Integration of Molecular Docking and In Vitro Studies: A Powerful Approach for Drug Discovery in Breast Cancer
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Systematic Repositioning of Drugs/Molecules
3.2. Natural Molecules
3.3. New Synthesized Molecules
3.4. Combination of Drugs
3.5. Drug Latentiation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Weigelt, B.; Peterse, J.L.; Veer, L.J.V. Breast cancer metastasis: Markers and models. Nat. Rev. Cancer 2005, 5, 591–602. [Google Scholar] [CrossRef]
- Cava, C.; Pini, S.; Taramelli, D.; Castiglioni, I. Perturbations of pathway co-expression network identify a core network in metastatic breast cancer. Comput. Biol. Chem. 2020, 87, 107313. [Google Scholar] [CrossRef] [PubMed]
- Bravatà, V.; Cava, C.; Minafra, L.; Cammarata, F.P.; Russo, G.; Gilardi, M.C.; Castiglioni, I.; Forte, G.I. Radiation-Induced Gene Expression Changes in High and Low Grade Breast Cancer Cell Types. Int. J. Mol. Sci. 2018, 19, 1084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponnusankar, S.; Mohan, A. Newer therapies for the treatment of metastatic breast cancer: A clinical update. Indian J. Pharm. Sci. 2013, 75, 251–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hughes, J.; Rees, S.; Kalindjian, S.; Philpott, K. Principles of early drug discovery. Br. J. Pharmacol. 2011, 162, 1239–1249. [Google Scholar] [CrossRef] [Green Version]
- Cava, C.; Colaprico, A.; Bertoli, G.; Bontempi, G.; Mauri, G.; Castiglioni, I. How interacting pathways are regulated by miRNAs in breast cancer subtypes. BMC Bioinform. 2016, 17, 111–133. [Google Scholar] [CrossRef] [Green Version]
- Cava, C.; Novello, C.; Martelli, C.; Lodico, A.; Ottobrini, L.; Piccotti, F.; Truffi, M.; Corsi, F.; Bertoli, G.; Castiglioni, I. Theranostic application of miR-429 in HER2+ breast cancer. Theranostics 2020, 10, 50–61. [Google Scholar] [CrossRef]
- Yang, Y.; Adelstein, S.J.; Kassis, I.A. Target discovery from data mining approaches. Drug Discov. Today 2009, 14, 147–154. [Google Scholar] [CrossRef]
- Meng, X.-Y.; Zhang, H.-X.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Comput. Drug Des. 2011, 7, 146–157. [Google Scholar] [CrossRef]
- McConkey, B.J.; Sobolev, V.; Edelman, M. The performance of current methods in ligand-protein docking. Curr. Sci. 2002, 83, 845–855. [Google Scholar]
- Csermely, P.; Korcsmáros, T.; Kiss, H.J.; London, G.; Nussinov, R. Structure and dynamics of molecular networks: A novel paradigm of drug discovery: A comprehensive review. Pharmacol. Ther. 2013, 138, 333–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ngo, H.X.; Garneau-Tsodikova, S. What are the drugs of the future? MedChemComm 2018, 9, 757–758. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Li, X.; Lin, X. A Review on Applications of Computational Methods in Drug Screening and Design. Molecules 2020, 25, 1375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bafna, D.; Ban, F.; Rennie, P.S.; Singh, K.; Cherkasov, A. Computer-Aided Ligand Discovery for Estrogen Receptor Alpha. Int. J. Mol. Sci. 2020, 21, 4193. [Google Scholar] [CrossRef]
- Xue, H.; Xie, H.; Xie, H.; Wang, Y. Review of Drug Repositioning Approaches and Resources. Int. J. Biol. Sci. 2018, 14, 1232–1244. [Google Scholar] [CrossRef] [Green Version]
- Palacio-Rodríguez, K.; Lans, I.; Cavasotto, C.N.; Cossio, P. Exponential consensus ranking improves the outcome in docking and receptor ensemble docking. Sci. Rep. 2019, 9, 5142. [Google Scholar] [CrossRef]
- Bajpai, M.; Esmay, J.D. In Vitro Studies in Drug Discovery and Development: An Analysis of Study Objectives and Application of Good Laboratory Practices (GLP). Drug Metab. Rev. 2002, 34, 679–689. [Google Scholar] [CrossRef]
- Rymbai, E.; Sugumar, D.; Saravanan, J.; Divakar, S. Ropinirole, a potential drug for systematic repositioning based on side effect profile for management and treatment of Breast Cancer. Med. Hypotheses 2020, 144, 110156. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, H.; Li, Q.; Li, S.; Lai, H.; Song, E.; Li, D.; Chen, J. Discovery of CCL18 antagonist blocking breast cancer metastasis. Clin. Exp. Metastasis 2019, 36, 243–255. [Google Scholar] [CrossRef]
- Chen, J.; Yao, Y.; Gong, C.; Yu, F.; Su, S.; Chen, J.; Liu, B.; Deng, H.; Wang, F.; Lin, L.; et al. CCL18 from Tumor-Associated Macrophages Promotes Breast Cancer Metastasis via PITPNM3. Cancer Cell 2011, 19, 541–555. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Tripathi, N.; Siddharth, S.; Nayak, A.; Nayak, D.; Sethy, C.; Bharatam, P.V.; Kundu, C.N. Etoposide and doxorubicin enhance the sensitivity of triple negative breast cancers through modulation of TRAIL-DR5 axis. Apoptosis 2017, 22, 1205–1224. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, E.L.; Osheroff, N. Etoposide, Topoisomerase II and Cancer. Curr. Med. Chem. Anti Cancer Agents 2005, 5, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Woodle, M.C.; Mixson, A.J. Advances in Delivery Systems for Doxorubicin. J. Nanomed. Nanotechnol. 2018, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Manivel, P.; Paulpandi, M.; Murugan, K.; Benelli, G.; Ilanchelian, M. Probing the interaction of thionine with human serum albumin by multispectroscopic studies and its in vitro cytotoxic activity toward MCF-7 breast cancer cells. J. Biomol. Struct. Dyn. 2016, 35, 3012–3031. [Google Scholar] [CrossRef]
- Dohno, C.; Stemp, E.D.A.; Barton, J.K. Fast Back Electron Transfer Prevents Guanine Damage by Photoexcited Thionine Bound to DNA. J. Am. Chem. Soc. 2003, 125, 9586–9587. [Google Scholar] [CrossRef]
- Veena, V.K.; Popavath, R.N.; Kennedy, K.; Sakthivel, N. In vitro antiproliferative, pro-apoptotic, antimetastatic and anti-inflammatory potential of 2,4-diacteylphloroglucinol (DAPG) by Pseudomonas aeruginosa strain FP10. Apoptosis 2015, 20, 1281–1295. [Google Scholar] [CrossRef]
- Veena, V.K.; Kennedy, K.; Lakshmi, P.; Krishna, R.; Sakthivel, N. Anti-leukemic, anti-lung, and anti-breast cancer potential of the microbial polyketide 2, 4-diacetylphloroglucinol (DAPG) and its interaction with the metastatic proteins than the antiapoptotic Bcl-2 proteins. Mol. Cell. Biochem. 2016, 414, 47–56. [Google Scholar] [CrossRef]
- Harvey, A.L.; Edrada-Ebel, R.; Quinn, R.J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov. 2015, 14, 111–129. [Google Scholar] [CrossRef] [Green Version]
- Nelson, E.R.; Chang, C.-Y.; McDonnell, D.P. Cholesterol and breast cancer pathophysiology. Trends Endocrinol. Metab. 2014, 25, 649–655. [Google Scholar] [CrossRef] [Green Version]
- Bloch, P.; Tamm, C.; Bollinger, P.; Petcher, T.J.; Weber, H.P. Pseurotin, a new metabolite of Pseudeurotium ovalis Stolk having an unusual hetero-spirocyclic system. Helv. Chim. Acta 1976, 7, 133–137. [Google Scholar] [CrossRef]
- Wenke, J.; Anke, H.; Sterner, O. Pseurotin A and 8-Odemethylpseurotin A from Aspergillus fumigatus and their inhibitory activities on chitin synthase. Biosci. Biotech. Biochem. 1993, 57, 961–964. [Google Scholar] [CrossRef]
- Komagata, D.; Fujita, S.; Yamashita, N.; Saito, S.; Morino, T. Novel Neuritogenic Activities of Pseurotin A and Penicillic Acid. J. Antibiot. 1996, 49, 958–959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wink, J.; Grabley, S.; Gareis, M.; Zeeck, A.; Phillips, S. Biologically active pseurotin A and D, new metabolites from Aspergillus fumigatus, process for their preparation and their use as apomorphine antagonists. Eur. Pat. Appl. 1993, ep546475. [Google Scholar]
- Abdelwahed, K.S.; Siddique, A.B.; Mohyeldin, M.M.; Qusa, M.H.; Goda, A.A.; Singh, S.S.; Ayoub, N.M.; King, J.A.; Jois, S.D.; El Sayed, K.A. Pseurotin A as a novel suppressor of hormone dependent breast cancer progression and recurrence by inhibiting PCSK9 secretion and interaction with LDL receptor. Pharmacol. Res. 2020, 158, 104847. [Google Scholar] [CrossRef] [PubMed]
- Harikrishnan, A.; Veena, V.; Lakshmi, B.; Shanmugavalli, R.; Theres, S.; Prashantha, C.N.; Shah, T.; Oshin, K.; Togam, R.; Nandi, S.; et al. Atranorin, an antimicrobial metabolite from lichen Parmotrema rampoddense exhibited in vitro anti-breast cancer activity through interaction with Akt activity. J. Biomol. Struct. Dyn. 2020, 9, 1–11. [Google Scholar] [CrossRef]
- Kaboli, P.J.; Salimian, F.; Aghapour, S.; Xiang, S.; Zhao, Q.; Li, M.; Wu, X.; Du, F.; Zhao, Y.; Shen, J.; et al. Akt-targeted therapy as a promising strategy to overcome drug resistance in breast cancer—A comprehensive review from chemotherapy to immunotherapy. Pharmacol. Res. 2020, 156, 104806. [Google Scholar] [CrossRef]
- Choudhury, P.; Barua, A.; Roy, A.; Pattanayak, R.; Bhattacharyya, M.; Saha, P. Eugenol restricts Cancer Stem Cell population by degradation of β-catenin via N-terminal Ser37 phosphorylation-an in vivo and in vitro experimental evaluation. Chem. Biol. Interact. 2020, 316, 108938. [Google Scholar] [CrossRef]
- Liu, C.; Wang, K.; Zhuang, J.; Gao, C.; Li, H.; Liu, L.; Feng, F.; Zhou, C.; Yao, K.; Deng, L.; et al. The Modulatory Properties of Astragalus membranaceus Treatment on Triple-Negative Breast Cancer: An Integrated Pharmacological Method. Front. Pharmacol. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Sinha, S.; Patel, S.; Athar, M.; Vora, J.; Chhabria, M.T.; Jha, P.C.; Shrivastava, N. Structure-based identification of novel sirtuin inhibitors against triple negative breast cancer: An in silico and in vitro study. Int. J. Biol. Macromol. 2019, 140, 454–468. [Google Scholar] [CrossRef]
- Stanton, R.A.; Gernert, K.M.; Nettles, J.H.; Aneja, R. Drugs that target dynamic microtubules: A new molecular perspective. Med. Res. Rev. 2011, 31, 443–481. [Google Scholar] [CrossRef] [Green Version]
- Maurya, N.; Maurya, J.K.; Singh, U.K.; Dohare, R.; Yab, Z.; Alam Rizvi, M.M.; Kumari, M.; Patel, R. In Vitro Cytotoxicity and Interaction of Noscapine with Human Serum Albumin: Effect on Structure and Esterase Activity of HSA. Mol. Pharm. 2019, 16, 952–966. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.M.; Wang, P.H.; Chen, S.S.; Wen, C.C.; Chen, Y.H.; Yang, W.C.; Yang, N.S. Shikonin induces immunogenic cell death in tumor cells and enhances dendritic cell-based cancer vaccine. Cancer Immunol. Immunother. 2012, 61, 1989–2002. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.-Y.; Efferth, T.; Jian, F.-Y.; Chen, Y.-H.; Liu, C.-I.; Wang, A.H.; Chen, Y.-R.; Hsiao, P.-W.; Yang, N.S. Immunogenicity of mammary tumor cells can be induced by shikonin via direct binding-interference with hnRNPA1. Oncotarget 2016, 7, 43629–43653. [Google Scholar] [CrossRef] [PubMed]
- Pei, S.; Yang, X.; Wang, H.; Zhang, H.; Zhou, B.; Zhang, D.; Lin, D. Plantamajoside, a potential anti-tumor herbal medicine inhibits breast cancer growth and pulmonary metastasis by decreasing the activity of matrix metalloproteinase-9 and-2. BMC Cancer 2015, 15, 965. [Google Scholar] [CrossRef] [Green Version]
- Hanieh, H.; Mohafez, O.; Hairul-Islam, V.I.; Alzahrani, A.; Ismail, M.B.; Thirugnanasambantham, K. Novel Aryl Hydrocarbon Receptor Agonist Suppresses Migration and Invasion of Breast Cancer Cells. PLoS ONE 2016, 11, e0167650. [Google Scholar] [CrossRef] [Green Version]
- Nashaat, S.; Henen, M.A.; El-Messery, S.M.; Eisa, H. Synthesis, state-of-the-art NMR-binding and molecular modeling study of new benzimidazole core derivatives as Pin1 inhibitors: Targeting breast cancer. Bioorganic Med. Chem. 2020, 28, 115495. [Google Scholar] [CrossRef]
- Bacharaju, K.; Jambula, S.R.; Sivan, S.; JyostnaTangeda, S.; Manga, V. Design, synthesis, molecular docking and biological evaluation of new dithiocarbamates substituted benzimidazole and chalcones as possible chemotherapeutic agents. Bioorganic Med. Chem. Lett. 2012, 22, 3274–3277. [Google Scholar] [CrossRef]
- Vaz, W.F.; Custodio, J.M.F.; D’Oliveira, G.D.C.; Neves, B.J.; Junior, P.S.C.; Filho, J.T.M.; Andrade, C.H.; Perez, C.N.; Silveira-Lacerda, E.P.; Napolitano, H.B. Dihydroquinoline derivative as a potential anticancer agent: Synthesis, crystal structure, and molecular modeling studies. Mol. Divers. 2020, 1–12. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Wang, N.; Lin, D.; Liu, X.; Yang, Y.; Gao, Q. Synthesis, DNA/BSA binding studies and in vitro biological assay of nickel(II) complexes incorporating tridentate aroylhydrazone and triphenylphosphine ligands. J. Biomol. Struct. Dyn. 2019, 1–20. [Google Scholar] [CrossRef]
- Acharya, S.; Maji, M.; Ruturaj; Purkait, K.; Gupta, A.; Mukherjee, A. Synthesis, Structure, Stability, and Inhibition of Tubulin Polymerization by RuII–p-Cymene Complexes of Trimethoxyaniline-Based Schiff Bases. Inorg. Chem. 2019, 58, 9213–9224. [Google Scholar] [CrossRef]
- Cai, Y.; Zhao, B.; Liang, Q.-Y.; Zhang, Y.; Cai, J.; Li, G. The selective effect of glycyrrhizin and glycyrrhetinic acid on topoisomerase IIα and apoptosis in combination with etoposide on triple negative breast cancer MDA-MB-231 cells. Eur. J. Pharmacol. 2017, 809, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Shukla, A.; Tyagi, R.; Meena, S.; Datta, D.; Srivastava, S.K.; Khan, F. 2D- and 3D-QSAR modelling, molecular docking and in vitro evaluation studies on 18β-glycyrrhetinic acid derivatives against triple-negative breast cancer cell line. J. Biomol. Struct. Dyn. 2019, 38, 168–185. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Zhao, Y.; He, J. Anti-breast cancer activity of selected 1,3,5-triazines via modulation of EGFR-TK. Mol. Med. Rep. 2018, 18, 4175–4184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vlaar, C.P.; Castillo-Pichardo, L.; Medina, J.I.; Marrero-Serra, C.M.; Velez, E.; Ramos, Z.; Hernández, E. Design, synthesis and biological evaluation of new carbazole derivatives as anti-cancer and anti-migratory agents. Bioorganic Med. Chem. 2018, 26, 884–890. [Google Scholar] [CrossRef] [PubMed]
- Kamalakar, A.; Washam, C.L.; Akel, N.S.; Allen, B.J.; Williams, D.K.; Swain, F.L.; Leitzel, K.; Lipton, A.; Gaddy, D.; Suva, L. PTHrP(12-48) Modulates the Bone Marrow Microenvironment and Suppresses Human Osteoclast Differentiation and Lifespan. J. Bone Miner. Res. 2017, 32, 1421–1431. [Google Scholar] [CrossRef]
- Rajabi, M.; Mousa, S.A. The Role of Angiogenesis in Cancer Treatment. Biomedicines 2017, 5, 34. [Google Scholar] [CrossRef] [Green Version]
- Aboul-Enein, M.N.; El Azzouny, A.; Ragab, F.A.-F.; Hamissa, M.F. Design, Synthesis, and Cytotoxic Evaluation of Certain 7-Chloro-4-(piperazin-1-yl)quinoline Derivatives as VEGFR-II Inhibitors. Arch. Pharm. 2017, 350, 1600377. [Google Scholar] [CrossRef]
- Ziedan, N.I.; Hamdy, R.; Cavaliere, A.; Kourti, M.; Prencipe, F.; Brancale, A.; Jones, A.T.; Westwell, A.D. Virtual screening, SAR, and discovery of 5-(indole-3-yl)-2-[(2-nitrophenyl)amino] [1,3,4]-oxadiazole as a novel Bcl-2 inhibitor. Chem. Biol. Drug Des. 2017, 90, 147–155. [Google Scholar] [CrossRef]
- Koca, I.; Özgür, A.; Er, M.; Gümüş, M.; Coşkun, K.A.; Tutar, Y. Design and synthesis of pyrimidinyl acyl thioureas as novel Hsp90 inhibitors in invasive ductal breast cancer and its bone metastasis. Eur. J. Med. Chem. 2016, 122, 280–290. [Google Scholar] [CrossRef]
- Nie, Z.; Shi, L.; Lai, C.; O’Connell, S.M.; Xu, J.; Stansfield, R.K.; Hosfield, D.J.; Veal, J.M.; Stafford, J.A. Structure-based design and discovery of potent and selective KDM5 inhibitors. Bioorganic Med. Chem. Lett. 2018, 28, 1490–1494. [Google Scholar] [CrossRef]
- Horton, J.R.; Engstrom, A.; Zoeller, E.L.; Liu, X.; Shanks, J.R.; Zhang, X.; Johns, M.A.; Vertino, P.M.; Fu, H.; Cheng, X. Characterization of a Linked Jumonji Domain of the KDM5/JARID1 Family of Histone H3 Lysine 4 Demethylases. J. Biol. Chem. 2015, 291, 2631–2646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salem, A.F.; Wang, S.; Billet, S.; Chen, J.-F.; Udompholkul, P.; Gambini, L.; Baggio, C.; Tseng, H.-R.; Posadas, E.M.; Bhowmick, N.A.; et al. Reduction of Circulating Cancer Cells and Metastases in Breast-Cancer Models by a Potent EphA2-Agonistic Peptide–Drug Conjugate. J. Med. Chem. 2018, 61, 2052–2061. [Google Scholar] [CrossRef] [PubMed]
- Gambini, L.; Salem, A.F.; Udompholkul, P.; Tan, X.-F.; Baggio, C.; Shah, N.; Aronson, A.; Song, J.; Pellecchia, M. Structure-Based Design of Novel EphA2 Agonistic Agents with Nanomolar Affinity in Vitro and in Cell. ACS Chem. Biol. 2018, 13, 2633–2644. [Google Scholar] [CrossRef]
- Cava, C.; Bertoli, G.; Castiglioni, I. In silico identification of drug target pathways in breast cancer subtypes using pathway cross-talk inhibition. J. Transl. Med. 2018, 16, 154. [Google Scholar] [CrossRef]
- Nayak, D.; Tripathi, N.; Kathuria, D.; Siddharth, S.; Nayak, A.; Bharatam, P.V.; Kundu, C.N. Quinacrine and curcumin synergistically increased the breast cancer stem cells death by inhibiting ABCG2 and modulating DNA damage repair pathway. Int. J. Biochem. Cell Biol. 2020, 119, 105682. [Google Scholar] [CrossRef]
- Minafra, L.; Porcino, N.; Bravatà, V.; Gaglio, D.; Bonanomi, M.; Amore, E.; Cammarata, F.P.; Russo, G.; Militello, C.; Savoca, G.; et al. Radiosensitizing effect of curcumin-loaded lipid nanoparticles in breast cancer cells. Sci. Rep. 2019, 9, 11134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurova, K.V.; Hill, J.E.; Guo, C.; Prokvolit, A.; Burdelya, L.G.; Samoylova, E.; Khodyakova, A.V.; Ganapathi, R.; Tararova, N.D.; Bosykh, D.; et al. Small molecules that reactivate p53 in renal cell carcinoma reveal a NF- B-dependent mechanism of p53 suppression in tumors. Proc. Natl. Acad. Sci. USA 2005, 102, 17448–17453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mqoco, T.; Stander, A.; Engelbrecht, A.-M.; Joubert, A.M. A Combination of an Antimitotic and a Bromodomain 4 Inhibitor Synergistically Inhibits the Metastatic MDA-MB-231 Breast Cancer Cell Line. BioMed Res. Int. 2019, 2019, 1850462. [Google Scholar] [CrossRef] [Green Version]
- Tang, B.; Qian, Y.; Gou, Y.; Cheng, G.; Fang, G. VE-Albumin Core-Shell Nanoparticles for Paclitaxel Delivery to Treat MDR Breast Cancer. Molecules 2018, 23, 2760. [Google Scholar] [CrossRef] [Green Version]
- Sharma, M.J.; Kumar, M.S.; Murahari, M.; Mayur, Y.C. Synthesis of novel gefitinib-based derivatives and their anticancer activity. Arch. Pharm. 2019, 352, e1800381. [Google Scholar] [CrossRef]
Drug | Target | In Silico | In Vitro | In Vivo | Clinical Trials | Original Use | Ref. |
---|---|---|---|---|---|---|---|
Ropinirole | aromatase enzyme (PDB 1 ID: 3EQM) | Docking studies | MTT 2 assay | - | - | antiparkinsonism | [19] |
15 small molecular compounds | CCL18 (PDB ID: 4MHE) | Docking studies | Cell viability, Boyden chamber, adherence assay | Tumor xenografts | - | CCL18 antagonist | [20] |
Topoisomerase inhibitor etoposide (ET) and doxorubicin (DOX) | TRAIL-DR5 (PDB ID: 4N90) | Docking, mutational and dynamics studies | MTT assay, FACS 3 | Tumor xenografts | NCT00004 906 | against a wide range of cancers | [21] |
Thionine | human serum albumin (HSA) (PDB ID:1AO6) | Dockingstudies | MTT assay and Fluorescence microscopic | - | - | against bacteria, viruses and yeasts | [24] |
2,4-diacetylphloroglucinol | Bcl-2 (PDB ID: 4AQ3), Bcl-xL (PDB ID: 2YQ6), Bcl-w (PDB ID: 2Y6W), MMP2 (PDB ID: 1HOV), MMP9 (PDB ID: 1GKC), NF-jB p65 (PDB ID: 1VKX) | Docking studies | MTT and invasion assay | - | - | antimicrobial, antiviral, and anticancer | [27] |
Drug | Target | In Silico | In Vitro | In Vivo | Clinical Trials | Mechanism of Action | Ref. |
---|---|---|---|---|---|---|---|
Pseurotin A | PCSK9 (PDB 1 ID: 4NE9, 4NMX, and 3GCW) | Docking studies | MTT 2 assay | Tumor xenografts | - | cholesterol metabolism | [34] |
Atranorin | AKT, BCL-2, BAX, BCL-W and BCL-XL (PDB ID: NA) | Docking studies | MTT assay | - | - | apoptosis | [35] |
Eugenol | β-catenin (PDB ID: 3BCT) | Docking studies | MTT assay | Tumor xenografts | - | Cancer Stem Cell | [37] |
Astragalus membranaceus | AKT (PDB ID:3QKK), BCL2 (PDB ID: 4AQ3), and PIK3CG (PDB ID: CHX) | Differential expression analysis Docking, dynamics studies | CCK-8 3, Chamber, FITC 4 assay | - | NCT03314805, NCT03634150 | apoptosis | [38] |
21 plant-derived inhibitors | human sirtuin (SIRTs 1-7). SIRT1 (PDB ID: 4I5I), SIRT2 (PDB ID: IJ8F), SIRT3 (PDB ID: 5D7N), SIRT5 (PDB ID: 2B4Y), SIRT6 (PDB ID: 3K35) and SIRT7 (PDB ID: 5IQZ) | Docking and dynamics studies | MTT, trypan blue, sirtuin, Anchorage-dependent clonogenic assay | - | - | sirtuin inhibitors | [39] |
Noscapine | human serum albumin (HSA) (PDB ID: 1AO6) | Docking and dynamics studies | MTT assay | - | - | inhibition of cell growth | [41] |
Shikonin | 27,317 human protein structures | Docking studies | calorimetry analysis and electrophoretic mobility shift assay | Tumor xenografts | - | suppression of post-transcriptional mRNA processing | [42] |
Plantamajoside | Matrix metalloproteinase 2 and 9 (PDB ID: NA) | Docking studies | CCK-8, chamber wound assay | Tumor allografts | - | inhibition of cell growth | [44] |
Flavipin | Aryl hydrocarbon receptor (Ahr) (PDB ID: 4M4X) | Docking studies | CCK-8 and Boyden chamber | - | - | cancer cell motility | [45] |
Drug | Target | In Silico | In Vitro | In Vivo | Clinical Trials | Mechanism of Action | Ref. |
---|---|---|---|---|---|---|---|
new benzimidazole derivatives | PIN1 (PDB 1: 4TYO) | Docking studies | MTT 2 and apoptosis assay | - | - | apoptosis | [46] |
Dihydroquinoline derivate, M-CNP | ALDH1A1 (PDB ID: NA) | Docking studies | MTT assay | - | - | cell viability | [48] |
Two new nickel (II) triphenylphosphine complexes | DNA (PDB ID:1Z3F), BSA (PDB ID: 4F5S) | Docking studies | CCK-8 3 assay | - | - | antioxidant activity | [49] |
Ruarene complexes | Tubulin (PDB ID: 1SA0) | Docking studies | MTT, Annexin-V/PE assays | - | - | proliferation | [50] |
5 glycyrrhetinic acid (GA) derivates | GLO-I (PDB: 4PV5) | Docking studies | cytotoxicity assay | - | - | metabolism | [52] |
1,3,5-triazine derivatives | epidermal growth factorreceptor-tyrosine kinase (EGFR-TK) (PDB ID: 1M17) | Docking studies | MTT and apoptosis assay | - | - | apoptosis | [53] |
carbazole derivatives | RAC1 (PDB ID: NA) | Docking studies | Wound healing | - | - | migration | [54] |
PTHrP(12-48) | PTH1 receptor (PDB ID: NA) | Docking studies | Immunofluorescence assays | - | NCT00051779 | activity of osteoclasts | [55] |
Certain 7-Chloro-4-(piperazin-1-yl)quinoline Derivatives | VEGFR-II (PDB ID: NA) | Docking studies | SRB 4 assay | - | - | proliferation | [57] |
Oxadiazole derivates | BCL-2 protein (PDB ID: 1YSW) | Docking studies | MTT assay | - | - | apoptosis | [58] |
novel pyrimidinyl acyl thiourea derivatives | Heat Shock Protein 90(Hsp90) (PDB ID: 1UYM) | Docking studies | XTT 5 assay | - | - | ATPase function | [59] |
crystalstructure of the linked JmjN-JmjC domain | KDM5A and KDM5B (PDB ID: NA) | Docking studies | SRB assay | - | - | cell growth | [61] |
135H11 and 135H12 | EphA2 (PDB ID: 6B9L) | Docking studies | Wound healing | - | - | migration | [63] |
Drug | Target | In Silico | In Vitro | In Vivo | Clinical Trials | Mechanism of Action | Ref. |
---|---|---|---|---|---|---|---|
Quinacrine and curcumin | ABCG2 (PDB 1 ID: NA) | Docking studies | MTT 2 assay | - | - | DNA damage and repair | [65] |
ITH-47 and ESE-15-ol | bromodomain-containing protein 4 32(BRD4) (PDB ID: NA) | Docking and dynamics Studies | Annexin V-FITC 3 and caspase activation assays | - | - | apoptosis | [68] |
Vitamin E and Paclitaxel | Bovine serum albumin: (PDB ID: 4OR0) | Docking studies | MTT assay | Tumor xenografts | - | proliferation | [69] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cava, C.; Castiglioni, I. Integration of Molecular Docking and In Vitro Studies: A Powerful Approach for Drug Discovery in Breast Cancer. Appl. Sci. 2020, 10, 6981. https://doi.org/10.3390/app10196981
Cava C, Castiglioni I. Integration of Molecular Docking and In Vitro Studies: A Powerful Approach for Drug Discovery in Breast Cancer. Applied Sciences. 2020; 10(19):6981. https://doi.org/10.3390/app10196981
Chicago/Turabian StyleCava, Claudia, and Isabella Castiglioni. 2020. "Integration of Molecular Docking and In Vitro Studies: A Powerful Approach for Drug Discovery in Breast Cancer" Applied Sciences 10, no. 19: 6981. https://doi.org/10.3390/app10196981
APA StyleCava, C., & Castiglioni, I. (2020). Integration of Molecular Docking and In Vitro Studies: A Powerful Approach for Drug Discovery in Breast Cancer. Applied Sciences, 10(19), 6981. https://doi.org/10.3390/app10196981