode circulation blower.
Cathode separation tank.
Anode inlet control valve stack A.
Anode inlet control valve stack B.
Cathode inlet control valve stack A.
Cathode inlet control valve stack B.
Fuel cell stack A.
Fuel cell stack B.
Batteries.
Power bus.
Stack cooling pump stack A.
Stack cooling pump stack B.
Anode circulation pump.
Cathode circulation blower.
Cathode separation tank.
Anode inlet control valve stack A.
Anode inlet control valve stack B.
Cathode inlet control valve stack A.
Cathode inlet control valve stack B.



| Model | Max. Weight (kg) | Length (m) | Diameter (m) | Depth (m) | Power Plant | Energy Stored (MJ) | Endurance (h) | Equipment on Board |
|---|---|---|---|---|---|---|---|---|
| 1000 | 850 | 4.5 | 0.75 | 1000 | Lithium Polymer pressure tolerant battery | 54 | 24 h @ 4 knots (with MBE, SSS, SBP and CTD) | IMU, DVL, USBL, UTP, GPS, RF, Iridium, WLAN, Ethernet, MBE, SSS, SBP, CTD, ADCP |
| 3000 | 1400 | 5.5 | 1.0 | 3000 | Al/HP semi-fuel cell | 162 | 60 h @ 4 knots (with MBE, SSS, SBP and CTD) | |
| 4500 | 1900 | 6.0 | 1.0 | 4500 | Al/HP semi-fuel cell | 216 | 60 h @ 4 knots (with MBE, SSS, SBP and CTD) |
| Model 1000 | Model 3000 | Model 4500 | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Symbol | Description | N. bits | Min | Max | N. bits | Min | Max | N. bits | Min | Max | |
| VARIABLES | e (h) | Endurance | 10 | 10 | 150 | 10 | 10 | 150 | 10 | 10 | 150 |
| Dph2DC (mm) | Cph diameter to outer diameter ratio | 8 | 0.5 | 1 | 8 | 0.5 | 1 | 8 | 0.5 | 1 | |
| tphB (mm) | Bow pressure hull shell thickness | 3 | 10 | 14 | 3 | 10 | 14 | 3 | 10 | 14 | |
| tphC (mm) | Central pressure hull shell thickness | 4 | 25 | 40 | 4 | 25 | 40 | 4 | 25 | 40 | |
| tphS (mm) | Stern pressure hull shell thickness | 3 | 23 | 30 | 3 | 23 | 30 | 3 | 23 | 30 | |
| tphHB (mm) | Bow pressure hull head end thickness | 2 | 8 | 15 | 2 | 8 | 15 | 2 | 8 | 15 | |
| tphHC (mm) | Central pressure hull head end thickness | 4 | 25 | 40 | 4 | 25 | 40 | 4 | 25 | 40 | |
| tphHS (mm) | Stern pressure hull head end thickness | 3 | 15 | 22 | 3 | 15 | 22 | 3 | 15 | 22 | |
| phDiv | Number of frame spans | 3 | 2 | 9 | 3 | 2 | 9 | 3 | 2 | 9 | |
| hsw (mm) | Frame web height | 6 | 40 | 103 | 6 | 40 | 103 | 6 | 40 | 103 | |
| asw (mm) | Frame web width | 5 | 5 | 15 | 5 | 5 | 15 | 5 | 5 | 15 | |
| hsf (mm) | Frame flange height | 4 | 15 | 30 | 4 | 15 | 30 | 4 | 15 | 30 | |
| asf (mm) | Frame flange width | 5 | 44 | 75 | 5 | 44 | 75 | 5 | 44 | 75 | |
| CONSTRAINTS | L (m) | Length overall | - | 4.5 | - | 5.5 | - | 6 | |||
| LBcn2L | Bow cone length to total length ratio | - | 0.1 | - | 0.1 | - | 0.1 | ||||
| LphB (mm) | Bow pressure hull length | - | 400 | - | 400 | - | 400 | ||||
| LphS (mm) | Stern pressure hull length | - | 750 | - | 750 | - | 750 | ||||
| LSCn2L | Stern cone length to total length ratio | - | 0.2 | - | 0.2 | - | 0.2 | ||||
| L2D | Length to outer diameter ratio | - | 6 | - | 5.5 | - | 6 | ||||
| DphB (mm) | Bow pressure hull outer diameter | - | 280 | - | 280 | - | 280 | ||||
| DphS (mm) | Stern pressure hull outer diameter | - | 520 | - | 520 | - | 520 | ||||
| Model 1000 | Model 3000 and Model 4500 | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Group | Equipment | Description | Quantity | Utilization Factor, KU (%) | Nominal Power (W) | Power Demand (W) | Quantity | Utilization Factor, KU (%) | Nominal Power (W) | Power Demand (W) |
| Payload | SSS | Side Scan Sonar | 2 | 100 | 12 | 24 | 2 | 100 | 12 | 24 |
| SBP | Sub bottom profiler | 1 | 100 | 150 | 150 | 1 | 100 | 150 | 150 | |
| CAM | Still image camera | 1 | 0 | 4.8 | 0 | 1 | 0 | 4.8 | 0 | |
| TUR | Turbidity sensor | 1 | 100 | 0.9 | 0.9 | 1 | 100 | 0.9 | 0.9 | |
| MBE | Multi-beam echo-sounder | 1 | 100 | 100 | 100 | 1 | 100 | 100 | 100 | |
| Auxiliary equipment | IMU | Inertial Measurement Unit | 1 | 100 | 2 | 2 | 1 | 100 | 2 | 2 |
| CMP | Digital compass | 1 | 100 | 1 | 1 | 1 | 100 | 1 | 1 | |
| DVL\ADCP | Doppler velocity log | 1 | 100 | 1.3 | 1.3 | 1 | 100 | 1.3 | 1.3 | |
| GNSS | Multi-GNSS receiver chip | 1 | 0 | 0.3 | 0 | 1 | 0 | 0.3 | 0 | |
| PRS | Pressure sensor | 1 | 100 | 0.4 | 0.4 | 1 | 100 | 0.4 | 0.4 | |
| ALT | Altimeter | 1 | 100 | 1.5 | 1.5 | 1 | 100 | 1.5 | 1.5 | |
| STER | Servo rudder | 4 | 25 | 1.5 | 1.5 | 4 | 25 | 1.5 | 1.5 | |
| SVCN | Servo controller | 4 | 100 | 1 | 3.8 | 4 | 100 | 1 | 3.8 | |
| USBL | Underwater transponder | 1 | 0 | 57 | 0 | 1 | 0 | 57 | 0 | |
| WIFI | WiFi connection | 1 | 0 | 5 | 0 | 1 | 0 | 5 | 0 | |
| IRID | Iridium modem | 1 | 0 | 12 | 0 | 1 | 0 | 12 | 0 | |
| MBO | Mother board | 3 | 100 | 10.2 | 30.6 | 3 | 100 | 10.2 | 30.6 | |
| HD | Hard disk | 3 | 100 | 3.5 | 10.5 | 3 | 100 | 3.5 | 10.5 | |
| BoP | STKCOOLPMP | Stack cooling pump | 1 | 100 | 48 | 48 | 2 | 75 | 48 | 72 |
| MEOHVLV | Methanol tank isolation valve | 1 | 100 | 2.5 | 2.5 | 1 | 100 | 2.5 | 2.5 | |
| MCS | Methanol concentration sensor | 1 | 100 | 0.2 | 0.2 | 1 | 100 | 0.2 | 0.2 | |
| MEOHPMP | Methanol feeding pump | 1 | 100 | 9 | 9 | 1 | 100 | 9 | 9 | |
| ANOPMP | Anode circulation pump | 1 | 100 | 5.8 | 5.8 | 1 | 100 | 5.8 | 5.8 | |
| CO2CSBLW | CO2CS circulation blower | 1 | 100 | 0.8 | 0.8 | 1 | 100 | 1.2 | 1.2 | |
| CO2COPMP | CO2CS cooling pump | 1 | 100 | 5.8 | 5.8 | 1 | 100 | 5.8 | 5.8 | |
| LFEPR | Low flow electronic pressure regulator | 1 | 100 | 11.5 | 11.5 | 1 | 100 | 11.5 | 11.5 | |
| CATBLW | Cathode circulation blower | 1 | 100 | 0.8 | 0.8 | 1 | 100 | 0.8 | 0.8 | |
| H2OPMP | Water pump | 1 | 100 | 5.8 | 5.8 | 1 | 100 | 5.8 | 5.8 | |
| CAT3WVLV | 3-way valves | 4 | 50 | 11 | 22 | 4 | 50 | 11 | 22 | |
| ANOCTRVLV | Anode inlet control valve | 0 | 0 | 0 | 0 | 2 | 0 | 11 | 0 | |
| CATCTRVLV | Cathode inlet control valve | 0 | 0 | 0 | 0 | 2 | 0 | 11 | 0 | |
| DCDC3V | DC/DC converter 24 to 3.3 V | 1 | - | - 1 | 1.3 | 1 | - | - 1 | 1.3 | |
| DCDC5V | DC/DC converter 24 to 5 V | 2 | - | - 1 | 2.3 | 2 | - | - 1 | 2.3 | |
| DCDC12V | DC/DC converter 24 to 12 V | 2 | - | - 1 | 7.0 | 2 | - | - 1 | 7.1 | |
| Power margin (W) | 22.5 | Power margin (W) | 23.7 | |||||||
| Total power demand (W) | 472.9 | Total power demand (W) | 498.5 | |||||||
| Parameter | Description | Value | Reference |
|---|---|---|---|
| depth (m) | Maximum operating depth | Model 1000: 1000 Model 3000: 3000 Model 4500: 4500 | |
| phMat | PH building material | Titanium ASTM B265 Gr. 5 | [25] |
| ph (kg/m3) | PH building material density | 4420 | [25] |
| Eph (GPa) | PH building material modulus of elasticity | 105 | [25] |
| ph | PH building material Poisson’s module | 0.31 | [25] |
| hMat | External hull material | Carbon fiber | |
| h (kg/m3) | External hull material density | 1330 | [48] |
| n | Myring index | 2.5 | |
| () | Exit angle at the stern cone | 8 | |
| thkhull (mm) | Thickness of the external hull | 10 | |
| ks (µm) | Surface roughness | 150 | [22] |
| CdMrg | Drag coefficient margin | 0.6 | [20] |
| prop | Propulsion efficiency | 0.50 | [49] |
| foam (kg/m3) | Syntactic foam density | Model 1000: 420 Model 3000: 435 Model 4500: 505 | [50] |
| MrgVol0 | Volume margin in central PH | 0.20 | |
| MrgMass0 | Weight margin | 0.05 | |
| maxNStacks | Maximum number of stacks | 2 | |
| meohStorEf | Efficiency of the methanol storage system | 0.95 | |
| o2StorSpecW (kgO2/kgsystem) | O2 storage system, specific weight | 0.520 | [51] |
| o2StorSpecV (kgO2/m3system) | O2 storage system, specific volume | 336 | [51] |
| O2 (kg/m3) | Density of stored O2 at 288.15 K and 35 MPa | 463.67 | [52] |
| (kg/m3) | Sea water density at 288 K and 100 kPa | 1026.021 | [53] |
| (Pa·s) | Sea water dynamic viscosity 288 K and 100 kPa | 1220 | [53] |
| cMeOH (M) | Methanol concentration in anode solution | 3%wt | |
| MeOH (kg/m3) | Methanol density at 288 K and 100 kPa | 795.69 | [52] |
| MMeOH (kg/kmol) | Methanol molar mass | 32.042 | [52] |
| MCO2 (kg/kmol) | CO2 molar mass | 44.04 | [52] |
| H2O (kg/m3) | Pure water density at 288 K and 100 kPa | 999.10 | [52] |
| MH2O (kg/kmol) | Pure water molar mass | 18.015 | [52] |
| ads (kg/m3) | Adsorbent density | Zeolite 13X: 689 Mg-MOF-74: 909 | [44,45] |
| adsCapRt (molesCO2/gadsorbent) | Adsorbent capture capacity at Tads = 318 K andpads = 100 kPa | Zeolite 13X: 3.25 Mg-MOF-74: 8 | [44,45] |
| battSpecPw (W/kg) | Li-Ion Battery specific power | 150.0 | [54] |
| battSpecE (kJ/kg) | Li-Ion Battery specific energy | 540.0 | [55] |
| battERho (MJ/m3) | Li-Ion Battery energy density | 1274.0 | [55] |
| Model 1000 | Model 3000 | Model 4500 | ||||
|---|---|---|---|---|---|---|
| CO2CS Adsorbent | Zeolite 13X | Mg-MOF-74 | Zeolite 13X | Mg-MOF-74 | Zeolite 13X | Mg-MOF-74 |
| Endurance (h) | 29.6 | 57.9 | 53.7 | 104.0 | 58.0 | 113.9 |
| External hull | ||||||
| Overall length (mm) | 4500 | 4500 | 5500 | 5500 | 6000 | 6000 |
| Bcn length (mm) | 450 | 450 | 550 | 550 | 600 | 600 |
| Scn length (mm) | 900 | 900 | 1100 | 1100 | 1200 | 1200 |
| Outer diameter (mm) | 750 | 750 | 1000 | 1000 | 1000 | 1000 |
| Enclosed volume (L) | 1690.1 | 1690.1 | 3670.6 | 3670.6 | 4006.1 | 4006.1 |
| Shell mass (kg) | 35.1 | 35.1 | 58.8 | 58.8 | 62.6 | 62.6 |
| Pressure hulls | ||||||
| Bph length (mm) | 400 | 400 | 400 | 400 | 400 | 400 |
| Bph diameter (mm) | 280 | 280 | 280 | 280 | 280 | 280 |
| Bph thickness (mm) | 13 | 10 | 12 | 13 | 13 | 13 |
| Bph head end thickness (mm) | 10 | 8 | 8 | 10 | 15 | 15 |
| Bph net volume (L) | 15.1 | 15.8 | 15.5 | 15.1 | 14.5 | 14.4 |
| Bph mass (kg) | 11.1 | 8.7 | 9.5 | 11.4 | 13.5 | 13.7 |
| Cph length (mm) | 2000 | 2000 | 2700 | 2700 | 3050 | 3050 |
| Cph diameter (mm) | 730 | 730 | 980 | 980 | 980 | 980 |
| Cph thickness (mm) | 25 | 25 | 27 | 27 | 39 | 37 |
| Cph head end thickness (mm) | 26 | 25 | 30 | 26 | 38 | 34 |
| Cph frames spacing (mm) | - | - | 450 | 450 | 436 | 381 |
| Cph frame web height (mm) | - | - | 43 | 42 | 47 | 42 |
| Cph frame web width (mm) | - | - | 9 | 9 | 8 | 9 |
| Cph frame flange height (mm) | - | - | 20 | 26 | 22 | 29 |
| Cph frame flange width (mm) | - | - | 60 | 55 | 66 | 58 |
| Cph net volume (L) | 625.8 | 626.5 | 1521.3 | 1521.8 | 1641.9 | 1657.0 |
| Cph mass (kg) | 403.6 | 400.2 | 899.4 | 885.8 | 1419.0 | 1383.9 |
| Sph length (mm) | 750 | 750 | 750 | 750 | 750 | 750 |
| Sph diameter (mm) | 520 | 520 | 520 | 520 | 520 | 520 |
| Sph thickness (mm) | 24 | 26 | 26 | 25 | 25 | 28 |
| Sph head end thickness (mm) | 18 | 18 | 18 | 15 | 19 | 19 |
| Sph net volume (L) | 98.1 | 96.9 | 96.9 | 98.7 | 97.1 | 95.3 |
| Sph mass (kg) | 70.7 | 73.7 | 73.7 | 66.88 | 73.9 | 78.4 |
| Power | ||||||
| Payload (W) | 274.9 | 274.9 | 274.9 | 274.9 | 274.9 | 274.9 |
| Auxiliary equipment (W) | 52.6 | 52.6 | 52.6 | 52.6 | 52.6 | 52.6 |
| BoP (W) | 122.8 | 122.8 | 129.6 | 129.6 | 129.6 | 129.6 |
| Margin (W) | 22.5 | 22.5 | 23.7 | 23.7 | 23.7 | 23.7 |
| Propulsion (W) | 455.9 | 455.9 | 742.8 | 742.8 | 782.0 | 782.0 |
| Power plant | ||||||
| Fuel cell, quantity | 1 | 1 | 2 | 2 | 2 | 2 |
| Fuel cell, unitary power (W) | 1000 | 1000 | 700 | 700 | 700 | 700 |
| Fuel cell, unitary mass (kg) | 10.5 | 10.5 | 7.7 | 7.7 | 7.7 | 7.7 |
| Fuel cell, unitary volume (L) | 9.1 | 9.1 | 7.1 | 7.1 | 7.1 | 7.1 |
| Hybridized batteries 1 | No | No | No | No | No | No |
| Reactants and Products | ||||||
| Methanol. Mass (kg) | 18.0 | 35.3 | 46.0 | 89.1 | 49.7 | 97.5 |
| Methanol. Volume (L) | 22.7 | 44.4 | 57.8 | 112.0 | 62.5 | 122.6 |
| O2. Mass (kg) | 25.8 | 50.4 | 65.3 | 126.6 | 70.6 | 138.6 |
| O2 storage system. Mass (kg) | 49.5 | 97.0 | 125.6 | 243.4 | 135.8 | 266.5 |
| O2 storage system. Volume (L) | 76.7 | 150.1 | 194.3 | 376.7 | 210.2 | 412.4 |
| CO2. Mass (kg) | 23.5 | 46.1 | 60.0 | 116.2 | 64.9 | 127.3 |
| CO2 adsorbent. Mass (kg) | 164.6 | 130.9 | 419.2 | 330.1 | 453.4 | 361.4 |
| CO2 adsorbent. Volume (L) | 322.6 | 193.1 | 821.7 | 490.5 | 888.7 | 537.0 |
| Water. Mass (kg) | 19.3 | 37.7 | 49.1 | 95.2 | 53.1 | 104.2 |
| Water. Volume (L) 2 | 38.6 | 75.5 | 98.3 | 190.5 | 106.3 | 208.5 |
| Displacement | ||||||
| Total dry mass (kg) | 1109.0 | 1161.9 | 2284.9 | 2402.2 | 2934.2 | 3058.2 |
| Volumetric displacement (m3) | 1438.2 | 1438.2 | 3088.1 | 3088.1 | 3365.8 | 3365.8 |
| Margins | ||||||
| Cph. volume margin (%) | 20.7 | 20.1 | 20.0 | 20.2 | 20.1 | 20.0 |
| Weight margin (%) | 24.8 | 21.3 | 27.9 | 24.2 | 15.0 | 11.4 |
| Property | Model 1000 | Model 3000 | Model 4500 | |||
|---|---|---|---|---|---|---|
| Zeolite 13X | Mg-MOF-74 | Zeolite 13X | Mg-MOF-74 | Zeolite 13X | Mg-MOF-74 | |
| Mass of methanol (kg) | 18.0 | 35.3 | 46.0 | 89.1 | 49.7 | 97.5 |
| Specific energy of methanol (MJ/kg) | 22.7 | 22.7 | 22.7 | 22.7 | 22.7 | 22.7 |
| Net energy stored 1 (MJ) | 102.2 | 200.3 | 261.1 | 505.7 | 282.1 | 553.3 |
| Cph. net volume (L) | 625.8 | 626.5 | 1521.3 | 1521.8 | 1641.9 | 1657.0 |
| Power plant mass 2 (kg) | 305.7 | 361.4 | 711.1 | 844.3 | 764.7 | 919.2 |
| Cph. energy density (MJ/m3) | 163.3 | 319.8 | 171.6 | 332.3 | 171.8 | 333.9 |
| Cph. specific energy (kJ/kg) | 334.2 | 554.3 | 367.1 | 598.9 | 368.8 | 601.9 |
| Reference AUV. Energy density (MJ/m3) | - 3 | - 3 | 625.0 | 625.0 | 625.0 | 625.0 |
| Reference AUV. Specific energy (kJ/kg) | - 3 | - 3 | 360.0 | 360.0 | 360.0 | 360.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villalba-Herreros, A.; Santiago, Ó.; Magistri, L.; J. Leo, T. Autonomous Underwater Vehicle Powered by Direct Methanol Fuel Cell-Based Power Plants: A Quick Preliminary Design Model. Appl. Sci. 2020, 10, 7687. https://doi.org/10.3390/app10217687
Villalba-Herreros A, Santiago Ó, Magistri L, J. Leo T. Autonomous Underwater Vehicle Powered by Direct Methanol Fuel Cell-Based Power Plants: A Quick Preliminary Design Model. Applied Sciences. 2020; 10(21):7687. https://doi.org/10.3390/app10217687
Chicago/Turabian StyleVillalba-Herreros, Antonio, Ó. Santiago, Loredana Magistri, and Teresa J. Leo. 2020. "Autonomous Underwater Vehicle Powered by Direct Methanol Fuel Cell-Based Power Plants: A Quick Preliminary Design Model" Applied Sciences 10, no. 21: 7687. https://doi.org/10.3390/app10217687
APA StyleVillalba-Herreros, A., Santiago, Ó., Magistri, L., & J. Leo, T. (2020). Autonomous Underwater Vehicle Powered by Direct Methanol Fuel Cell-Based Power Plants: A Quick Preliminary Design Model. Applied Sciences, 10(21), 7687. https://doi.org/10.3390/app10217687



