# The Influence of Display Parameters and Display Devices over Spatial Ability Test Answers in Virtual Reality Environments

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Research Questions and Hypotheses

- RQ1: Does the change of camera type influence the probability of correct answers on the tests?
- RQ2: Does the change of camera field of view influence the probability of correct answers on the tests?
- RQ3: Does the change of camera rotation influence the probability of correct answers on the tests?
- RQ4: Does the change of contrast ratio influence the probability of correct answers on the tests?
- RQ5: Do turning on or off the presence of shadows influence the probability of correct answers on the tests?
- RQ6: Does changing the device used influence the probability of correct answers on the tests?
- RQ7: What are the optimal preferences for these factors for achieving the largest probability of correct answers on the tests?

- H1: Camera type used does not affect the probability of correct answers; opposite to: perspective type positively influence the probability of correct answers on the tests.
- H2: Changing the camera field of view has no effect on the probability of correct answers; opposite to: changing the camera field of view to a higher degree can positively influence the probability of correct answers on the tests.
- H3: Camera rotation does not affect the probability of correct answers; opposite to: changing the camera rotation increases the probability of correct answers on the tests.
- H4: Contrast ratio does not affect the ratio of correct answers; opposite to: changing the contrast ratio from higher to lower values can positively influence the probability of correct answers on the tests.
- H5: The presence of shadows does not affect the probability of correct answers on the tests; opposite to: the ratios of corrects answers are different in case of shadows and in the absence of shadows.
- H6: Using a desktop display or the Gear VR, the probabilities of correct answers are equal; opposite to: using the Gear VR the probability of correct answers is larger.
- H7: Based on the previous hypotheses, the optimal preferences are the perspective camera type, higher field of view, some rotation, lower contrast ratio while also using the Gear VR.

## 3. Materials and Methods

#### 3.1. The Applied Device

_{corr}is its corrected value. The next step was the conversion to RGB color space. A new q variable was defined, which would contain the R, G, B values like w contained the sR, sG and sB values. Conversion was performed by the following equation:

#### 3.2. Data Collection

- The technical information about the display parameters in each test: The virtual camera type, its field of view, its rotation, the contrast ratio in the scene and whether the shadows are turned off.
- The user-related information: Their gender, age, primary hand, number of years at a university and what their major is. This category is not focused on in this manuscript.
- The test type, its completion time and the number of correct and incorrect answers.

#### 3.3. Data Analysis

## 4. Results

#### 4.1. Results of the Analyses of a Single Factor’s Effects

#### 4.1.1. Analysis of the Camera Type

^{−12}, the difference is significant. The authors conclude that the type of the camera has an influence on the probability of correct answers: the perspective camera type produces better results than the orthographic camera type. The authors numerically computed the average rates of correct answers in the case of orthographic and perspective, obtaining 0.606 and 0.642, respectively, as can be seen in Table A1.

#### 4.1.2. Analysis of the Camera Field of View

#### 4.1.3. Analysis of the Camera Rotation

#### 4.1.4. Analysis of the Contrast Ratio

^{−6}, the IMP_C contrast ratio group gives a significantly better probability of correct answers than the NO_C group. This means that the bright scenes give better results.

#### 4.1.5. Analysis of the Shadows

#### 4.1.6. Analysis of the Device Used

#### 4.2. Results of Analyses of Effects of Two Factors

#### 4.2.1. Analysis of the Pair Camera Type and Rotation

#### 4.2.2. Analysis of the Pair Camera Type and Contrast Ratio

^{−5}). Table 15 shows the results of their interaction.

^{−5}, it was concluded that the model that takes interactions into account provided a significantly better probability.

#### 4.2.3. Analysis of the Pair Camera Type and Device Used

#### 4.2.4. Analysis of the Pair Camera Rotation and Contrast Ratio

#### 4.2.5. Analysis of the Pair Camera Rotation and Device Used

^{−6}), but the influence of the device used is not significant (p-value = 0.3847) in itself. However, there is significant interaction at the 0.05 level of significance (p-value = 0.0326). The reader can check the numerical values of the average rates in the involved groups in Table A14. Table 24 shows the results of their interactions.

#### 4.2.6. Analysis of the Pair Contrast Ratio and the Device Used

#### 4.3. Results of Analyses Investigating the Effects of Three Factors

#### 4.3.1. Analysis of the Triplet Camera Type, Rotation and Contrast Ratio

#### 4.3.2. Analysis of the Triplet Camera Type, Rotation and Device Used

#### 4.3.3. Analysis of the Triplet Camera Type, Contrast Ratio, and Device Used

#### 4.3.4. Analysis of the Triplet Camera Rotation, Contrast Ratio, and Device Used

- Camera type–Camera rotation
- Camera type–Contrast ratio
- Camera rotation–Device used
- Camera rotation–Contrast ratio–Device used

#### 4.4. Results of the Analyses of the Effects of Four Variables

^{4}= 16 groups are formed. The numerical values of the descriptive statistics belonging to these groups are presented in Table A19. Applying logistic regression analysis, the authors obtain the results presented in Table 37.

^{−6}), and model III was also significantly better than II (p-value = 0.0003342). Finally, IV was not significantly better than IV (p-value = 0.1701).

## 5. Discussion

#### 5.1. Rejected Hypotheses—Detected Influences

^{−12}) influenced in terms of increasing their probability of answering correctly; and in pairs, it exhibited significant (p-value = 0.0459) interactions with −45°, 0°, 45° camera rotations or significant (p-value = 8.91 × 10

^{−5}) interactions with the 1.5:1 and 3:1 contrast ratios; in triplets, it had no significant interactions; but in fours it exhibited significant (p-value = 0.000133) interactions with −45°, 0°, 45° camera rotations, 1.5:1, 3:1 contrast ratios, and the Gear VR.

^{−6}) influence the performance of the users by increasing their probability of answering correctly, and in pairs they significantly (p-value = 8.91 × 10

^{−5}) interact with the perspective camera type, and in triplets they significantly (p-value = 0.000237) interact with the −45°, 0°, 45° camera rotations and the Gear VR, while in fours they significantly (p-value = 0.000133) interact with the perspective camera type, the −45°, 0°, 45° camera rotations and the Gear VR.

#### 5.2. Mixed Cases

^{−10}), increasing their probability of answering correctly and in pairs; it will significantly (p-value = 0.0459) interact with the perspective camera type; and in triplets it will significantly (p-value = 0.000237) interact with the 1:5.1, 3:1 contrast ratios and the Gear VR; and in fours it will have significant (p-value = 0.000133) interactions with −45°, 0°, 45° camera rotations, 1.5:1, 3:1 contrast ratios and the Gear VR.

#### 5.3. Accepted Hypothesis—No Differences Detected

## 6. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## Appendix A

Camera Type | Number of Tests | Average Rate | Dispersion |
---|---|---|---|

Orthographic | 1291 | 0.606 | 0.240 |

Perspective | 1418 | 0.642 | 0.247 |

Field of View | Number of Tests | Average Rate | Dispersion |
---|---|---|---|

−1 ^{1} | 1291 | 0.606 | 0.240 |

45° | 1049 | 0.639 | 0.245 |

60° | 120 | 0.637 | 0.280 |

75° | 134 | 0.640 | 0.256 |

90° | 115 | 0.673 | 0.218 |

^{1}Orthographic camera. Field of view is undefined in this case.

Camera Rotation | Number of Tests | Average Rate | Dispersion |
---|---|---|---|

−45° | 106 | 0.651 | 0.235 |

−30° | 294 | 0.603 | 0.241 |

−15° | 294 | 0.606 | 0.232 |

0° | 1251 | 0.639 | 0.247 |

15° | 312 | 0.611 | 0.247 |

30° | 313 | 0.607 | 0.240 |

45° | 139 | 0.632 | 0.259 |

Result of Performance | Number of Tests | Average Rate | Dispersion |
---|---|---|---|

IMP_R | 1496 | 0.639 | 0.247 |

NO_R | 1213 | 0.607 | 0.240 |

Contrast Ratio | Number of Tests | Average Rate | Dispersion |
---|---|---|---|

1.5:1 | 1066 | 0.639 | 0.247 |

3:1 | 167 | 0.628 | 0.249 |

7:1 | 1121 | 0.615 | 0.239 |

14:1 | 164 | 0.609 | 0.247 |

21:1 | 191 | 0.616 | 0.248 |

Contrast Ratio Groups | Number of Tests | Average Rate | Dispersion |
---|---|---|---|

IMP_C | 1233 | 0.637 | 0.241 |

NO_C | 1476 | 0.614 | 0.247 |

Shadows | Number of Tests | Average Rate | Dispersion |
---|---|---|---|

Turned on | 1414 | 0.628 | 0.242 |

Turned off | 1295 | 0.621 | 0.247 |

Device Used | Number of Tests | Average Rate | Dispersion |
---|---|---|---|

Desktop display | 2160 | 0.620 | 0.242 |

Gear VR | 549 | 0.643 | 0.252 |

Camera Type and Rotation | Number of Tests | Average Rate | Dispersion |
---|---|---|---|

Orthographic, NO_R | 611 | 0.583 | 0.235 |

Orthographic, INC_R | 680 | 0.626 | 0.243 |

Perspective, NO_R | 602 | 0.631 | 0.243 |

Perspective, INC_R | 816 | 0.650 | 0.249 |

Camera Type and Contrast Ratio | Number of Tests | Average Rate | Dispersion |
---|---|---|---|

Orthographic, NO_C | 696 | 0.585 | 0.235 |

Orthographic, INC_C | 595 | 0.630 | 0.244 |

Perspective, NO_C | 780 | 0.640 | 0.244 |

Perspective, INC_C | 638 | 0.644 | 0.250 |

Camera Type and Device Used | Number of Tests | Average Rate | Dispersion |
---|---|---|---|

Orthographic, desktop display | 1065 | 0.601 | 0.237 |

Orthographic, Gear VR | 226 | 0.626 | 0.252 |

Perspective, desktop display | 1095 | 0.638 | 0.246 |

Perspective, Gear VR | 323 | 0.655 | 0.251 |

Camera Rotation and Contrast Ratio | Number of Tests | Average Rate | Dispersion |
---|---|---|---|

NO_R, NO_C | 1005 | 0.603 | 0.237 |

NO_R, INC_C | 208 | 0.625 | 0.253 |

INC_R, NO_C | 471 | 0.638 | 0.248 |

INC_R, INC_C | 1025 | 0.640 | 0.246 |

Camera Rotation and Device Used | Number of Tests | Average Rate | Dispersion |
---|---|---|---|

NO_R, Desktop display | 1062 | 0.607 | 0.238 |

NO_R, Gear VR | 151 | 0.603 | 0.251 |

INC_R, Desktop display | 1098 | 0.632 | 0.245 |

INC_R, Gear VR | 398 | 0.659 | 0.251 |

Contrast Ratio and Device Used | Number of Tests | Average Rate | Dispersion |
---|---|---|---|

NO_C, Desktop display | 1183 | 0.611 | 0.239 |

NO_C, Gear VR | 293 | 0.626 | 0.249 |

INC_C, Desktop display | 977 | 0.630 | 0.245 |

INC_C, Gear VR | 256 | 0.663 | 0.254 |

Camera Type, Rotation and Contrast Ratio | Number of Tests | Average Rate | Dispersion |
---|---|---|---|

Orthographic, NO_R, NO_C | 511 | 0.579 | 0.234 |

Orthographic, NO_R, INC_C | 100 | 0.606 | 0.235 |

Orthographic, INC_R, NO_C | 185 | 0.603 | 0.235 |

Orthographic, INC_R, INC_C | 495 | 0.635 | 0.246 |

Perspective, NO_R, NO_C | 494 | 0.628 | 0.238 |

Perspective, NO_R, INC_C | 108 | 0.643 | 0.268 |

Perspective, INC_R, NO_C | 286 | 0.661 | 0.254 |

Perspective, INC_R, INC_C | 530 | 0.644 | 0.247 |

Camera Type, Rotation and Device Used | Number of Tests | Average Rate | Dispersion |
---|---|---|---|

Orthographic, NO_R, desktop display | 541 | 0.584 | 0.232 |

Orthographic, NO_R, Gear VR | 70 | 0.574 | 0.255 |

Orthographic INC_R, desktop display | 524 | 0.619 | 0.242 |

Orthographic, INC_R, Gear VR | 156 | 0.650 | 0.248 |

Perspective, NO_R, desktop display | 521 | 0.631 | 0.243 |

Perspective, NO_R, Gear VR | 81 | 0.629 | 0.246 |

Perspective, INC_R, desktop display | 574 | 0.644 | 0.248 |

Perspective, INC_R, Gear VR | 242 | 0.664 | 0.252 |

**Table A17.**Numerical results of the users regarding the camera type, contrast ratio and device used.

Camera Type, Contrast Ratio and Device Used | Number of Tests | Average Rate | Dispersion |
---|---|---|---|

Orthographic, NO_C, desktop display | 585 | 0.583 | 0.232 |

Orthographic, NO_C, Gear VR | 111 | 0.595 | 0.251 |

Orthographic, INC_C, desktop display | 480 | 0.623 | 0.242 |

Orthographic, INC_C, Gear VR | 115 | 0.657 | 0.251 |

Perspective, NO_C, desktop display | 598 | 0.639 | 0.243 |

Perspective, NO_C, Gear VR | 182 | 0.645 | 0.247 |

Perspective, INC_C, desktop display | 497 | 0.637 | 0.248 |

Perspective, INC_C, Gear VR | 141 | 0.668 | 0.257 |

**Table A18.**Numerical results of the users regarding the camera rotation, contrast ratio and device used.

Camera Rotation, Contrast Ratio, Device Used | Number of Tests | Average Rate | Dispersion |
---|---|---|---|

NO_R, NO_C, desktop display | 877 | 0.602 | 0.236 |

NO_R, NO_C, Gear VR | 128 | 0.611 | 0.245 |

NO_R, INC_C, desktop display | 185 | 0.633 | 0.248 |

NO_R, INC_C, Gear VR | 23 | 0.561 | 0.287 |

INC_R, NO_C, desktop display | 306 | 0.638 | 0.246 |

INC_R, NO_C, Gear VR | 165 | 0.638 | 0.253 |

INC_R, INC_C, desktop display | 792 | 0.630 | 0.245 |

INC_R, INC_C, Gear VR | 233 | 0.673 | 0.248 |

**Table A19.**Numerical results of the users regarding the camera type, rotation, contrast ratio, device used.

Camera Type, Rotation, Contrast Ratio, Device Used | Number of Tests | Average Rate | Dispersion |
---|---|---|---|

Orthographic, NO_R, NO_C, desktop display | 450 | 0.579 | 0.232 |

Orthographic, NO_R, NO_C, Gear VR | 61 | 0.578 | 0.251 |

Orthographic, NO_R, INC_C, desktop display | 91 | 0.612 | 0.230 |

Orthographic, NO_R, INC_C, Gear VR | 9 | 0.544 | 0.296 |

Orthographic, INC_R, NO_C, desktop display | 135 | 0.598 | 0.229 |

Orthographic, INC_R, NO_C, Gear VR | 50 | 0.615 | 0.253 |

Orthographic, INC_R, INC_C, desktop display | 389 | 0.626 | 0.246 |

Orthographic, INC_R, INC_C, Gear VR | 106 | 0.667 | 0.246 |

Perspective, NO_R, NO_C, desktop display | 427 | 0.626 | 0.238 |

Perspective, NO_R, NO_C, Gear VR | 67 | 0.641 | 0.236 |

Perspective, NO_R, INC_C, desktop display | 94 | 0.654 | 0.264 |

Perspective, NO_R, INC_C, Gear VR | 14 | 0.571 | 0.291 |

Perspective, INC_R, NO_C, desktop display | 171 | 0.670 | 0.255 |

Perspective, INC_R, NO_C, Gear VR | 115 | 0.648 | 0.253 |

Perspective, INC_R, INC_C, desktop display | 403 | 0.633 | 0.244 |

Perspective, INC_R, INC_C, Gear VR | 127 | 0.679 | 0.252 |

## References

- Best Jobs with Good Visual and Spatial Skills|LoveToKnow. Available online: https://jobs.lovetoknow.com/Best_Jobs_with_Good_Visual_and_Spatial_Skills (accessed on 23 November 2019).
- Ault, H.K.; John, S. Assessing and enhancing visualization skills of engineering students in Africa: A comparative study. Eng. Des. Graph. J.
**2010**, 74, 12–20. [Google Scholar] - Branoff, T.J.; Connolly, P.E. The addition of coordinate axes to the purdue spatial visualization test—Visualization of rotations: A study at two universities. In Proceedings of the ASEE Annual Conference, Charlotte, NC, USA, 20–23 June 1999. [Google Scholar]
- Bosnyák, Á.; Nagy-Kondor, R. The spatial ability and spatial geometrical knowledge of university students majored in mathematics. Acta Didact. Univ. Comen.
**2008**, 8, 1–25. [Google Scholar] - Wilson, A. Analysis of Current Virtual Reality Methods to Enhance Learning in Education. Sel. Comput. Res. Pap.
**2019**, 8, 61–66. [Google Scholar] - Torner, J.; Apliste, F.; Brigos, M. Virtual Reality application to improve spatial ability of engineering students. In Proceedings of the WSCG 2016—24th Conference on Computer Graphics, Visualization and Computer Vision, Plzen, Czech Republic, 30 May–3 June 2016. [Google Scholar]
- Molina-Carmona, R.; Pertegal-Felices, M.L.; Jimeno-Morenilla, A.; Mora-Mora, H. Assessing the Impact of Virtual Reality on Engineering Students’ Spatial Ability. In The Future of Innovation and Technology in Education: Policies and Practices for Teaching and Learning Excellence; Emerald Publishing Limited: Bingley, UK, 2018; pp. 171–185. [Google Scholar]
- Molina-Carmona, R.; Pertegal-Felices, M.L.; Jimeno-Morenilla, A.; Mora-Mora, H. Virtual Reality learning activities for multimedia students to enhance spatial ability. Sustainability
**2018**, 10, 1074. [Google Scholar] [CrossRef] [Green Version] - Kortum, P. HCI beyond the GUI: Design for Haptic, Speech, Olfactory, and Other Nontraditional Interfaces; Elsevier: Burlington, MA, USA, 2008. [Google Scholar]
- Mirauda, D.; Capece, N.; Erra, U. StreamflowVL: A Virtual Fieldwork Laboratory that Supports Traditional Hydraulics Engineering Learning. Appl. Sci.
**2019**, 9, 4972. [Google Scholar] [CrossRef] [Green Version] - Al Mahdi, Z.; Naidu, V.R.; Kurian, P. Analyzing the Role of Human Computer Interaction Principles for E-Learning Solution Design. In Smart Technologies and Innovation for a Sustainable Future; Springer: Cham, Switzerland, 2019; pp. 41–44. [Google Scholar]
- Liu, P.; Fels, S.; West, N.; Görges, M. Human Computer Interaction Design for Mobile Devices Based on a Smart Healthcare Architecture. arXiv
**2019**, arXiv:1902.03541. [Google Scholar] - Zhu, Z.; Pan, W.; Ai, X.; Zhen, R. Research on Human-Computer Interaction Design of Bed Rehabilitation Equipment for the Elderly. In Proceedings of the International Conference on Applied Human Factors and Ergonomics, Washington, DC, USA, 24–28 July 2019; pp. 275–286. [Google Scholar]
- Ding, T.; Zhu, D. Applications of the human-computer interaction interface to MOBA mobile games. In Proceedings of the 10th International Conference on Signal Processing Systems, Singapore, 17 April 2019. [Google Scholar]
- Kharoub, H.; Lataifeh, M.; Ahmed, N. 3D User Interface Design and Usability for Immersive VR. Appl. Sci.
**2019**, 9, 4861. [Google Scholar] [CrossRef] [Green Version] - Sutcliffe, A.G.; Poullis, C.; Gregoriades, A.; Katsouri, I.; Tzanavari, A.; Herakleous, K. Reflecting on the Design Process for Virtual Reality Applications. Int. J. Hum. Comput. Interact.
**2019**, 35, 168–179. [Google Scholar] [CrossRef] - Drettakis, G.; Roussou, M.; Reche, A.; Tsingos, N. Design and evaluation of a real-world virtual environment for architecture and urban planning. Presence Teleoper. Virtual Environ.
**2007**, 16, 318–332. [Google Scholar] [CrossRef] - Unity Real-Time Development Platform|3D, 2D VR & AR Visualizations. Available online: https://unity.com/ (accessed on 24 November 2019).
- Gear VR SM-R322 Support & Manual|Samsung Business. Available online: https://www.samsung.com/us/business/support/owners/product/gear-vr-sm-r322/ (accessed on 24 November 2019).
- Samsung Galaxy S6 Edge Plus—The Official Samsung Galaxy Site. Available online: https://www.samsung.com/global/galaxy/galaxy-s6-edge-plus/ (accessed on 24 November 2019).
- LG LED Monitor 20M37A|19.5 LG LED Monitor—LG Electronics UK. Available online: https://www.lg.com/uk/monitors/lg-20M37A (accessed on 24 November 2019).
- Hosmer, D.W., Jr.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression; John Wiley & Sons: Hoboken, NJ, USA, 2013; Volume 398. [Google Scholar]
- R: The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 24 November 2019).

**Figure 1.**(

**a**) The MRT test with an orthographic camera, 7:1 contrast ratio, shadows turned on and no extra rotation; (

**b**) The MCT test with a perspective camera, a 60° field of view, 3:1 contrast ratio, shadows turned on and no extra rotation; (

**c**) The PSVT test with a perspective camera, a 45° field of view, 1.5:1 contrast ratio, shadows turned off and no extra rotation.

Camera Type | Estimate | Standard Error | z Value | Pr (>|z|) |
---|---|---|---|---|

Intercept | 0.62452 | 0.01597 | 39.113 | <2 × 10^{−16} |

Perspective | 0.15670 | 0.02239 | 6.999 | 2.57 × 10^{−12} |

**Table 2.**The results of the logistic regression analysis concerning the camera field of view as variable.

Field of View | Estimate | Standard Error | z Value | Pr (>|z|) |
---|---|---|---|---|

Intercept | 0.62452 | 0.01597 | 39.113 | <2 × 10^{−16} |

45° | 0.14423 | 0.02423 | 5.952 | 2.64 × 10^{−9} |

60° | 0.14988 | 0.05595 | 2.679 | 0.00739 |

75° | 0.15676 | 0.05351 | 2.930 | 0.00339 |

90° | 0.27871 | 0.05830 | 4.781 | 1.75 × 10^{−6} |

**Table 3.**Logistic regression analysis results of the camera field of view without the orthographic field of view.

Field of View | Estimate | Standard Error | z Value | Pr (>|z|) |
---|---|---|---|---|

Intercept | 0.768746 | 0.018226 | 42.179 | <2 × 10^{−16} |

60° | 0.005655 | 0.056640 | 0.100 | 0.9205 |

75° | 0.012530 | 0.054223 | 0.231 | 0.8172 |

90° | 0.134485 | 0.058957 | 2.281 | 0.0225 |

Camera Rotation | Estimate | Standard Error | z Value | Pr (>|z|) |
---|---|---|---|---|

Intercept | 0.620184 | 0.33839 | 18.327 | <2 × 10^{−16} |

−45° | 0.176147 | 0.065570 | 2.686 | 0.00722 |

−30° | −0.009832 | 0.047978 | −0.205 | 0.83763 |

0° | 0.147985 | 0.037690 | 3.926 | 8.62 × 10^{−5} |

15° | 0.015393 | 0.047061 | 0.327 | 0.74360 |

30° | 0.012121 | 0.046995 | 0.258 | 0.79646 |

45° | 0.145807 | 0.059162 | 2.465 | 0.01372 |

**Table 5.**The results of the logistic regression analysis by investigating the camera rotation groups.

Camera Rotation Groups | Estimate | Standard Error | z Value | Pr (>|z|) |
---|---|---|---|---|

Intercept | 0.62498 | 0.01664 | 37.57 | <2 × 10^{−16} |

IMP_R | 0.14503 | 0.02248 | 6.45 | 1.12 × 10^{−10} |

Contrast Ratio | Estimate | Standard Error | z Value | Pr (>|z|) |
---|---|---|---|---|

Intercept | 0.77059 | 0.01801 | 42.779 | <2 × 10^{−16} |

3:1 | −0.05359 | 0.04876 | −1.099 | 0.2717 |

7:1 | −0.11437 | 0.02493 | −4.588 | 4.47 × 10^{−6} |

14:1 | −0.12867 | 0.04912 | −2.620 | 0.0088 |

21:1 | −0.09264 | 0.04554 | −2.034 | 0.0419 |

Contrast Ratio Groups | Estimate | Standard Error | z Value | Pr (>|z|) |
---|---|---|---|---|

Intercept | 0.65750 | 0.01504 | 43.712 | <2 × 10^{−16} |

IMP_C | 0.10584 | 0.02250 | 4.703 | 2.56 × 10^{−6} |

Shadows | Estimate | Standard Error | z Value | Pr (>|z|) |
---|---|---|---|---|

Intercept | 0.69046 | 0.01612 | 42.830 | <2 × 10^{−16} |

Turned on | 0.02864 | 0.02239 | 1.271 | 0.204 |

Device Used | Estimate | Standard Error | z Value | Pr (>|z|) |
---|---|---|---|---|

Intercept | 0.69002 | 0.01249 | 55.231 | <2 × 10^{−16} |

Gear VR | 0.07595 | 0.02805 | 2.708 | 0.00677 |

Camera Type and Rotation | Estimate | Standard Error | z Value | Pr (>|z|) |
---|---|---|---|---|

Intercept | 0.52784 | 0.02309 | 22.864 | <2 × 10^{−16} |

Orthographic, INC_R | 0.18323 | 0.03199 | 5.728 | 1.02 × 10^{−8} |

Perspective, NO_R | 0.19943 | 0.03334 | 5.982 | 2.21 × 10^{−9} |

Perspective, INC_R | 0.29271 | 0.03102 | 9.437 | <2 × 10^{−16} |

**Table 11.**Logistic regression results concerning the variables camera type and rotation by allowing interactions.

Camera Type and Rotation | Estimate | Standard Error | z Value | Pr (>|z|) |
---|---|---|---|---|

Intercept | 0.52784 | 0.02309 | 22.864 | <2 × 10^{−16} |

Perspective | 0.19943 | 0.03334 | 5.982 | 2.21 × 10^{−9} |

INC_R | 0.18323 | 0.03199 | 5.728 | 1.02 × 10^{−8} |

Perspective and INC_R | −0.08995 | 0.04507 | −1.996 | 0.0459 |

Resid. | Df Resid. | Dev | Df | Deviance | Pr (>Chi) |
---|---|---|---|---|---|

1 | 2706 | 10,070 | - | - | - |

2 | 2705 | 10,066 | 1 | 3.9852 | 0.0459 |

**Table 13.**Logistic regression analysis results of the effects by pairing the camera type and contrast ratio.

Camera Type and Contrast Ratio | Estimate | Standard Error | z Value | Pr (>|z|) |
---|---|---|---|---|

Intercept | 0.53467 | 0.02150 | 24.873 | <2 × 10^{−16} |

Orthographic, INC_C | 0.19765 | 0.03215 | 6.148 | 7.85 × 10^{−10} |

Perspective, NO_C | 0.23707 | 0.03014 | 7.867 | 3.64 × 10^{−15} |

Perspective, INC_C | 0.25819 | 0.03181 | 8.117 | 4.80 × 10^{−16} |

**Table 14.**Logistic regression analysis results of the additive model using the variables camera type and contrast ratio, allowing interaction.

Camera Type and Contrast Ratio | Estimate | Standard Error | z Value | Pr (>|z|) |
---|---|---|---|---|

Intercept | 0.53467 | 0.02150 | 24.873 | <2 × 10^{−16} |

Perspective | 0.23707 | 0.03014 | 7.867 | 3.64 × 10^{−15} |

INC_C | 0.19765 | 0.03215 | 6.148 | 7.85 × 10^{−10} |

Perspective and INC_C | −0.17653 | 0.04505 | −3.919 | 8.91 × 10^{−5} |

Resid. | Df Resid. | Dev | Df | Deviance | Pr (>Chi) |
---|---|---|---|---|---|

1 | 2706 | 10,085 | - | - | - |

2 | 2705 | 10,069 | 1 | 15.358 | 8.895 × 10^{−5} |

Camera Type and Device used | Estimate | Standard Error | z Value | Pr (>|z|) |
---|---|---|---|---|

Intercept | 0.61105 | 0.01752 | 34.870 | <2 × 10^{−16} |

Orthographic, Gear VR | 0.07859 | 0.04255 | 1.847 | 0.0647 |

Perspective, desktop display | 0.15872 | 0.02501 | 6.347 | 2.20 × 10^{−10} |

Perspective, Gear VR | 0.20891 | 0.03735 | 5.593 | 2.23 × 10^{−8} |

**Table 17.**Logistic regression analysis results of the additive model of camera type and device used, allowing interactions.

Camera Type and Device Used | Estimate | Standard Error | z Value | Pr (>|z|) |
---|---|---|---|---|

Intercept | 0.61105 | 0.01752 | 34.870 | <2 × 10^{−16} |

Perspective | 0.15872 | 0.02501 | 6.347 | 2.2 × 10^{−10} |

Gear VR | 0.07859 | 0.04255 | 1.847 | 0.0647 |

Perspective and Gear VR | −0.02841 | 0.05672 | −0.501 | 0.6164 |

Resid. | Df Resid. | Dev | Df | Deviance | Pr (>Chi) |
---|---|---|---|---|---|

1 | 2706 | 10,103 | - | - | - |

2 | 2705 | 10,102 | 1 | 0.25097 | 0.6164 |

Camera Rotation and Contrast Ratio | Estimate | Standard Error | z Value | Pr (>|z|) |
---|---|---|---|---|

Intercept | 0.60941 | 0.01821 | 33.469 | <2 × 10^{−16} |

NO_R, INC_C | 0.09323 | 0.04483 | 2.080 | 0.0376 |

INC_R, NO_C | 0.14922 | 0.03235 | 4.613 | 3.97 × 10^{−6} |

INC_R, INC_C | 0.16594 | 0.02584 | 6.421 | 1.36 × 10^{−10} |

**Table 20.**Logistic regression analysis results of the additive model using the variables camera rotation and contrast ratio, allowing interactions.

Camera Rotation and Contrast Ratio | Estimate | Standard Error | z Value | Pr (>|z|) |
---|---|---|---|---|

Intercept | 0.60941 | 0.01821 | 33.469 | <2 × 10^{−16} |

INC_R | 0.14922 | 0.03235 | 4.613 | 3.97 × 10^{−6} |

INC_C | 0.09323 | 0.04483 | 2.080 | 0.0376 |

INC_R and INC_C | −0.07651 | 0.05533 | −1.383 | 0.1667 |

Resid. | Df Resid. | Dev | Df | Deviance | Pr (>Chi) |
---|---|---|---|---|---|

1 | 2706 | 10,112 | - | - | - |

2 | 2705 | 10,111 | 1 | 1.9179 | 0.1661 |

**Table 22.**Logistic regression analysis results, investigating the pair of camera rotation and the device used.

Camera Rotation and Device Used | Estimate | Standard Error | z Value | Pr (>|z|) |
---|---|---|---|---|

Intercept | 0.63039 | 0.01778 | 35.465 | <2 × 10^{−16} |

NO_R, Gear VR | −0.04388 | 0.05049 | −0.869 | 0.385 |

INC_R, Desktop display | 0.11682 | 0.02500 | 4.673 | 2.97 × 10^{−6} |

INC_R, Gear VR | 0.20364 | 0.03461 | 5.883 | 4.02 × 10^{−9} |

**Table 23.**Logistic regression analysis results of the interactions between camera rotation and the device used.

Camera Rotation and Device Used | Estimate | Standard Error | z Value | Pr (>|z|) |
---|---|---|---|---|

Intercept | 0.63039 | 0.01778 | 35.465 | <2 × 10^{−16} |

INC_R | 0.11682 | 0.02500 | 4.673 | 2.97 × 10^{−6} |

Gear VR | −0.04388 | 0.05049 | −0.869 | 0.3847 |

INC_R and Gear VR | 0.13070 | 0.06115 | 2.137 | 0.0326 |

Resid. | Df Resid. | Dev | Df | Deviance | Pr (>Chi) |
---|---|---|---|---|---|

1 | 2706 | 10,113 | - | - | - |

2 | 2705 | 10,108 | 1 | 4.5511 | 0.0329 |

**Table 25.**Logistic regression analysis results of the additive model with variable contrast ratio and device used, allowing interaction.

Contrast Ratio and Device Used | Estimate | Standard Error | z Value | Pr (>|z|) |
---|---|---|---|---|

Intercept | 0.65115 | 0.01679 | 38.786 | <2 × 10^{−16} |

NO_C, Gear VR | 0.03204 | 0.03780 | 0.848 | 0.396699 |

INC_C, Desktop display | 0.08647 | 0.02514 | 3.440 | 0.000583 |

INC_C, Gear VR | 0.21296 | 0.04108 | 5.184 | 2.18 × 10^{−7} |

**Table 26.**Logistic regression analysis results of the additive model with variables contrast ratio and device used allowing interactions.

Contrast Ratio and Device Used | Estimate | Standard Error | z Value | Pr (>|z|) |
---|---|---|---|---|

Intercept | 0.65115 | 0.01679 | 38.786 | <2 × 10^{−16} |

INC_C | 0.08647 | 0.02514 | 3.440 | 0.000583 |

Gear VR | 0.03204 | 0.03780 | 0.848 | 0.396699 |

INC_C and Gear VR | 0.09445 | 0.05644 | 1.674 | 0.094199 |

Resid. | Df Resid. | Dev | Df | Deviance | Pr (>Chi) |
---|---|---|---|---|---|

1 | 2706 | 10,128 | - | - | - |

2 | 2705 | 10,125 | 1 | 2.804 | 0.09403 |

**Table 28.**Logistic regression analysis results investigating the effects of the camera type, rotation, and contrast ratio.

Camera Type, Rotation and Contrast Ratio | Estimate | Standard Error | z Value | Pr (>|z|) |
---|---|---|---|---|

Intercept | 0.51019 | 0.02512 | 20.309 | <2 × 10^{−16} |

Orthographic, NO_R, INC_C | 0.11228 | 0.06379 | 1.760 | 0.0784 |

Orthographic, INC_R, NO_C | 0.09065 | 0.04857 | 1.866 | 0.0620 |

Orthographic, INC_R, INC_C | 0.24358 | 0.03629 | 6.712 | 1.92 × 10^{−11} |

Perspective, NO_R, NO_C | 0.20626 | 0.03651 | 5.649 | 1.61 × 10^{−8} |

Perspective, NO_R, INC_C | 0.26714 | 0.06260 | 4.268 | 1.98 × 10^{−5} |

Perspective, INC_R, NO_C | 0.35544 | 0.04310 | 8.246 | <2 × 10^{−16} |

Perspective, INC_R, INC_C | 0.28576 | 0.03593 | 7.952 | 1.83 × 10^{−15} |

Resid. | Df Resid. | Dev | Df | Deviance | Pr (>Chi) |
---|---|---|---|---|---|

1 | 2703 | 10,053 | - | - | - |

2 | 2701 | 10,050 | 2 | 3.1703 | 0.2049 |

**Table 30.**Logistic regression analysis results of the additive model using variables camera type, rotation and the contrast ratio and allowing interactions of two variables.

Camera Type, Rotation and Contrast Ratio | Estimate | Standard Error | z Value | Pr (>|z|) |
---|---|---|---|---|

Intercept | 0.5062478 | 0.0238618 | 21.216 | <2 × 10^{−16} |

Perspective | 0.2259740 | 0.0344853 | 6.553 | 5.65 × 10^{−11} |

INC_R | 0.1054279 | 0.0388003 | 2.717 | 0.006584 |

INC_C | 0.1378076 | 0.0389859 | 3.535 | 0.000408 |

Perspective and INC_R | 0.0006636 | 0.0528045 | 0.013 | 0.989973 |

Perspective and INC_C | −0.1653400 | 0.0528044 | −3.131 | 0.001741 |

**Table 31.**Logistic regression analysis results investigating the variables camera type, rotation and device used.

Camera Type, Rotation and Device Used | Estimate | Standard Error | z Value | Pr (>|z|) |
---|---|---|---|---|

Intercept | 0.53653 | 0.02449 | 21.907 | <2 × 10^{−16} |

Orthographic, NO_R, Gear VR | −0.07870 | 0.07340 | −1.072 | 0.2836 |

Orthographic INC_R, desktop display | 0.15114 | 0.03508 | 4.308 | 1.65 × 10^{−5} |

Orthographic, INC_R, Gear VR | 0.25496 | 0.05299 | 4.811 | 1.50 × 10^{−6} |

Perspective, NO_R, desktop display | 0.19570 | 0.03564 | 5.490 | 4.01 × 10^{−8} |

Perspective, NO_R, Gear VR | 0.15942 | 0.06935 | 2.299 | 0.0215 |

Perspective, INC_R, desktop display | 0.26674 | 0.03473 | 7.680 | 1.59 × 10^{−14} |

Perspective, INC_R, Gear VR | 0.32541 | 0.04549 | 7.154 | 8.44 × 10^{−13} |

**Table 32.**Logistic regression analysis results with the variables camera type, rotation, and device used, allowing interactions of pairs.

Camera Type, Rotation and Device Used | Estimate | Standard Error | z Value | Pr (>|z|) |
---|---|---|---|---|

Intercept | 0.53406 | 0.02376 | 22.479 | <2 × 10^{−16} |

Perspective | 0.20095 | 0.03337 | 6.022 | 1.72 × 10^{−9} |

INC_R | 0.15942 | 0.03339 | 4.774 | 1.80 × 10^{−6} |

Gear VR | −0.05639 | 0.05059 | −1.115 | 0.2649 |

Perspective and INC_R | −0.09672 | 0.04515 | −2.142 | 0.0322 |

Perspective and Gear VR | 0.13418 | 0.06130 | 2.189 | 0.0286 |

**Table 33.**Logistic regression analysis results of the effects of the camera type, contrast ratio, and device used.

Camera Type, Contrast Ratio and Device Used | Estimate | Standard Error | z Value | Pr (>|z|) |
---|---|---|---|---|

Intercept | 0.53024 | 0.02342 | 22.644 | <2 × 10^{−16} |

Orthographic, NO_C, Gear VR | 0.02804 | 0.03534 | 0.475 | 0.635 |

Orthographic, INC_C, desktop display | 0.18131 | 0.03534 | 5.130 | 2.90 × 10^{−7} |

Orthographic, INC_C, Gear VR | 0.29212 | 0.06042 | 4.835 | 1.33 × 10^{−7} |

Perspective, NO_C, desktop display | 0.24482 | 0.03365 | 7.275 | 3.45 × 10^{−13} |

Perspective, NO_C, Gear VR | 0.23070 | 0.04936 | 4.674 | 2.96 × 10^{−6} |

Perspective, INC_C, desktop display | 0.23317 | 0.03533 | 6.600 | 4.11 × 10^{−11} |

Perspective, INC_C, Gear VR | 0.36797 | 0.05587 | 6.587 | 4.50 × 10^{−11} |

**Table 34.**Logistic regression results of the additive model with the variables camera type, contrast ratio, and the device used, allowing interactions of pairs.

Camera Type, Contrast Ratio and Device Used | Estimate | Standard Error | z Value | Pr (>|z|) |
---|---|---|---|---|

Intercept | 0.52553 | 0.02194 | 23.951 | <2 × 10^{−16} |

Perspective | 0.23264 | 0.03021 | 7.700 | 1.36 × 10^{−14} |

INC_C | 0.19581 | 0.03216 | 6.088 | 1.14 × 10^{−9} |

Gear VR | 0.05810 | 0.02816 | 2.063 | 0.039088 |

Perspective and INC_C | −0.17397 | 0.04507 | −3.860 | 0.000113 |

**Table 35.**Logistic regression analysis results of effects of the variables camera rotation, contrast ratio, and device used.

Camera Rotation, Contrast Ratio, Device Used | Estimate | Standard Error | z Value | Pr (>|z|) |
---|---|---|---|---|

Intercept | 0.60785 | 0.01946 | 31.238 | <2 × 10^{−16} |

NO_R, NO_C, Gear VR | 0.01252 | 0.05517 | 0.227 | 0.82046 |

NO_R, INC_C, desktop display | 0.13403 | 0.04789 | 2.799 | 0.00513 |

NO_R, INC_C, Gear VR | −0.20239 | 0.11945 | −1.694 | 0.09020 |

INC_R, NO_C, desktop display | 0.16645 | 0.03855 | 4.317 | 1.58 × 10^{−5} |

INC_R, NO_C, Gear VR | 0.12203 | 0.04894 | 2.494 | 0.01265 |

INC_R, INC_C, desktop display | 0.12882 | 0.02841 | 4.534 | 5.78 × 10^{−6} |

INC_R, INC_C, Gear VR | 0.30462 | 0.04418 | 6.895 | 5.37 × 10^{−12} |

**Table 36.**Results of the logistic regression analysis of the model with the variables camera rotation, contrast ratio and the device used, allowing interactions all variables.

Camera Rotation, Contrast Ratio, Device Used | Estimate | Standard Error | z Value | Pr (>|z|) |
---|---|---|---|---|

Intercept | 0.60785 | 0.01946 | 31.238 | <2 × 10^{−16} |

INC_R | 0.16645 | 0.03855 | 4.317 | 1.58 × 10^{−5} |

INC_C | 0.13403 | 0.04789 | 2.799 | 0.005131 |

Gear VR | 0.01252 | 0.05517 | 0.227 | 0.820459 |

INC_R and Gear VR | −0.05694 | 0.07853 | −0.725 | 0.468439 |

INC_R and INC_C | −0.17166 | 0.06188 | −2.774 | 0.005539 |

INC_C and Gear VR | −0.34893 | 0.13729 | −2.542 | 0.011033 |

INC_R and INC_C and Gear VR | 0.56915 | 0.15483 | 3.676 | 0.000237 |

**Table 37.**Logistic regression analysis results investigating the effects of the camera type, rotation, contrast ratio, and device used.

Camera Type, Rotation, Contrast Ratio, Device Used | Estimate | Standard Error | z Value | Pr (>|z|) |
---|---|---|---|---|

Intercept | 0.51385 | 0.02670 | 19.246 | <2 × 10^{−16} |

Orthographic, NO_R, NO_C, Gear VR | −0.03202 | 0.07884 | −0.406 | 0.6847 |

Orthographic, NO_R, INC_C, desktop display | 0.14107 | 0.06717 | 2.100 | 0.0357 |

Orthographic, NO_R, INC_C, Gear VR | −0.22087 | 0.19458 | −1.135 | 0.2563 |

Orthographic, INC_R, NO_C, desktop display | 0.07053 | 0.05559 | 1.269 | 0.2045 |

Orthographic, INC_R, NO_C, Gear VR | 0.13040 | 0.08391 | 1.554 | 0.1202 |

Orthographic, INC_R, INC_C, desktop display | 0.21036 | 0.03966 | 5.305 | 1.13 × 10^{−7} |

Orthographic, INC_R, INC_C, Gear VR | 0.35379 | 0.06417 | 5.513 | 3.52 × 10^{−8} |

Perspective, NO_R, NO_C, desktop display | 0.19790 | 0.03904 | 5.069 | 4.00 × 10^{−7} |

Perspective, NO_R, NO_C, Gear VR | 0.23262 | 0.07695 | 3.023 | 0.0025 |

Perspective, NO_R, INC_C, desktop display | 0.31400 | 0.06772 | 4.637 | 3.54 × 10^{−6} |

Perspective, NO_R, INC_C, Gear VR | −0.04214 | 0.15152 | −0.278 | 0.7809 |

Perspective, INC_R, NO_C, desktop display | 0.41798 | 0.05303 | 7.882 | 3.22 × 10^{−15} |

Perspective, INC_R, NO_C, Gear VR | 0.25528 | 0.06062 | 4.211 | 2.54 × 10^{−5} |

Perspective, INC_R, INC_C, desktop display | 0.23513 | 0.03959 | 5.940 | 2.86 × 10^{−9} |

Perspective, INC_R, INC_C, Gear VR | 0.43645 | 0.06032 | 7.236 | 4.62 × 10^{−13} |

Camera Type, Rotation, Contrast Ratio, Device Used | Estimate | Standard Error | z Value | Pr (>|z|) |
---|---|---|---|---|

Intercept | 0.4997428 | 0.0252612 | 19.783 | <2 × 10^{−16} |

Perspective | 0.2281487 | 0.0345391 | 6.606 | 3.96 × 10^{−11} |

INC_R | 0.1501627 | 0.0475111 | 3.161 | 0.001575 |

INC_C | 0.2106181 | 0.0547860 | 3.844 | 0.000121 |

Gear VR | 0.0008861 | 0.0552796 | 0.016 | 0.987212 |

Perspective and INC_R | −0.0028185 | 0.0532272 | −0.053 | 0.957770 |

Perspective and INC_C | −0.1660764 | 0.0532649 | −3.118 | 0.001821 |

INC_R and Gear VR | −0.0746026 | 0.0788879 | −0.946 | 0.344313 |

INC_R and INC_C | −0.1535519 | 0.0619693 | −2.478 | 0.013217 |

INC_C and Gear VR | −0.3450059 | 0.1374857 | −2.509 | 0.012094 |

INC_R and INC_C and Gear VR | 0.5920143 | 0.1374857 | 3.821 | 0.000133 |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Guzsvinecz, T.; Sik-Lanyi, C.; Orban-Mihalyko, E.; Perge, E.
The Influence of Display Parameters and Display Devices over Spatial Ability Test Answers in Virtual Reality Environments. *Appl. Sci.* **2020**, *10*, 526.
https://doi.org/10.3390/app10020526

**AMA Style**

Guzsvinecz T, Sik-Lanyi C, Orban-Mihalyko E, Perge E.
The Influence of Display Parameters and Display Devices over Spatial Ability Test Answers in Virtual Reality Environments. *Applied Sciences*. 2020; 10(2):526.
https://doi.org/10.3390/app10020526

**Chicago/Turabian Style**

Guzsvinecz, Tibor, Cecilia Sik-Lanyi, Eva Orban-Mihalyko, and Erika Perge.
2020. "The Influence of Display Parameters and Display Devices over Spatial Ability Test Answers in Virtual Reality Environments" *Applied Sciences* 10, no. 2: 526.
https://doi.org/10.3390/app10020526