Ray-Tracing-Based Numerical Assessment of the Spatiotemporal Duty Cycle of 5G Massive MIMO in an Outdoor Urban Environment
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Environment Model
2.2. MIMO Channel Matrix, Beamforming and Precoding
2.3. Time-Average Antenna Array Patterns
3. Results
3.1. Average Array Patterns
3.2. Normalized Gain
4. Discussion
4.1. Array Patterns for CB, MRT and ZF
4.2. Normalized Time-Averaged Gain
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
LTE | Long-Term Evolution |
MIMO | Multiple-Input Multiple-Output |
EMF | electromagnetic field |
MRT | Maximum Ratio Transmission |
ZF | Zero Forcing |
CB | Codebook Beamforming |
BS | base station |
UE | user equipment |
DOD | direction of departure |
ICNIRP | The International Commission on Non-Ionizing Radiation |
PL | path loss |
RT | Ray-Tracing |
Rx | receiver |
Tx | transmitter |
DL | downlink |
References
- Agiwal, M.; Roy, A.; Saxena, N. Next generation 5G wireless networks: A comprehensive survey. IEEE Commun. Surv. Tutor. 2016, 18, 1617–1655. [Google Scholar] [CrossRef]
- Marzetta, T.L.; Larsson, E.G.; Yang, H.; Ngo, H.Q. Fundamentals of Massive MIMO; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- International Commission on Non-Ionizing Radiation Protection. Guidelines for limiting exposure to Electromagnetic Fields (100 kHz to 300 GHz). Health Phys. 2020, 118, 483–524. [Google Scholar] [CrossRef] [PubMed]
- International Commission on Non-Ionizing Radiation Protection. ICNIRP Guidelines for Limiting Exposure To Time-Varying Guidelines for Limiting Exposure To Time-Varying Electric, Magnetic and Electromagnetic fields. Health Phys. 1998, 74, 494–522. [Google Scholar]
- Thors, B.; Thielens, A.; Fridén, J.; Colombi, D.; Törnevik, C.; Vermeeren, G.; Martens, L.; Joseph, W. Radio frequency electromagnetic field compliance assessment of multi-band and MIMO equipped radio base stations. Bioelectromagnetics 2014, 35, 296–308. [Google Scholar] [CrossRef] [Green Version]
- Thors, B.; Furuskär, A.; Colombi, D.; Törnevik, C. Time-averaged realistic maximum power levels for the assessment of radio frequency exposure for 5G radio base stations using massive MIMO. IEEE Access 2017, 5, 19. [Google Scholar] [CrossRef]
- Baracca, P.; Weber, A.; Wild, T.; Grangeat, C. A Statistical Approach for RF Exposure Compliance Boundary Assessment in Massive MIMO Systems. In Proceedings of the WSA 2018 22nd International ITG Workshop on Smart Antennas, Bochum, Germany, 14–16 March 2018; pp. 1–6. [Google Scholar]
- Ngo, H.Q. Massive MIMO: Fundamentals and System Designs; Linköping University Electronic Press: Linköping, Sweden, 2015. [Google Scholar]
- Mondal, B.; Thomas, T.A.; Visotsky, E.; Vook, F.W.; Ghosh, A.; Nam, Y.H.; Li, Y.; Zhang, J.; Zhang, M.; Luo, Q.; et al. 3D channel model in 3GPP. IEEE Commun. Mag. 2015, 53, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Löschenbrand, D.; Hofer, M.; Rainer, B.; Zemen, T. Empirical and Simulated Performance Evaluation of Distributed Massive MIMO. In Proceedings of the 2019 53rd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 3–6 November 2019; pp. 952–956. [Google Scholar]
- Taygur, M.M.; Eibert, T.F. Investigations on Massive MIMO Performance with Multi-Antenna Users by Ray-Tracing. In Proceedings of the 2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Istanbul, Turkey, 8–11 September 2019; pp. 1–6. [Google Scholar]
- Bhardwaj, K.; Singh, A.; Sachan, V.K. 5G: An overview of Channels characteristics and modelling techniques. In Proceedings of the 2018 Fifth International Conference on Parallel, Distributed and Grid Computing (PDGC), Solan Himachal Pradesh, India, 20–22 December 2018; pp. 400–405. [Google Scholar]
- Medbo, J.; Kyosti, P.; Kusume, K.; Raschkowski, L.; Haneda, K.; Jamsa, T.; Nurmela, V.; Roivainen, A.; Meinila, J. Radio propagation modeling for 5G mobile and wireless communications. IEEE Commun. Mag. 2016, 54, 144–151. [Google Scholar] [CrossRef]
- Durgin, G.; Patwari, N.; Rappaport, T.S. An advanced 3D ray launching method for wireless propagation prediction. In Proceedings of the 1997 IEEE 47th Vehicular Technology Conference. Technology in Motion, Phoenix, AZ, USA, 4–7 May 1997; Volume 2, pp. 785–789. [Google Scholar]
- Shikhantsov, S.; Thielens, A.; Vermeeren, G.; Demeester, P.; Martens, L.; Torfs, G.; Joseph, W. Massive MIMO Propagation Modeling With User-Induced Coupling Effects Using Ray-Tracing and FDTD. IEEE J. Sel. Areas Commun. 2020, 38, 1955–1963. [Google Scholar] [CrossRef]
- Athanasiadou, G.E.; Nix, A.R. Investigation into the sensitivity of the power predictions of a microcellular ray tracing propagation model. IEEE Trans. Veh. Technol. 2000, 49, 1140–1151. [Google Scholar] [CrossRef] [Green Version]
- Weng, J.; Tu, X.; Lai, Z.; Salous, S.; Zhang, J. Indoor massive MIMO channel modelling using ray-launching simulation. Int. J. Antennas Propag. 2014, 2014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krim, H.; Viberg, M. Two decades of array signal processing research: The parametric approach. IEEE Signal Process. Mag. 1996, 13, 67–94. [Google Scholar] [CrossRef]
- Saunders, S.R. Antennas and Propagation for Wireless Communication Systems, 1st ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1999. [Google Scholar]
- Kummer, W.H. Basic array theory. Proc. IEEE 1992, 80, 127–140. [Google Scholar] [CrossRef]
- Ericsson. Antenna Integrated Radio Unit Description AIR 6488. Available online: http://www.1com.net/wp-content/uploads/2019/09/sales@1com.com-Ericsson-AIR-6488-Integrated-Radio-Unit-Datasheet.pdf (accessed on 20 September 2019).
Scheme | CB | MRT | ZF | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | 4 | 16 | 36 | 64 | 100 | 4 | 16 | 36 | 64 | 100 | 16 | 36 | 64 | 100 | |
K | |||||||||||||||
s | 1 | 0.85 | 0.63 | 0.51 | 0.46 | 0.43 | 0.85 | 0.63 | 0.52 | 0.47 | 0.42 | 0.63 | 0.52 | 0.46 | 0.42 |
2 | 0.92 | 0.58 | 0.44 | 0.37 | 0.33 | 0.79 | 0.53 | 0.42 | 0.35 | 0.31 | 0.44 | 0.37 | 0.32 | 0.29 | |
5 | 0.97 | 0.57 | 0.42 | 0.35 | 0.29 | 0.77 | 0.49 | 0.36 | 0.30 | 0.25 | 0.29 | 0.24 | 0.21 | 0.19 | |
10 | 0.98 | 0.55 | 0.42 | 0.34 | 0.30 | 0.77 | 0.48 | 0.35 | 0.27 | 0.23 | 0.27 | 0.19 | 0.17 | 0.16 | |
s | 1 | 0.70 | 0.40 | 0.29 | 0.24 | 0.20 | 0.71 | 0.42 | 0.31 | 0.25 | 0.22 | 0.42 | 0.31 | 0.26 | 0.21 |
2 | 0.83 | 0.40 | 0.27 | 0.21 | 0.17 | 0.66 | 0.38 | 0.27 | 0.22 | 0.19 | 0.31 | 0.24 | 0.19 | 0.17 | |
5 | 0.92 | 0.42 | 0.28 | 0.22 | 0.18 | 0.65 | 0.36 | 0.27 | 0.20 | 0.16 | 0.20 | 0.15 | 0.13 | 0.11 | |
10 | 0.96 | 0.44 | 0.31 | 0.24 | 0.20 | 0.64 | 0.36 | 0.25 | 0.19 | 0.16 | 0.18 | 0.11 | 0.10 | 0.09 | |
s | 1 | 0.66 | 0.32 | 0.21 | 0.17 | 0.13 | 0.67 | 0.36 | 0.26 | 0.20 | 0.15 | 0.35 | 0.25 | 0.19 | 0.16 |
2 | 0.80 | 0.32 | 0.21 | 0.16 | 0.13 | 0.60 | 0.34 | 0.24 | 0.19 | 0.15 | 0.26 | 0.20 | 0.16 | 0.14 | |
5 | 0.90 | 0.37 | 0.25 | 0.18 | 0.14 | 0.60 | 0.33 | 0.23 | 0.18 | 0.14 | 0.16 | 0.12 | 0.10 | 0.09 | |
10 | 0.95 | 0.42 | 0.29 | 0.21 | 0.18 | 0.59 | 0.32 | 0.23 | 0.18 | 0.14 | 0.14 | 0.09 | 0.08 | 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shikhantsov, S.; Thielens, A.; Aerts, S.; Verloock, L.; Torfs, G.; Martens, L.; Demeester, P.; Joseph, W. Ray-Tracing-Based Numerical Assessment of the Spatiotemporal Duty Cycle of 5G Massive MIMO in an Outdoor Urban Environment. Appl. Sci. 2020, 10, 7631. https://doi.org/10.3390/app10217631
Shikhantsov S, Thielens A, Aerts S, Verloock L, Torfs G, Martens L, Demeester P, Joseph W. Ray-Tracing-Based Numerical Assessment of the Spatiotemporal Duty Cycle of 5G Massive MIMO in an Outdoor Urban Environment. Applied Sciences. 2020; 10(21):7631. https://doi.org/10.3390/app10217631
Chicago/Turabian StyleShikhantsov, Sergei, Arno Thielens, Sam Aerts, Leen Verloock, Guy Torfs, Luc Martens, Piet Demeester, and Wout Joseph. 2020. "Ray-Tracing-Based Numerical Assessment of the Spatiotemporal Duty Cycle of 5G Massive MIMO in an Outdoor Urban Environment" Applied Sciences 10, no. 21: 7631. https://doi.org/10.3390/app10217631