Adaptive State Observer for Robot Manipulators Diagnostics and Health Degree Assessment
Abstract
1. Introduction
2. Kinetic Model
3. Fault Detection Algorithm
4. Health Degree Assessment
5. Simulation
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, F.Y.; Zhang, J.J.; Wang, X. Parallel intelligence: toward lifelong and eternal developmental AI and learning in cyber-physical-social spaces. Front. Comput. Sci. 2018, 12, 401–405. [Google Scholar] [CrossRef]
- Kong, Z.; Yang, S.; Wang, D.; Hanzo, L. Robust Beamforming and Jamming for Enhancing the Physical Layer Security of Full Duplex Radios. IEEE Trans. Inf. Forensics Secur. 2019, 14, 3151–3159. [Google Scholar] [CrossRef]
- DiCarlo, C. How to Avoid a Robotic Apocalypse: A Consideration on the Future Developments of AI, Emergent Consciousness, and the Frankenstein Effect. IEEE Technol. Soc. Mag. 2016, 35, 56–61. [Google Scholar] [CrossRef]
- Ellefsen, A.L.; Bjørlykhaug, E.; Æsøy, V.; Zhang, H. An Unsupervised Reconstruction-Based Fault Detection Algorithm for Maritime Components. IEEE Access 2019, 7, 16101–16109. [Google Scholar] [CrossRef]
- Rezazadeh, A.S.; Koofigar, H.R.; Hosseinnia, S. Adaptive fault detection and isolation for a class of robot manipulators with time-varying perturbation. J. Mech. Sci. Technol. 2015, 29, 4901–4911. [Google Scholar] [CrossRef]
- Kamel, M.A.; Yu, X.; Zhang, Y. Fault-Tolerant Cooperative Control Design of Multiple Wheeled Mobile Robots. IEEE Trans. Control Syst. Technol. 2018, 26, 756–764. [Google Scholar] [CrossRef]
- García, E.A.; Frank, P. Deterministic nonlinear observer-based approaches to fault diagnosis: A survey. Control Eng. Pract. 1997, 5, 663–670. [Google Scholar] [CrossRef]
- Samy, I.; Postlethwaite, I.; Gu, D.W. Survey and application of sensor fault detection and isolation schemes. Control Eng. Pract. 2011, 19, 658–674. [Google Scholar] [CrossRef]
- Ji, M.; Sarkar, N. Supervisory Fault Adaptive Control of a Mobile Robot and Its Application in Sensor-Fault Accommodation. IEEE Trans. Robot. 2007, 23, 174–178. [Google Scholar] [CrossRef]
- Yang, J.-M.; Kim, J.-H. Optimal fault tolerant gait sequence of the hexapod robot with overlapping reachable areas and crab walking. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 1999, 29, 224–235. [Google Scholar] [CrossRef]
- Yang, J.-M.; Kim, J.-H. Fault-tolerant locomotion of the hexapod robot. IEEE Trans. Syst. Man Cybern. Part B 1998, 28, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Rotondo, D.; Puig, V.; Nejjari, F.; Romera, J. A Fault-Hiding Approach for the Switching Quasi-LPV Fault-Tolerant Control of a Four-Wheeled Omnidirectional Mobile Robot. IEEE Trans. Ind. Electron. 2015, 62, 3932–3944. [Google Scholar] [CrossRef]
- Kim, J.; You, B. Fault Detection in a Microphone Array by Intercorrelation of Features in Voice Activity Detection. IEEE Trans. Ind. Electron. 2011, 58, 2568–2571. [Google Scholar] [CrossRef]
- Xie, B.; Maciejewski, A.A. Kinematic Design of Optimally Fault Tolerant Robots for Different Joint Failure Probabilities. IEEE Robot. Autom. Lett. 2018, 3, 827–834. [Google Scholar] [CrossRef]
- Gómez-de-Gabriel, J.M.; Mandow, A.; Fernández-Lozano, J.; García-Cerezo, A. Mobile Robot Lab Project to Introduce Engineering Students to Fault Diagnosis in Mechatronic Systems. IEEE Trans. Educ. 2015, 58, 187–193. [Google Scholar] [CrossRef]
- Nair, R.R.; Karki, H.; Shukla, A.; Behera, L.; Jamshidi, M. Fault-Tolerant Formation Control of Nonholonomic Robots Using Fast Adaptive Gain Nonsingular Terminal Sliding Mode Control. IEEE Syst. J. 2019, 13, 1006–1017. [Google Scholar] [CrossRef]
- Brambilla, D.; Capisani, L.M.; Ferrara, A.; Pisu, P. Fault Detection for Robot Manipulators via Second-Order Sliding Modes. IEEE Trans. Ind. Electron. 2008, 55, 3954–3963. [Google Scholar] [CrossRef]
- Capisani, L.M.; Ferrara, A.; Ferreira de Loza, A.; Fridman, L.M. Manipulator Fault Diagnosis via Higher Order Sliding-Mode Observers. IEEE Trans. Ind. Electron. 2012, 59, 3979–3986. [Google Scholar] [CrossRef]
- Ma, H.J.; Yang, G.H. Adaptive output control of uncertain nonlinear systems with non-symmetric dead-zone input. Automatica 2010, 46, 413–420. [Google Scholar] [CrossRef]
- Singh, P.; Agrawal, P.; Karki, H.; Shukla, A.; Verma, N.K.; Behera, L. Vision-Based Guidance and Switching-Based Sliding Mode Controller for a Mobile Robot in the Cyber Physical Framework. IEEE Trans. Ind. Inf. 2019, 15, 1985–1997. [Google Scholar] [CrossRef]
- Xu, T.; Kühnlenz, K.; Buss, M. Autonomous Behavior-Based Switched Top-Down and Bottom-Up Visual Attention for Mobile Robots. IEEE Trans. Robot. 2010, 26, 947–954. [Google Scholar] [CrossRef]
- Ficuciello, F.; Villani, L.; Siciliano, B. Variable Impedance Control of Redundant Manipulators for Intuitive Human—Robot Physical Interaction. IEEE Trans. Robot. 2015, 31, 850–863. [Google Scholar] [CrossRef]
- Ren, T.; Dong, Y.; Chen, K. Collision detection and identification for robot manipulators based on extended state observer. Control Eng. Pract. 2018, 79, 144–153. [Google Scholar] [CrossRef]
- Nie, S.; Ding, L.; Li, W. Multiple Line-outage Detection in Power System with Load Stochastic Perturbations. IEEE Trans. Circuits Syst. II Express Briefs 2019. [Google Scholar] [CrossRef]
- Ma, H.J.; Yang, G.H. Simultaneous fault diagnosis for robot manipulators with actuator and sensor faults. Inf. Sci. 2016, 366, 12–30. [Google Scholar] [CrossRef]
- Wai, R.; Yang, Z. Adaptive Fuzzy Neural Network Control Design via a T–S Fuzzy Model for a Robot Manipulator Including Actuator Dynamics. IEEE Trans. Syst. Man Cybern. Part B 2008, 38, 1326–1346. [Google Scholar] [CrossRef]
- Tavan, M.; Khaki-Sedigh, A.; Arvan, M.R.; Vali, A.R. Immersion and invariance adaptive velocity observer for a class of Euler–Lagrange mechanical systems. Nonlinear Dyn. 2016, 85, 425–437. [Google Scholar] [CrossRef]
- Park, J.; Hur, J. Detection of Inter-Turn and Dynamic Eccentricity Faults Using Stator Current Frequency Pattern in IPM-Type BLDC Motors. IEEE Trans. Ind. Electron. 2016, 63, 1771–1780. [Google Scholar] [CrossRef]
- Folin, T.; Ahmed-Ali, T.; Giri, F.; Burlion, L.; Lamnabhi-Lagarrigue, F. Sampled-Data Adaptive Observer for a Class of State-Affine Output-Injection Nonlinear Systems. IEEE Trans. Autom. Control 2016, 61, 462–467. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dang, S.; Kong, Z.; Peng, L.; Ji, Y.; Zhang, Y. Adaptive State Observer for Robot Manipulators Diagnostics and Health Degree Assessment. Appl. Sci. 2020, 10, 514. https://doi.org/10.3390/app10020514
Dang S, Kong Z, Peng L, Ji Y, Zhang Y. Adaptive State Observer for Robot Manipulators Diagnostics and Health Degree Assessment. Applied Sciences. 2020; 10(2):514. https://doi.org/10.3390/app10020514
Chicago/Turabian StyleDang, Sanlei, Zhengmin Kong, Long Peng, Yilin Ji, and Yongwang Zhang. 2020. "Adaptive State Observer for Robot Manipulators Diagnostics and Health Degree Assessment" Applied Sciences 10, no. 2: 514. https://doi.org/10.3390/app10020514
APA StyleDang, S., Kong, Z., Peng, L., Ji, Y., & Zhang, Y. (2020). Adaptive State Observer for Robot Manipulators Diagnostics and Health Degree Assessment. Applied Sciences, 10(2), 514. https://doi.org/10.3390/app10020514