Seebeck–Peltier Transition Approach to Oncogenesis
Abstract
:1. Introduction
- The relation between the proliferation rate and the membrane potential.
- The possible existence of a threshold for the mitotic activity.
- The possible relation between metastases and membrane potential.
- The comprehension of the role of ions fluxes in the cell behaviour.
2. Materials and Methods
3. Results
- The relation between the proliferation rate and the membrane potential can be explained by the modification of the cytosolic proteins functions due to phospholyration or dephospholyration, related to the hydrolysis of ATP necessary for the coupled ion along its electrochemical gradient.
- The possible existence of a threshold for the mitotic activity is shown in Equation (7), which presents a thermal threshold () for the cell membrane electric potential gradient, which has been experimentally shown to be related to the mitotic activity.
- The possible relation between metastases and membrane potential can be explained by considering that the metastasis is related to the ability of the cell to move through the intercellular space, but this ability is related to the water outflow and the Ca-K channel activation, related to the hyperpolarisation of the membrane itself.
- The comprehension of the role of ions fluxes in the cell behaviour can be explained by considering that the depolarization was experimentally shown to be a characteristic of cancer, and our approach highlights just the differences in the thermo-electric properties of the cell membrane in cancer and normal cells.
4. Discussion and Conclusions
- The relation between cell membrane potential and temperature.
- The relation between cell membrane potential and ions fluxes.
- The spontaneous symmetry breaking in the Onsager relations as a fundamental transition between the Seebeck-like effect and the Peltier-like effect in the cell membrane.
- The link between life and the transition from a Seebeck-like effect to a Peltier-like effect and viceversa.
Author Contributions
Funding
Conflicts of Interest
References
- Yang, M.; Brackenbury, W.J. Membrane potential and cancer progression. Front. Physiol. 2013, 4, 185. [Google Scholar] [CrossRef] [Green Version]
- Goldman, D.E. Potential impedance, and rectification in membranes. J. Gen. Physiol. 1943, 27, 37–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hodgkin, A.L.; Katz, B. The effect of sodium ions on the electrical activity of giant axon of the squid. J. Physiol. 1949, 108, 37–77. [Google Scholar] [CrossRef] [PubMed]
- Ambrose, E.J.; James, A.M.; Lowick, J.H. Differences between the electrical charge carried by normal and homologous tumour cells. Nature 1956, 177, 576–577. [Google Scholar] [CrossRef] [PubMed]
- Cone, C.D. Electroosmotic interactions accompanying mitosis initiation in sarcoma cells. Vitr. Trans. N. Y. Acad. Sci. 1969, 31, 404–427. [Google Scholar] [CrossRef]
- Cone, C.D. Variation of the transmembrane potential level as a basic mechanism of mitosis control. Oncology 1970, 24, 438–470. [Google Scholar] [CrossRef]
- Cone, C.D. Unified theory on the basic mechanism of normal mitotic control and oncogenesis. J. Theor. Biol. 1971, 30, 151–181. [Google Scholar] [CrossRef]
- Tokuoka, S.; Marioka, H. The membrane potential of the human cancer and related cells (I). Gann 1957, 48, 353–354. [Google Scholar]
- Altman, P.L.; Katz, D. Biological Handbook Vol. 1: Cell Biology; Federation of American Society for Experimental Biology: Bethesda, MD, USA, 1976. [Google Scholar]
- Balitsky, K.P.; Shuba, E.P. Resting potential of malignant tumour cells. Acta Unio Int. Contra Cancrum 1964, 20, 1391–1393. [Google Scholar]
- Jamakosmanovic, A.; Loewenstein, W. Intracellular communication and tissue growth. III. Thyroid cancer. J. Cell Biol. 1968, 38, 556–561. [Google Scholar] [CrossRef] [Green Version]
- Binggelli, R.; Cameron, I.L. Cellular Potential of Normal and Cancerous Fibroblasts and Hepatocytes. Cancer Res. 1980, 40, 1830–1835. [Google Scholar]
- Coster, H.G.L. The Physics of Cell Membranes. J. Biol. Phys. 2003, 29, 363–399. [Google Scholar] [CrossRef] [PubMed]
- Bohinca, K.; Bossa, G.V.; May, S. Incorporation of ion and solvent structure into mean-field modeling of the electric double layer. Adv. Colloid Interface Sci. 2017, 249, 220–233. [Google Scholar] [CrossRef] [PubMed]
- Bohinc, K.; Kralj-Iglič, V.; Iglič, A. Thickness of electrical double layer. Effect of ion size. Electrochim. Acta 2001, 46, 3033–3040. [Google Scholar] [CrossRef] [Green Version]
- Teif, V.B.; Bohinc, K. Condensed DNA: Condensing the concepts. Prog. Biophys. Mol. Biol. 2011, 105, 208–222. [Google Scholar] [CrossRef]
- Bohinc, K.; Iglič, A.; May, S. Interaction between macroions mediated by divalent rodlike ions. Europhys. Lett. 2004, 68, 494–500. [Google Scholar] [CrossRef] [Green Version]
- Bohinc, K.; Shrestha, A.; Brumen, M.; May, S. Poisson-Helmholtz-Boltzmann model of the electric double layer: Analysis of monovalent ionic mixtures. Phys. Rev. E 2012, 85, 031130. [Google Scholar] [CrossRef]
- Mengistu, D.H.; Bohinc, K.; May, S. Poisson-Boltzmann model in a solvent of interacting Langevin dipoles. Europhys. Lett. 2009, 88, 14003. [Google Scholar] [CrossRef]
- Caetano, D.L.; Bossa, G.V.; de Oliveira, V.M.; Brown, M.A.; de Carvalho, S.J.; May, S. Role of ion hydration for the differential capacitance of an electric double layer. Phys. Chem. Chem. Phys. 2016, 18, 27796–27807. [Google Scholar] [CrossRef] [Green Version]
- Bohinc, K.; Shrestha, A.; May, S. The Poisson-Helmholtz-Boltzmann model. Eur. Phys. J. E Soft Matter Biol. Phys. 2011, 34, 1–10. [Google Scholar] [CrossRef]
- Brown, M.A.; Bossa, G.V.; May, S. Emergence of a Stern layer from the incorporation of hydration interactions into the Gouy-Chapman model of the electrical double layer. Langmuir 2015, 31, 11477–11483. [Google Scholar] [CrossRef] [Green Version]
- Iglič, A.; Gongadze, E.; Bohinc, K. Excluded volume effect and orientational ordering near charged surface in solution of ions and Langevin dipoles. Bioelectrochemistry 2010, 79, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Mbamala, E.C.; Fahr, A.; May, S. Electrostatic model for mixed cationic-zwitterionic lipid bilayers. Langmuir 2006, 22, 5129–5139. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Chen, E.Q.; Yang, S.; May, S. Incorporating headgroup structure into the Poisson-Boltzmann model of charged lipid membranes. J. Chem. Phys. 2013, 139, 024703. [Google Scholar] [CrossRef]
- Mengistu, D.H.; May, S. Debye-Huckel theory of mixed charged-zwitterionic lipid layers. Eur. Phys. J. E 2008, 26, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Mengistu, D.H.; May, S. Nonlinear Poisson-Boltzmann model of charged lipid membranes: Accounting for the presence of zwitterionic lipids. J. Chem. Phys. 2008, 129, 121105. [Google Scholar] [CrossRef] [PubMed]
- Bohinc, K.; Giner-Casares, J.J.; May, S. Analytic model for the dipole potential of a lipid layer. J. Phys. Chem. B 2014, 118, 7568–7576. [Google Scholar] [CrossRef]
- May, S.; Iglič, A.; Reščič, J.; Maset, S.; Bohinc, K. Bridging like-charged macroions through long divalent rodlike ions. J. Phys. Chem. B 2008, 112, 1685–1692. [Google Scholar] [CrossRef]
- May, S.; Bohinc, K. Attraction between like charged surfaces mediated by uniformly charged spherical colloids in a salt solution. Croat. Chem. Acta 2011, 84, 251–257. [Google Scholar] [CrossRef]
- Bohinc, K.; Bossa, G.V.; Gavryushov, S.; May, S. Poisson-Boltzmann model of electrolytes containing uniformly charged spherical nanoparticles. J. Chem. Phys. 2016, 145, 234901. [Google Scholar] [CrossRef]
- Uehara, M.; Sakane, K.K. Physics and Biology: Bio-plasma physics. Am. J. Phys. 2000, 68, 450. [Google Scholar] [CrossRef]
- Sundelacruz, S.; Levin, M.; Kaplan, D.L. Role of the membrane potential in the regulation of cell proliferation and differentiation. Stem Cell Rev. 2009, 5, 231–246. [Google Scholar] [CrossRef]
- Lobikin, M.; Chernet, B.; Lobo, D.; Levin, M. Resting potential, oncogene-induced tumorigenesis, and metastasis: The bioelectric basis of cancer in vivo. Phys. Biol. 2012, 9, 065002. [Google Scholar] [CrossRef] [Green Version]
- Schwab, A.; Fabian, A.; Hanley, P.J.; Stock, C. Role of the ion channels and transporters in cell migration. Physiol. Rev. 2012, 92, 1865–1913. [Google Scholar] [CrossRef] [PubMed]
- Johnstone, R.M. Microelectrode penetration of ascites tumour cells. Nature 1959, 183, 411. [Google Scholar] [CrossRef] [PubMed]
- Marino, A.A.; Morris, D.M.; Schwalke, M.A.; Iliev, I.G.; Rogers, S. Electrical potential measurements in huma breast cancer and benign lesions. Tumour Biol. 1994, 15, 147–152. [Google Scholar] [CrossRef]
- Cameron, I.L.; Smith, N.K.; Pool, T.B.; Sparks, R.L. Intracellular concentration of sodium and other elements as related to mitogenesis and oncogenesis in vivo. Cancer Res. 1980, 40, 1493–1500. [Google Scholar]
- Lucia, U.; Grisolia, G. How Life Works—A Continuous Seebeck-Peltier Transition in Cell Membrane? Entropy 2020, 22, 960. [Google Scholar] [CrossRef]
- Yourgrau, W.; van der Merwe, A.; Raw, G. Treatise on Irreversible and Statistical Thermophysics; Dover: New York, NY, USA, 1982. [Google Scholar]
- Callen, H.B. Thermodynamics; Wiley: New York, NY, USA, 1960. [Google Scholar]
- Katchalsky, A.; Currant, P.F. Nonequilibrium Thermodynamics in Biophysics; Harvard University Press: Boston, MA, USA, 1965. [Google Scholar]
- Lucia, U.; Grisolia, G. Resonance in Thermal Fluxes Through Cancer Membrane. Atti Dell’Accademia Peloritana Dei Pericolanti 2020, 98, SC1–SC6. [Google Scholar] [CrossRef]
- Schrödinger, E. What’s Life? The Physical Aspect of the Living Cell; Cambridge University Press: Cambridge, UK, 1944. [Google Scholar]
- Lucia, U.; Grisolia, G.; Ponzetto, A.; Deisboeck, T.S. Thermodynamic considerations on the role of heat and mass transfer in biochemical causes of carcinogenesis. Physica A 2018, 490, 1164–1170. [Google Scholar] [CrossRef]
- Lucia, U.; Grisolia, G. Second law efficiency for living cells. Front. Biosci. 2017, 9, 270–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucia, U.; Grisolia, G. Non-equilibrium thermodynamic approach to Ca2+-fluxes in cancer. Appl. Sci. 2020, 10, 6737. [Google Scholar] [CrossRef]
- Lucia, U.; Grisolia, G. Thermal Physics and Glaucoma: From Thermodynamic to Biophysical Considerations to Designing Future Therapies. Appl. Sci. 2020, 10, 7071. [Google Scholar] [CrossRef]
- Lucia, U.; Grisolia, G.; Kuzemsky, A.L. Time, Irreversibility and Entropy Production in Nonequilibrium Systems. Entropy 2020, 22, 887. [Google Scholar] [CrossRef]
- Lucia, U.; Grisolia, G. Thermal Resonance and Cell Behavior. Entropy 2020, 22, 774. [Google Scholar] [CrossRef]
- Rizzuto, R.; Marchi, S.; Bonora, M.; Aguiari, P.; Bononi, A.; Stefani, D.D.; Giorgi, C.; Leo, S.; Rimessi, A.; Siviero, R.; et al. Ca(2+) transfer from the ER to mitochondria: When, how and why. Biochim. Biophys. Acta 2009, 1787, 1342–1351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berridge, M.J.; Bootman, M.D.; Roderick, H.L. Calcium signalling: Dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 2003, 4, 517–529. [Google Scholar] [CrossRef] [Green Version]
- Pinton, P.; Ferrari, D.; Rapizzi, E.; Virgilio, F.D.; Pozzan, T.; Rizzuto, R. The Ca2+ concentration of the endoplasmic reticulum is a key determinant of ceramide-induced apoptosis: Significance for the molecular mechanism of Bcl-2 action. EMBO 2001, 20, 2690–2701. [Google Scholar] [CrossRef]
- Stewart, T.A.; Yapa, K.T.; Monteith, G.R. Altered calcium signaling in cancer cells. Biochim. Biophys. Acta 2015, 1848, 2502–2511. [Google Scholar] [CrossRef] [Green Version]
- Prigogine, I. Etude Thermodynamique des phénoménes irréversibles; Desoer: Liége, Belgium, 1947. [Google Scholar]
- Milo, R.; Phillips, R. Cell Biology by the Numbers; Garland Science: New York, NY, USA, 2003. [Google Scholar]
- Mercer, W.B. Technical Manuscript 640—The Living Cell as an Open Thermodynamic System: Bacteria and Irreversible Thermodynamica; Department of the U.S. Army—Fort Detrick: Frederic, MD, USA, 1971.
- Borle, A.B. An Overview of Techniques for the Measurement of Calcium Distribution, Calcium Fluxes, and Cytosolic Free Calcium in Mammalian Cells. Environ. Health Perspect. 1990, 84, 45–56. [Google Scholar] [CrossRef]
- Bonora, M.; Bononi, A.; Marchi, E.D.; Giorgi, C.; Lebiedzinska, M.; Marchi, S.; Patergnani, S.; Rimessi, A.; Suski, J.M.; Wojtala, A.; et al. Role of the c subunit of the FO ATP synthase in mitochondrial permeability transition. Cell Cycle 2013, 12, 674–683. [Google Scholar] [CrossRef] [Green Version]
- Šileikytė, J.; Forte, M. The Mitochondrial Permeability Transition in Mitochondrial Disorders. Oxidative Med. Cell. Longev. 2019, 3403075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonora, M.; Wieckowski, M.R.; Chinopoulos, C.; Kepp, O.; Kroemer, G.; Galluzzi, L.; Pinton, P. Molecular mechanisms of cell death: Central implication of ATP synthase in mitochondrial permeability transition. Oncogene 2015, 34, 1475–1486. [Google Scholar] [CrossRef] [PubMed]
- Giorgi, C.; Missiroli, S.; Patergnani, S.; Duszynski, J.; Wieckowski, M.R.; Pinton, P. Mitochondria-associated membranes: Composition, molecular mechanisms, and physiopathological implications. Antioxid. Redox Signal. 2015, 22, 995–1019. [Google Scholar] [CrossRef] [PubMed]
- Pinton, P.; Ferrari, D.; Magalhaes, P.; Schulze-Osthoff, K.; Virgilio, F.D.; Pozzan, T.; Rizzuto, R. Reduced loading of intracellular Ca(2+) stores and downregulationof capacitative Ca(2+) influx in Bcl-2-overexpressing cells. J. Cell Biol. 2000, 148, 857–862. [Google Scholar] [CrossRef] [Green Version]
- Foyouzi-Youssefi, R.; Arnaudeau, S.; Borner, C.; Kelley, W.L.; Tschopp, J.; Lew, D.P.; Demaurex, N.; Krause, K.H. Bcl-2 decreases the free Ca2+ concentration within the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 2000, 97, 5723–5728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akl, H.; Vervloessem, T.; Kiviluoto, S.; Bittremieux, M.; Parys, J.B.; Smedt, H.D.; Bultynck, G. A dual role for the anti-apoptotic Bcl-2 protein in cancer: Mitochondria versus endoplasmic reticulum. Biochim. Biophys. Acta 2014, 1843, 2240–2252. [Google Scholar] [CrossRef] [Green Version]
- Akl, H.; Bultynck, G. Altered Ca(2+) signaling in cancer cells: Proto-oncogenes and tumor suppressors targeting IP3 receptors. Biochim. Biophys. Acta 2013, 1835, 180–193. [Google Scholar]
- Marchi, S.; Marinello, M.; Bononi, A.; Bonora, M.; Giorgi, C.; Rimessi, A.; Pinton, P. Selective modulation of subtype III IP(3)R by Akt regulates ER Ca2+ releaseand apoptosis. Cell Death Dis. 2012, 3, e304. [Google Scholar] [CrossRef] [Green Version]
- Giorgi, C.; Ito, K.; Lin, H.K.; Santangelo, C.; Wieckowski, M.R.; Lebiedzinska, M.; Bononi, A.; Bonora, M.; Duszynski, J.; Bernardi, R.; et al. PML regulates apoptosis at endoplasmic reticulum by modulating calcium release. Science 2019, 330, 1247–1251. [Google Scholar] [CrossRef] [Green Version]
- Bononi, A.; Bonora, M.; Marchi, S.; Missiroli, S.; Poletti, F.; Giorgi, C.; Pandolfi, P.P.; Pinton, P. Identification of PTEN at the ER and MAMs and its regulation of Ca2+ signaling and apoptosis in a protein phosphatase-dependent manner. Cell Death Differ. 2013, 20, 1631–1643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giorgi, C.; Bonora, M.; Sorrentino, G.; Missiroli, S.; Poletti, F.; Suski, J.M.; Galindo Ramirez, F.; Rizzuto, R.; Di Virgilio, F.; Zito, E.; et al. p53 at the endoplasmic reticulum regulates apoptosis in a Ca2+-dependent manner. Proc. Natl. Acad. Sci. USA 2015, 112, 1779–1784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giorgi, C.; Bonora, M.; Missiroli, S.; Poletti, F.; Ramirez, F.G.; Morciano, G.; Morganti, C.; Pandolfi, P.P.; Mammano, F.; Pinton, P. Intravital imaging reveals p53-dependent cancer cell death induced by phototherapy via calcium signaling. Oncotarget 2015, 6, 1435–1445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rimessi, A.; Marchi, S.; Patergnani, S.; Pinton, P. H-Ras-driven tumoral main-tenance is sustained through caveolin-1-dependent alterations in calcium signaling. Oncogene 2014, 33, 2329–2340. [Google Scholar] [CrossRef] [PubMed]
- Lucia, U.; Grisolia, G. Constructal law and ion transfer in normal and cancer cells. Proc. Rom. Acad. Ser. A 2018, 19, 213–218. [Google Scholar]
- Lucia, U.; Deisboeck, T.S. The importance of ion fluxes for cancer proliferation and metastasis: A thermodynamic analysis. J. Theor. Biol. 2018, 445, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi-Matsui, M.; Sekiya, M.; Futai, R.K.N.M. The mechanism of rotating proton pumping ATPases. BBA-Bioenergetics 2010, 1797, 1343–1352. [Google Scholar] [CrossRef] [Green Version]
- Stevens, T.H.; Forgac, M. Structure, function and regulation of the vacuolar (H+)-ATPase. Annu. Rev. Cell. Dev. Biol. 1997, 13, 779–808. [Google Scholar] [CrossRef]
- Tuszynski, J.A.; Kurzynski, M. Introduction to Molecular Biophysics; CRC Press: Boca Raton, FL, USA, 2003; pp. 383–392. [Google Scholar]
- Lucia, U.; Ponzetto, A.; Deisboeck, T.S. A thermo-physical analysis of the proton pump vacuolar-ATPase: The constructal approach. Sci. Rep. 2014, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Rudolph, M.G.; Stanfield, R.L.; Wilson, I.A. How TCRs bind MHCs, peptides, and coreceptors. Annu. Rev. Immunol. 2006, 24, 419–466. [Google Scholar] [CrossRef]
- Strong, R.K. Asymmetric ligand recognition by the activating natural killer cell receptor NKG2D, a symmetric homodimer. Mol. Immunol. 2002, 38, 1029–1037. [Google Scholar] [CrossRef]
- Ardito, F.; Giuliani, M.; Perrone, D.; Troiano, G.; Muzio, L.L. The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy. Int. J. Mol. Med. 2017, 40, 271–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucia, U.; Grisolia, G.; Dolcino, D.; Astori, M.R.; Massa, E.; Ponzetto, A. Constructal approach to bio-engineering: The ocular anterior chamber temperature. Sci. Rep. 2016, 6, 31099. [Google Scholar] [CrossRef] [PubMed]
- Lucia, U.; Grisolia, G.; Astori, M.R. Constructal law analysis of Cl− transport in eyes aqueous humor. Sci. Rep. 2017, 7, 6856. [Google Scholar] [CrossRef] [Green Version]
- Lucia, U.; Grisolia, G.; Francia, S.; Astori, M.R. Theoretical biophysical approach to cross-linking effects on eyes pressure. Physica A 2019, 534, 122163. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucia, U.; Grisolia, G. Seebeck–Peltier Transition Approach to Oncogenesis. Appl. Sci. 2020, 10, 7166. https://doi.org/10.3390/app10207166
Lucia U, Grisolia G. Seebeck–Peltier Transition Approach to Oncogenesis. Applied Sciences. 2020; 10(20):7166. https://doi.org/10.3390/app10207166
Chicago/Turabian StyleLucia, Umberto, and Giulia Grisolia. 2020. "Seebeck–Peltier Transition Approach to Oncogenesis" Applied Sciences 10, no. 20: 7166. https://doi.org/10.3390/app10207166
APA StyleLucia, U., & Grisolia, G. (2020). Seebeck–Peltier Transition Approach to Oncogenesis. Applied Sciences, 10(20), 7166. https://doi.org/10.3390/app10207166