Ray-Tracing-Based Numerical Assessment of the Spatiotemporal Duty Cycle of 5G Massive MIMO in an Outdoor Urban Environment
Abstract
Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Environment Model
2.2. MIMO Channel Matrix, Beamforming and Precoding
2.3. Time-Average Antenna Array Patterns
3. Results
3.1. Average Array Patterns
3.2. Normalized Gain
4. Discussion
4.1. Array Patterns for CB, MRT and ZF
4.2. Normalized Time-Averaged Gain
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
LTE | Long-Term Evolution |
MIMO | Multiple-Input Multiple-Output |
EMF | electromagnetic field |
MRT | Maximum Ratio Transmission |
ZF | Zero Forcing |
CB | Codebook Beamforming |
BS | base station |
UE | user equipment |
DOD | direction of departure |
ICNIRP | The International Commission on Non-Ionizing Radiation |
PL | path loss |
RT | Ray-Tracing |
Rx | receiver |
Tx | transmitter |
DL | downlink |
References
- Agiwal, M.; Roy, A.; Saxena, N. Next generation 5G wireless networks: A comprehensive survey. IEEE Commun. Surv. Tutor. 2016, 18, 1617–1655. [Google Scholar] [CrossRef]
- Marzetta, T.L.; Larsson, E.G.; Yang, H.; Ngo, H.Q. Fundamentals of Massive MIMO; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- International Commission on Non-Ionizing Radiation Protection. Guidelines for limiting exposure to Electromagnetic Fields (100 kHz to 300 GHz). Health Phys. 2020, 118, 483–524. [Google Scholar] [CrossRef] [PubMed]
- International Commission on Non-Ionizing Radiation Protection. ICNIRP Guidelines for Limiting Exposure To Time-Varying Guidelines for Limiting Exposure To Time-Varying Electric, Magnetic and Electromagnetic fields. Health Phys. 1998, 74, 494–522. [Google Scholar]
- Thors, B.; Thielens, A.; Fridén, J.; Colombi, D.; Törnevik, C.; Vermeeren, G.; Martens, L.; Joseph, W. Radio frequency electromagnetic field compliance assessment of multi-band and MIMO equipped radio base stations. Bioelectromagnetics 2014, 35, 296–308. [Google Scholar] [CrossRef]
- Thors, B.; Furuskär, A.; Colombi, D.; Törnevik, C. Time-averaged realistic maximum power levels for the assessment of radio frequency exposure for 5G radio base stations using massive MIMO. IEEE Access 2017, 5, 19. [Google Scholar] [CrossRef]
- Baracca, P.; Weber, A.; Wild, T.; Grangeat, C. A Statistical Approach for RF Exposure Compliance Boundary Assessment in Massive MIMO Systems. In Proceedings of the WSA 2018 22nd International ITG Workshop on Smart Antennas, Bochum, Germany, 14–16 March 2018; pp. 1–6. [Google Scholar]
- Ngo, H.Q. Massive MIMO: Fundamentals and System Designs; Linköping University Electronic Press: Linköping, Sweden, 2015. [Google Scholar]
- Mondal, B.; Thomas, T.A.; Visotsky, E.; Vook, F.W.; Ghosh, A.; Nam, Y.H.; Li, Y.; Zhang, J.; Zhang, M.; Luo, Q.; et al. 3D channel model in 3GPP. IEEE Commun. Mag. 2015, 53, 16–23. [Google Scholar] [CrossRef]
- Löschenbrand, D.; Hofer, M.; Rainer, B.; Zemen, T. Empirical and Simulated Performance Evaluation of Distributed Massive MIMO. In Proceedings of the 2019 53rd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 3–6 November 2019; pp. 952–956. [Google Scholar]
- Taygur, M.M.; Eibert, T.F. Investigations on Massive MIMO Performance with Multi-Antenna Users by Ray-Tracing. In Proceedings of the 2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Istanbul, Turkey, 8–11 September 2019; pp. 1–6. [Google Scholar]
- Bhardwaj, K.; Singh, A.; Sachan, V.K. 5G: An overview of Channels characteristics and modelling techniques. In Proceedings of the 2018 Fifth International Conference on Parallel, Distributed and Grid Computing (PDGC), Solan Himachal Pradesh, India, 20–22 December 2018; pp. 400–405. [Google Scholar]
- Medbo, J.; Kyosti, P.; Kusume, K.; Raschkowski, L.; Haneda, K.; Jamsa, T.; Nurmela, V.; Roivainen, A.; Meinila, J. Radio propagation modeling for 5G mobile and wireless communications. IEEE Commun. Mag. 2016, 54, 144–151. [Google Scholar] [CrossRef]
- Durgin, G.; Patwari, N.; Rappaport, T.S. An advanced 3D ray launching method for wireless propagation prediction. In Proceedings of the 1997 IEEE 47th Vehicular Technology Conference. Technology in Motion, Phoenix, AZ, USA, 4–7 May 1997; Volume 2, pp. 785–789. [Google Scholar]
- Shikhantsov, S.; Thielens, A.; Vermeeren, G.; Demeester, P.; Martens, L.; Torfs, G.; Joseph, W. Massive MIMO Propagation Modeling With User-Induced Coupling Effects Using Ray-Tracing and FDTD. IEEE J. Sel. Areas Commun. 2020, 38, 1955–1963. [Google Scholar] [CrossRef]
- Athanasiadou, G.E.; Nix, A.R. Investigation into the sensitivity of the power predictions of a microcellular ray tracing propagation model. IEEE Trans. Veh. Technol. 2000, 49, 1140–1151. [Google Scholar] [CrossRef]
- Weng, J.; Tu, X.; Lai, Z.; Salous, S.; Zhang, J. Indoor massive MIMO channel modelling using ray-launching simulation. Int. J. Antennas Propag. 2014, 2014. [Google Scholar] [CrossRef] [PubMed]
- Krim, H.; Viberg, M. Two decades of array signal processing research: The parametric approach. IEEE Signal Process. Mag. 1996, 13, 67–94. [Google Scholar] [CrossRef]
- Saunders, S.R. Antennas and Propagation for Wireless Communication Systems, 1st ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1999. [Google Scholar]
- Kummer, W.H. Basic array theory. Proc. IEEE 1992, 80, 127–140. [Google Scholar] [CrossRef]
- Ericsson. Antenna Integrated Radio Unit Description AIR 6488. Available online: http://www.1com.net/wp-content/uploads/2019/09/sales@1com.com-Ericsson-AIR-6488-Integrated-Radio-Unit-Datasheet.pdf (accessed on 20 September 2019).
Scheme | CB | MRT | ZF | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | 4 | 16 | 36 | 64 | 100 | 4 | 16 | 36 | 64 | 100 | 16 | 36 | 64 | 100 | |
K | |||||||||||||||
s | 1 | 0.85 | 0.63 | 0.51 | 0.46 | 0.43 | 0.85 | 0.63 | 0.52 | 0.47 | 0.42 | 0.63 | 0.52 | 0.46 | 0.42 |
2 | 0.92 | 0.58 | 0.44 | 0.37 | 0.33 | 0.79 | 0.53 | 0.42 | 0.35 | 0.31 | 0.44 | 0.37 | 0.32 | 0.29 | |
5 | 0.97 | 0.57 | 0.42 | 0.35 | 0.29 | 0.77 | 0.49 | 0.36 | 0.30 | 0.25 | 0.29 | 0.24 | 0.21 | 0.19 | |
10 | 0.98 | 0.55 | 0.42 | 0.34 | 0.30 | 0.77 | 0.48 | 0.35 | 0.27 | 0.23 | 0.27 | 0.19 | 0.17 | 0.16 | |
s | 1 | 0.70 | 0.40 | 0.29 | 0.24 | 0.20 | 0.71 | 0.42 | 0.31 | 0.25 | 0.22 | 0.42 | 0.31 | 0.26 | 0.21 |
2 | 0.83 | 0.40 | 0.27 | 0.21 | 0.17 | 0.66 | 0.38 | 0.27 | 0.22 | 0.19 | 0.31 | 0.24 | 0.19 | 0.17 | |
5 | 0.92 | 0.42 | 0.28 | 0.22 | 0.18 | 0.65 | 0.36 | 0.27 | 0.20 | 0.16 | 0.20 | 0.15 | 0.13 | 0.11 | |
10 | 0.96 | 0.44 | 0.31 | 0.24 | 0.20 | 0.64 | 0.36 | 0.25 | 0.19 | 0.16 | 0.18 | 0.11 | 0.10 | 0.09 | |
s | 1 | 0.66 | 0.32 | 0.21 | 0.17 | 0.13 | 0.67 | 0.36 | 0.26 | 0.20 | 0.15 | 0.35 | 0.25 | 0.19 | 0.16 |
2 | 0.80 | 0.32 | 0.21 | 0.16 | 0.13 | 0.60 | 0.34 | 0.24 | 0.19 | 0.15 | 0.26 | 0.20 | 0.16 | 0.14 | |
5 | 0.90 | 0.37 | 0.25 | 0.18 | 0.14 | 0.60 | 0.33 | 0.23 | 0.18 | 0.14 | 0.16 | 0.12 | 0.10 | 0.09 | |
10 | 0.95 | 0.42 | 0.29 | 0.21 | 0.18 | 0.59 | 0.32 | 0.23 | 0.18 | 0.14 | 0.14 | 0.09 | 0.08 | 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shikhantsov, S.; Thielens, A.; Aerts, S.; Verloock, L.; Torfs, G.; Martens, L.; Demeester, P.; Joseph, W. Ray-Tracing-Based Numerical Assessment of the Spatiotemporal Duty Cycle of 5G Massive MIMO in an Outdoor Urban Environment. Appl. Sci. 2020, 10, 7631. https://doi.org/10.3390/app10217631
Shikhantsov S, Thielens A, Aerts S, Verloock L, Torfs G, Martens L, Demeester P, Joseph W. Ray-Tracing-Based Numerical Assessment of the Spatiotemporal Duty Cycle of 5G Massive MIMO in an Outdoor Urban Environment. Applied Sciences. 2020; 10(21):7631. https://doi.org/10.3390/app10217631
Chicago/Turabian StyleShikhantsov, Sergei, Arno Thielens, Sam Aerts, Leen Verloock, Guy Torfs, Luc Martens, Piet Demeester, and Wout Joseph. 2020. "Ray-Tracing-Based Numerical Assessment of the Spatiotemporal Duty Cycle of 5G Massive MIMO in an Outdoor Urban Environment" Applied Sciences 10, no. 21: 7631. https://doi.org/10.3390/app10217631
APA StyleShikhantsov, S., Thielens, A., Aerts, S., Verloock, L., Torfs, G., Martens, L., Demeester, P., & Joseph, W. (2020). Ray-Tracing-Based Numerical Assessment of the Spatiotemporal Duty Cycle of 5G Massive MIMO in an Outdoor Urban Environment. Applied Sciences, 10(21), 7631. https://doi.org/10.3390/app10217631