Dietary Patterns and Nutritional Status in Relation to Consumption of Chickpeas and Hummus in the U.S. Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Demographic and Socioeconomic Characteristics
2.2. Dietary Intake
2.3. Anthropometry and Blood Pressure
2.4. Urine and Blood Biospecimens
2.5. Metabolic Syndrome
2.6. Statistical Analysis
3. Results
3.1. Temporal Changes in Hummus and Chickpea Consumption in the U.S. Population
3.2. Dietary Patterns of Hummus and Chickpea Consumers
3.3. Health Outcomes in Hummus and Chickpea Consumers Versus Non-Consumers
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mitchell:, D.C.; Lawrence, F.R.; Hartman, T.J.; Curran, J.M. Consumption of dry beans, peas, and lentils could improve diet quality in the US population. J. Am. Diet Assoc. 2009, 109, 909–913. [Google Scholar] [CrossRef]
- Mudryj, A.N.; Yu, N.; Hartman, T.J.; Mitchell, D.C.; Lawrence, F.R.; Aukema, H.M. Pulse consumption in Canadian adults influences nutrient intakes. Br. J. Nutr. 2012, 108 (Suppl. 1), S27–S36. [Google Scholar] [CrossRef] [Green Version]
- Foster-Powell, K.; Holt, S.H.; Brand-Miller, J.C. International table of glycemic index and glycemic load values: 2002. Am. J. Clin. Nutr. 2002, 76, 5–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U.S. Department of Health and Human Services; U.S. Department of Agriculture. 2005 Dietary Guidelines for Americans, 6th ed.; USDA: Washington, DC, USA, 2005. Available online: https://health.gov/sites/default/files/2020-01/DGA2005.pdf (accessed on 17 September 2020).
- U.S. Department of Health and Human Services; U.S. Department of Agriculture. 2015–2020 Dietary Guidelines for Americans, 8th ed.; USDA: Washington, DC, USA, 2015. Available online: https://health.gov/dietaryguidelines/2015/guidelines/ (accessed on 17 September 2020).
- Ha, V.; Sievenpiper, J.L.; de Souza, R.J.; Jayalath, V.H.; Mirrahimi, A.; Agarwal, A.; Chiavaroli, L.; Mejia, S.B.; Sacks, F.M.; Di Buono, M.; et al. Effect of dietary pulse intake on established therapeutic lipid targets for cardiovascular risk reduction: A systematic review and meta-analysis of randomized controlled trials. CMAJ 2014, 186, E252–E262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayalath, V.H.; de Souza, R.J.; Sievenpiper, J.L.; Ha, V.; Chiavaroli, L.; Mirrahimi, A.; Di Buono, M.; Bernstein, A.M.; Leiter, L.A.; Kris-Etherton, P.M.; et al. Effect of dietary pulses on blood pressure: A systematic review and meta-analysis of controlled feeding trials. Am. J. Hypertens 2014, 27, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; de Souza, R.J.; Choo, V.L.; Ha, V.; Cozma, A.I.; Chiavaroli, L.; Mirrahimi, A.; Blanco Mejia, S.; Di Buono, M.; Bernstein, A.M.; et al. Effects of dietary pulse consumption on body weight: A systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2016, 103, 1213–1223. [Google Scholar] [CrossRef] [Green Version]
- Li, S.S.; Kendall, C.W.; de Souza, R.J.; Jayalath, V.H.; Cozma, A.I.; Ha, V.; Mirrahimi, A.; Chiavaroli, L.; Augustin, L.S.; Blanco Mejia, S.; et al. Dietary pulses, satiety and food intake: A systematic review and meta-analysis of acute feeding trials. Obesity (Silver Spring) 2014, 22, 1773–1780. [Google Scholar] [CrossRef]
- Sievenpiper, J.L.; Kendall, C.W.; Esfahani, A.; Wong, J.M.; Carleton, A.J.; Jiang, H.Y.; Bazinet, R.P.; Vidgen, E.; Jenkins, D.J. Effect of non-oil-seed pulses on glycaemic control: A systematic review and meta-analysis of randomised controlled experimental trials in people with and without diabetes. Diabetologia 2009, 52, 1479–1495. [Google Scholar] [CrossRef] [Green Version]
- Afshin, A.; Micha, R.; Khatibzadeh, S.; Mozaffarian, D. Consumption of nuts and legumes and risk of incident ischemic heart disease, stroke, and diabetes: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2014, 100, 278–288. [Google Scholar] [CrossRef]
- Viguiliouk, E.; Blanco Mejia, S.; Kendall, C.W.; Sievenpiper, J.L. Can pulses play a role in improving cardiometabolic health? Evidence from systematic reviews and meta-analyses. Ann. N. Y. Acad. Sci. 2017, 1392, 43–57. [Google Scholar] [CrossRef] [Green Version]
- Wallace, T.C.; Murray, R.; Zelman, K.M. The nutritional value and health benefits of chickpeas and hummus. Nutrients 2016, 8, 766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Neil, E.; Nicklas, A.; Fulgoni, V.L., III. Chickpeas and hummus are associated with better nutrient intake, diet quality, and levels of some cardiovascular risk factors: National Health and Nutrition Examination Survey 2003-2010. Nutr. Food Sci. 2014, 4, 1–8. [Google Scholar]
- Statistica. Sales Value of Hummus Worldwide from 2019 to 2024. 2020. Available online: https://www.statista.com/statistics/1077091/global-hummus-market-size/ (accessed on 17 September 2020).
- Sawant, A. Hummus Market Top Companies Strategy, Value Analysis, Gross Margin, Sales, Global production and consumption by forecast to 2027. 2019. Available online: https://www.abnewswire.com/pressreleases/hummus-market-top-companies-strategy-value-analysis-gross-margin-sales-global-production-and-consumption-by-forecast-to-2027_428095.html (accessed on 21 September 2020).
- Jukanti, A.K.; Gaur, P.M.; Gowda, C.L.; Chibbar, R.N. Nutritional quality and health benefits of chickpea (Cicer arietinum L.): A review. Br. J. Nutr. 2012, 108 (Suppl. 1), S11–S26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Camargo, A.C.; Favero, B.T.; Morzelle, M.C.; Franchin, M.; Alvarez-Parrilla, E.; de la Rosa, L.A.; Geraldi, M.V.; Maróstica Júnior, M.R.; Shahidi, F.; Schwember, A.R. Is chickpea a potential substitute for soybean? Phenolic bioactives and potential health benefits. Int. J. Mol. Sci. 2019, 20, 2644. [Google Scholar] [CrossRef] [Green Version]
- Papakonstantinou, E.; Orfanakos, N.; Farajian, P.; Kapetanakou, A.E.; Makariti, I.P.; Grivokostopoulos, N.; Ha, M.A.; Skandamis, P.N. Short-term effects of a low glycemic index carob-containing snack on energy intake, satiety, and glycemic response in normal-weight, healthy adults: Results from two randomized trials. Nutrition 2017, 42, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention. NHANES: Questionnaires, Datasets, and Related Documentation. 2020. Available online: https://wwwn.cdc.gov/nchs/nhanes/Default.aspx (accessed on 17 September 2020).
- Centers for Disease Control and Prevention. About the National Health and Nutrition Examination Survey. 2017. Available online: https://www.cdc.gov/nchs/nhanes/about_nhanes.htm (accessed on 17 September 2020).
- Blanton, C.A.; Moshfegh, A.J.; Baer, D.J.; Kretsch, M.J. The USDA Automated Multiple-Pass Method accurately estimates group total energy and nutrient intake. J. Nutr. 2006, 136, 2594–2599. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture Agricultural Research Service. Food Patterns Equivalents Database. 2017. Available online: https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/fped-databases/ (accessed on 17 September 2020).
- National Institutes of Health. National Cholesterol Education Program: ATP III Guidelines At-a-Glance Quick Desk Reference. 2001. Available online: https://www.nhlbi.nih.gov/files/docs/guidelines/atglance.pdf (accessed on 17 September 2020).
- Hendrickson, D.; Smith, C.; Eikenberry, N. Fruit and vegetable access in four low-income food deserts communities in Minnesota. Agric. Hum. Val. 2006, 23, 371–383. [Google Scholar] [CrossRef]
- Algert, S.J.; Agrawal, A.; Lewis, D.S. Disparities in access to fresh produce in low-income neighborhoods in Los Angeles. Am. J. Prev. Med. 2006, 30, 365–370. [Google Scholar] [CrossRef]
- Ahmed, J.; Thomas, L.; Mulla, M. High-pressure treatment of hummus in selected packaging materials: Influence on texture, rheology, and microstructure. J. Food Process Eng. 2020, 43, e13425. [Google Scholar] [CrossRef]
- Yamani, M.I.; Mehyar, G.F. Effect of chemical preservatives on the shelf life of hummus during different storage temperatures. Jordan J. Agric. Sci. 2011, 173, 1–26. [Google Scholar]
- Produce for Better Health Foundation. State of the Plate: 2015 Study on America’s Consumption of Fruit & Vegetables. 2015. Available online: https://fruitsandveggies.org/wp-content/uploads/2019/05/2015-State_of_the_Plate.pdf (accessed on 17 September 2020).
- Dietary Guidelines Advisory Committee. Scientific Report of the 2020 Dietary Guidelines Advisory Committee: Advisory Report to the Secretary of Agriculture and the Secretary of Health and Human Services. 2020. Available online: https://www.dietaryguidelines.gov/2020-advisory-committee-report (accessed on 17 September 2020).
- Wallace, T.C.; Frankenfeld, C.L.; Frei, B.; Shah, A.V.; Yu, C.R.; van Klinken, B.J.; Adeleke, M. Multivitamin/multimineral supplement use is associated with increased micronutrient intakes and biomarkers and decreased prevalence of inadequacies and deficiencies in middle-aged and older adults in the United States. J. Nutr. Gerontol. Geriatr. 2019, 38, 307–328. [Google Scholar] [CrossRef] [PubMed]
- Moshfegh, A.J.; Rhodes, D.G.; Baer, D.J.; Murayi, T.; Clemens, J.C.; Rumpler, W.V.; Paul, D.R.; Sebastian, R.S.; Kuczynski, K.J.; Ingwersen, L.A.; et al. The US Department of Agriculture Automated Multiple-Pass Method reduces bias in the collection of energy intakes. Am. J. Clin. Nutr. 2008, 88, 324–332. [Google Scholar] [CrossRef] [PubMed]
USDA Food Code | Food Description | Included Hummus | Included Chickpeas |
---|---|---|---|
41205070 | Hummus, plain | X | X |
41205075 | Hummus, flavored | X | X |
41302000 | Chickpeas, dry, cooked, NS as to fat added in cooking | X | |
41302010 | Chickpeas, dry, cooked, fat added in cooking, NS as to type of fat | X | |
41302011 | Chickpeas, dry, cooked, made with oil | X | |
41302012 | Chickpeas, dry, cooked, made with animal fat or meat drippings | X | |
41302013 | Chickpeas, dry, cooked, made with margarine | X | |
41302020 | Chickpeas, dry, cooked, fat not added in cooking | X | |
41302030 | Chickpeas, canned, drained, NS as to fat added in cooking | X | |
41302040 | Chickpeas, canned, drained, fat added in cooking, NS as to type of fat | X | |
41302050 | Chickpeas, canned, drained, made with oil | X | |
41302080 | Chickpeas, canned, drained, fat not added in cooking | X | |
41302100 | Chickpeas, canned, drained, low sodium, NS as to fat added in cooking | X | |
41302110 | Chickpeas, canned, drained, low sodium, fat added in cooking | X | |
41302120 | Chickpeas, canned, drained, low sodium, fat not added in cooking | X | |
41310150 | Stewed chickpeas, Puerto Rican style | X | |
41310160 | Stewed chickpeas, with potatoes, Puerto Rican style | X | |
41310200 | Chickpeas stewed with pig’s feet, Puerto Rican style | X | |
41310210 | Stewed chickpeas with Spanish sausages, Puerto Rican style | X | |
41310220 | Fried chickpeas with bacon, Puerto Rican style | X | |
41602020 | Garbanzo bean or chickpea soup, home recipe, canned or ready-to-serve | X | |
75302029 | Beans, string, green, with chickpeas, cooked, NS as to fat added in cooking | X | |
75302030 | Beans, string, green, with chickpeas, cooked, fat not added in cooking | X | |
75302031 | Beans, string, green, with chickpeas, cooked, fat added in cooking | X |
Consumption | Measure | Breakfast | Lunch | Dinner | Snack |
---|---|---|---|---|---|
Hummus | |||||
Day 1 | Consumed at this eating occasion (%) 2 | 1.8 | 44.0 | 26.8 | 33.9 |
Mean amount consumed (g) | 47.8 (21.6) | 72.1 (11.5) | 66.2 (9.8) | 61.6 (6.8) | |
Day 2 | Consumed at this eating occasion (%) | 5.4 | 33.2 | 20.8 | 46.7 |
Mean amount consumed (g) | 40.9 (16.9) | 60.8 (9.6) | 112.5 (20.1) | 57.3 (7.0) | |
Chickpeas | |||||
Day 1 | Consumed at this eating occasion (%) | 2.7 | 43.0 | 33.6 | 26.9 |
Mean amount consumed (g) | 67.3 (22.1) | 69.9 (9.1) | 79.5 (19.5) | 59.7 (6.9) | |
Day 2 | Consumed at this eating occasion (%) | 4.8 | 33.4 | 31.7 | 34.4 |
Mean amount consumed (g) | 43.7 (14.2) | 60.9 (7.9) | 85.9 (17.2) | 72.9 (13.8) |
Food Group | Hummus | Chickpea | ||||
---|---|---|---|---|---|---|
Consumers (n = 392) | Non-Consumers (n = 37,160) | p2 | Consumers (n = 622) | Non-Consumers (n = 36,930) | p | |
Fruit (cup eq.) | 1.36 (0.09) | 1.00 (0.02) | <0.001 | 1.42 (0.07) | 1.00 (0.02) | <0.001 |
Vegetables (cup eq.) | 1.98 (0.07) | 1.36 (0.01) | <0.001 | 2.02 (0.05) | 1.42 (0.01) | <0.001 |
Dark green veg. (cup eq.) | 0.31 (0.03) | 0.13 (0.01) | <0.001 | 0.33 (0.02) | 0.13 (0.01) | <0.001 |
Whole grains (ounce eq.) | 1.54 (0.10) | 0.84 (0.01) | <0.001 | 1.49 (0.08) | 0.84 (0.01) | <0.001 |
Refined grains (ounce eq.) | 5.86 (0.22) | 5.67 (0.03) | 0.252 | 5.50 (0.22) | 5.68 (0.03) | 0.811 |
Total protein foods (ounce eq.) | 6.70 (0.27) | 5.73 (0.04) | <0.001 | 6.50 (0.22) | 5.72 (0.04) | 0.001 |
Meat (ounce eq.) | 1.02 (0.12) | 1.53 (0.02) | <0.001 | 1.02 (0.10) | 1.54 (0.02) | <0.001 |
Total dairy (cup eq.) | 1.69 (0.08) | 1.72 (0.02) | 0.895 | 1.68 (0.06) | 1.72 (0.02) | 0.409 |
Added sugars (g) | 12.2 (0.67) | 17.3 (0.16) | <0.001 | 11.8 (0.52) | 17.3 (0.16) | <0.001 |
Dietary Biomarker | Hummus | Chickpea | |||||
---|---|---|---|---|---|---|---|
Available Data Releases | Consumers | Non-Consumers | p2 | Consumers | Non-Consumers | p | |
Serum | |||||||
Pyridoxal 5′-phosphate (nmol/L) 3 | 2005–2010 | 74.8 (1.1) | 52.1 (1.0) | <0.001 | 71.4 (1.1) | 52.0 (1.0) | 0.001 |
4-pyridoxic acid (nmol/L)3 | 2005–2010 | 40.5 (1.1) | 30.7 (1.0) | 0.143 | 39.5 (1.1) | 30.7 (1.0) | 0.146 |
Vitamin B6: pyridoxal 5′-phosphate + 4-pyridoxic acid (nmol/L)3 | 2005–2010 | 121 (1.1) | 87.2 (1.0) | 0.014 | 117 (1.1) | 87.1 (1.1) | 0.016 |
Vitamin B12 (pg/mL) | 2005–2006, 2011–2012 | 528 (1.1) | 513 (1.0) | 0.643 | 515 (1.1) | 513 (1.1) | 0.952 |
Vitamin D (nmol/L) | |||||||
25OHD2 | 2009–2016 | 3.67 (0.7) | 3.41 (0.1) | 0.985 | 3.33 (0.5) | 3.42 (0.1) | 0.445 |
25OHD3 | 2009–2016 | 72.9 (2.3) | 66.0 (0.8) | 0.106 | 71.2 (1.9) | 66.0 (0.8) | 0.258 |
25OHD2 + 25OHD3 | 2009–2016 | 76.6 (2.3) | 69.4 (0.7) | 0.102 | 74.5 (1.9) | 69.4 (0.7) | 0.353 |
Red blood cell folate | 2005–2016 | 529 (15.2) | 490 (4.7) | 0.039 | 529 (12.1) | 489.5 (4.7) | 0.018 |
Copper (μg/dL) | 2011–2016 | 113 (3.8) | 117 (0.7) | 0.052 | 115 (3.5) | 117 (0.7) | 0.120 |
Selenium (μg/L) | 2011–2016 | 129 (2.3) | 129 (0.6) | 0.789 | 130 (2.0) | 129 (0.6) | 0.558 |
Zinc (μg/dL) | 2011–2016 | 80.6 (1.9) | 82.2 (0.5) | 0.509 | 80.6 (1.6) | 82.2 (0.5) | 0.451 |
Urine | |||||||
Iodine (ng/mL) 3 | 2005–2016 | 97.0 (1.1) | 146 (1.0) | 0.008 | 104 (1.1) | 146 (1.0) | 0.003 |
Anthropometric Measure | Hummus | Chickpea | ||||
---|---|---|---|---|---|---|
Consumers (n = 392) | Non-Consumers (n = 37,160) | p2 | Consumers (n = 622) | Non-Consumers (n = 36,930) | p | |
Weight (kg) | 74.0 (1.4) | 74.1 (0.3) | 0.712 | 74.7 (1.3) | 74.1 (0.3) | 0.701 |
Waist circumference (cm) | 90.5 (1.1) | 92.4 (0.2) | 0.039 | 91.5 (1.0) | 92.3 (0.2) | 0.045 |
Body mass index (kg/m2) | 25.9 (0.4) | 27.0 (0.1) | 0.013 | 26.3 (0.4) | 27.0 (0.1) | 0.015 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frankenfeld, C.L.; Wallace, T.C. Dietary Patterns and Nutritional Status in Relation to Consumption of Chickpeas and Hummus in the U.S. Population. Appl. Sci. 2020, 10, 7341. https://doi.org/10.3390/app10207341
Frankenfeld CL, Wallace TC. Dietary Patterns and Nutritional Status in Relation to Consumption of Chickpeas and Hummus in the U.S. Population. Applied Sciences. 2020; 10(20):7341. https://doi.org/10.3390/app10207341
Chicago/Turabian StyleFrankenfeld, Cara L., and Taylor C. Wallace. 2020. "Dietary Patterns and Nutritional Status in Relation to Consumption of Chickpeas and Hummus in the U.S. Population" Applied Sciences 10, no. 20: 7341. https://doi.org/10.3390/app10207341