Photonic Microwave Distance Interferometry Using a Mode-Locked Laser with Systematic Error Correction
Abstract
1. Introduction
2. Photonic Microwave Distance Interferometer
2.1. Interferometer Configuration
2.2. Measurement Repeatability
3. Systematic Error Correction
3.1. Systematic Error Analysis
3.2. Passive Correction by Post-Processing
3.3. Active Correction by Compensating Optical Power
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gao, W.; Kim, S.-W.; Bosse, H.; Haitjema, H.; Chen, Y.L.; Lu, X.D.; Knapp, W.; Weckenmann, A.; Estler, W.T.; Kunzmann, H. Measurement technologies for precision engineering. CIRP Ann. Manuf. Technol. 2015, 64, 773–796. [Google Scholar]
- Berkovic, G.; Shafir, E. Optical methods for distance and displacement measurements. Adv. Opt. Photon. 2012, 4, 441–473. [Google Scholar] [CrossRef]
- Bobroff, N. Recent advances in displacement measuring interferometry. Meas. Sci. Technol. 1993, 4, 907–926. [Google Scholar] [CrossRef]
- Joo, K.-N.; Ellis, J.D.; Buice, E.S.; Spronck, J.W.; Schmidt, R.H.M. High resolution heterodyne interferometer without detectable periodic nonlinearity. Opt. Express 2010, 18, 1159–1165. [Google Scholar] [CrossRef] [PubMed]
- Fujima, I.; Iwasaki, S.; Seta, K. High-resolution distance meter using optical intensity modulation at 28 GHz. Meas. Sci. Technol. 1998, 9, 1049–1052. [Google Scholar] [CrossRef]
- Dale, J.; Hughes, B.; Lancaster, A.J.; Lewis, A.J.; Reichold, A.J.H.; Warden, M.S. Multi-channel absolute distance measurement system with sub ppm-accuracy and 20 m range using frequency scanning interferometry and gas absorption cells. Opt. Express 2014, 22, 24869–24893. [Google Scholar] [CrossRef]
- Dandliker, R.; Thalmann, R.; Prongue, D. Two-wavelength laser interferometry using superheterodyne detection. Opt. Lett. 1988, 13, 339–341. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-W. Metrology: Combs rule. Nat. Photon. 2009, 3, 313–314. [Google Scholar] [CrossRef]
- Jin, J. Dimensional metrology using the optical comb of a mode-locked laser. Meas. Sci. Technol. 2016, 27, 022001. [Google Scholar] [CrossRef]
- Jang, Y.-S.; Kim, S.-W. Distance measurements using mode-locked laser: A review. Nanomanuf. Metrol. 2018, 1, 131–147. [Google Scholar] [CrossRef]
- Minoshima, K.; Matsumoto, H. High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser. Appl. Opt. 2000, 39, 5512–5517. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.-S.; Kim, W.; Jang, H.; Kim, S.-W. Absolute distance meter operating on a free-running mode-locked laser for space mission. Int. J. Precis. Eng. Manuf. 2018, 19, 975–981. [Google Scholar] [CrossRef]
- Joo, K.-N.; Kim, S.-W. Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser. Opt. Express 2006, 14, 5954–5960. [Google Scholar] [CrossRef] [PubMed]
- Van Den Berg, S.A.; Persijn, S.T.; Kok, G.J.P.; Zeitouny, M.G.; Bhattacharya, N. Many-wavelength interferometry with thousands of lasers for absolute distance measurement. Phys. Rev. Lett. 2012, 108, 183901. [Google Scholar] [CrossRef]
- Coddington, I.; Swann, W.C.; Nenadovic, L.; Newbury, N.R. Rapid and precise absolute distance measurements at long range. Nat. Photon. 2009, 3, 351–356. [Google Scholar] [CrossRef]
- Zhang, H.; Wei, H.; Wu, X.; Yang, H.; Li, Y. Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling. Opt. Express 2014, 22, 6597–6604. [Google Scholar] [CrossRef]
- Lee, J.; Kim, Y.-J.; Lee, K.; Lee, S.; Kim, S.-W. Time-of-flight measurement using femtosecond light pulses. Nat. Photonics 2010, 4, 716–720. [Google Scholar] [CrossRef]
- Han, S.; Kim, Y.-J.; Kim, S.-W. Parallel determination of absolute distances to multiple targets by time-of-flight measurement using femtosecond light pulses. Opt. Express 2015, 23, 25874–25882. [Google Scholar] [CrossRef]
- Jin, J.; Kim, Y.-J.; Kim, Y.; Kim, S.-W.; Kang, C.-S. Absolute length calibration of gauge blocks using optical comb of a femtosecond pulse laser. Opt. Express 2006, 14, 5968–5974. [Google Scholar] [CrossRef]
- Hyun, S.; Kim, Y.-J.; Kim, Y.; Jin, J.; Kim, S.-W. Absolute length measurement with the frequency comb of a femtosecond laser. Meas. Sci. Technol. 2009, 20, 095302. [Google Scholar] [CrossRef]
- Jang, Y.-S.; Wang, G.; Hyun, S.; Chun, B.J.; Kang, H.J.; Kim, Y.-J.; Kim, S.-W. Comb.-referenced laser distance interferometer for industrial nanotechnology. Sci. Rep. 2016, 6, 31770. [Google Scholar] [CrossRef]
- Lee, J.; Lee, K.; Jang, Y.-S.; Jang, H.; Han, H.; Lee, S.-H.; Kang, K.-I.; Lim, C.-W.; Kim, Y.-J.; Kim, S.-W. Testing of a femtosecond pulse laser in outer space. Sci. Rep. 2014, 4, 5134. [Google Scholar]
- Lezius, M.; Wilken, T.; Deutsch, C.; Giunta, M.; Mandel, O.; Thaller, A.; Schkolnik, V.; Schiemangk, M.; Dinkelaker, A.; Kohfeldt, A.; et al. Space-borne frequency comb metrology. Optica 2016, 3, 1381–1387. [Google Scholar] [CrossRef]
- Kikuta, H.; Iwata, K.; Nagata, R. Absolute distance measurement by wavelength shift interferometry with a laser diode: Some systematic error sources. Appl. Opt. 1987, 26, 1654–1660. [Google Scholar] [CrossRef]
- Phung, D.-H.; Merzougui, M.; Alexandre, C.; Lintz, M. Phase Measurement of a Microwave Optical Modulation: Characterisation and Reduction of Amplitude-to-Phase Conversion in 1.5 μm High Bandwidth Photodiodes. J. Lightwave Technol. 2014, 32, 3759–3767. [Google Scholar] [CrossRef]
- Guillory, J.; Gardia-Marques, J.; Alexandre, C.; Truong, D.; Wallerand, J.-P. Characterization and reduction of the amplitude-to-phase conversion effects in telemetry. Meas. Sci. Technol. 2015, 26, 084006. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, W.; Fu, H.; Lee, K.; Han, S.; Jang, Y.-S.; Kim, S.-W. Photonic Microwave Distance Interferometry Using a Mode-Locked Laser with Systematic Error Correction. Appl. Sci. 2020, 10, 7649. https://doi.org/10.3390/app10217649
Kim W, Fu H, Lee K, Han S, Jang Y-S, Kim S-W. Photonic Microwave Distance Interferometry Using a Mode-Locked Laser with Systematic Error Correction. Applied Sciences. 2020; 10(21):7649. https://doi.org/10.3390/app10217649
Chicago/Turabian StyleKim, Wooram, Haijin Fu, Keunwoo Lee, Seongheum Han, Yoon-Soo Jang, and Seung-Woo Kim. 2020. "Photonic Microwave Distance Interferometry Using a Mode-Locked Laser with Systematic Error Correction" Applied Sciences 10, no. 21: 7649. https://doi.org/10.3390/app10217649
APA StyleKim, W., Fu, H., Lee, K., Han, S., Jang, Y.-S., & Kim, S.-W. (2020). Photonic Microwave Distance Interferometry Using a Mode-Locked Laser with Systematic Error Correction. Applied Sciences, 10(21), 7649. https://doi.org/10.3390/app10217649