Recent Advances in Laser-Induced Surface Damage of KH2PO4 Crystal
Abstract
:1. Introduction
2. Mechanism of Pulsed Laser-Induced Surface Damage
2.1. Near Surface Impurity Thermal Absorption Damage
2.2. Ionization Damage
2.2.1. Photoionization
2.2.2. Avalanche Ionization
3. Exploration of the Initial Energy Deposition
3.1. The Formation and Evolution of Plasma
3.1.1. Irradiation of Ultra-Short Pulse Laser
3.1.2. Irradiation of Short Pulse Laser
3.2. Effects of Surface Defects on Initial Energy Deposition of KDP Crystal
4. Simulation and Experimental Exploration of Laser-Induced Damage Behavior in the Later Stage
4.1. Exploration of Transient Behavior at the Initiation of Damage
4.2. Morphological Characteristics of Laser-Induced Damage in the Later Stage
4.3. Outlook of the Prediction of Damage Threshold
5. Summary and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Betti, R.; Hurricane, O.A. Inertial-confinement fusion with lasers. Nat. Phys. 2016, 12, 435–448. [Google Scholar] [CrossRef]
- Manes, K.R.; Spaeth, M.L.; Adams, J.J.; Bowers, M.W.; Bude, J.D.; Carr, C.W.; Conder, A.D.; Cross, D.A.; Demos, S.G.; Di Nicola, J.M.G.; et al. Damage Mechanisms Avoided or Managed for NIF Large Optics. Fusion Sci. Technol. 2016, 69, 146–249. [Google Scholar] [CrossRef]
- Moses, E.I.; Lindl, J.D.; Spaeth, M.L.; Patterson, R.W.; Sawicki, R.H.; Atherton, L.J.; Baisden, P.A.; Lagin, L.J.; Larson, D.W.; MacGowan, B.J.; et al. Overview: Development of the national ignition facility and the transition to a user facility for the ignition campaign and high energy density scientific research. Fusion Sci. Technol. 2016, 69, 1–24. [Google Scholar] [CrossRef]
- Huang, J.; Wu, Z.; Wang, F.; Liu, H.; Sun, L.; Zhou, X.; Ye, X.; Deng, Q.; Jiang, X.; Zheng, W.; et al. Initial Damage and Damage Growth of KDP Crystals Induced by 355 nm Pulse Laser. Cryst. Res. Technol. 2018, 53, 1700269. [Google Scholar] [CrossRef]
- Hou, N.; Zhang, L.; Zhang, Y.; Zhang, F. On the Ultra-Precision Fabrication of Damage-Free Optical KDP Components: Mechanisms and Problems. Crit. Rev. Solid State Mater. Sci. 2019, 44, 283–297. [Google Scholar]
- Hurricane, O.A.; Callahan, D.A.; Casey, D.T.; Celliers, P.M.; Cerjan, C.; Dewald, E.L.; Dittrich, T.R.; Döppner, T.; Hinkel, D.E.; Hopkins, L.F.B.; et al. Fuel gain exceeding unity in an inertially confined fusion implosion. Nature 2014, 506, 343–348. [Google Scholar] [CrossRef]
- Gopalaswamy, V.; Betti, R.; Knauer, J.P.; Luciani, N.; Patel, D.; Woo, K.M.; Bose, A.; Igumenshchev, I.V.; Campbell, E.M.; Anderson, K.S.; et al. Tripled yield in direct-drive laser fusion through statistical modelling. Nature 2019, 565, 581–586. [Google Scholar] [CrossRef]
- Shcheblanov, N.S.; Itina, T.E. Femtosecond laser interactions with dielectric materials: Insights of a detailed modeling of electronic excitation and relaxation processes. Appl. Phys. A 2013, 110, 579–583. [Google Scholar] [CrossRef]
- Pritula, I.; Kolybayeva, M.; Salo, V.; Puzikov, V. Defects of large-size KDP single crystals and their influence on degradation of the optical properties. Opt. Mater. 2007, 30, 98–100. [Google Scholar] [CrossRef]
- Liu, H.J.; Huang, J.; Wang, F.R.; Zhou, X.D.; Ye, X.; Zhou, X.Y.; Sun, L.X.; Jiang, X.D.; Sun, Z.; Zheng, W.G. Subsurface defects of fused silica optics and laser induced damage at 351 nm. Opt. Express 2013, 21, 12204–12217. [Google Scholar]
- Lapointe, J.; Bérubé, J.-P.; Ledemi, Y.; Dupont, A.; Fortin, V.; Messaddeq, Y.; Vallée, R. Nonlinear increase, invisibility, and sign inversion of a localized fs-laser-induced refractive index change in crystals and glasses. Light Sci. Appl. 2020, 9, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duchateau, G. Simple models for laser-induced damage and conditioning of potassium dihydrogen phosphate crystals by nanosecond pulses. Opt. Express 2009, 17, 10434–10456. [Google Scholar] [CrossRef] [PubMed]
- De Yoreo, J.J.; Burnham, A.K.; Whitman, P.K. Developing KH2PO 4 and KD2PO 4 crystals for the world’s most power laser. Int. Mater. Rev. 2002, 47, 113–152. [Google Scholar] [CrossRef]
- Demos, S.G.; Negres, R.A.; Raman, R.N.; Rubenchik, A.M.; Feit, M.D. Material response during nanosecond laser induced breakdown inside of the exit surface of fused silica. Laser Photon. Rev. 2013, 7, 444–452. [Google Scholar] [CrossRef]
- Huang, J.; Liu, H.; Wang, F.; Ye, X.; Sun, L.; Zhou, X.; Wu, Z.; Jiang, X.; Zheng, W.; Sun, D. Influence of bulk defects on bulk damage performance of fused silica optics at 355 nm nanosecond pulse laser. Opt. Express 2017, 25, 33416–33428. [Google Scholar] [CrossRef]
- Reyne, S.; Duchateau, G.; Hallo, L.; Natoli, J.Y.; Lamaignere, L. Multi-wavelength study of nanosecond laser-induced bulk damage morphology in KDP crystals. Appl. Phys. A 2015, 119, 1317–1326. [Google Scholar] [CrossRef]
- Tian, Y.; Han, W.; Cao, H.B.; Li, F.Q.; Feng, B.; Zhao, J.P.; Zheng, K.X.; Zhu, Q.H.; Zheng, W.G. Characteristics of Laser-Induced Surface Damage on Large-Aperture KDP Crystals at 351 nm. Chin. Phys. Lett. 2015, 32, 027801. [Google Scholar] [CrossRef]
- Cheng, J.; Chen, M.; Liao, W.; Wang, H.; Wang, J.; Xiao, Y.; Li, M. Influence of surface cracks on laser-induced damage resistance of brittle KH2PO4 crystal. Opt. Express 2014, 22, 28740–28755. [Google Scholar] [CrossRef]
- Bude, J.; Miller, P.; Baxamusa, S.; Shen, N.; Laurence, T.; Steele, W.; Suratwala, T.; Wong, L.; Carr, W.; Cross, D.; et al. High fluence laser damage precursors and their mitigation in fused silica. Opt. Express 2014, 22, 5839–5851. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Xu, Q.; Lei, X.; Liu, Z.; Zhang, J. Influences of surface defects on the laser-induced damage performances of KDP crystal. Appl. Opt. 2018, 57, 2638–2646. [Google Scholar] [CrossRef]
- Ogorodnikov, I.N.; Yakovlev, V.; Shul’Gin, B.V.; Satybaldieva, M.K. Transient optical absorption of hole polarons in ADP (NH4H2PO4) and KDP (KH2PO4) crystals. Phys. Solid State 2002, 44, 880–887. [Google Scholar] [CrossRef]
- Guo, D.C.; Jiang, X.; Huang, J.; Wang, F.R.; Liu, H.J.; Xiang, X.; Yang, G.X.; Zheng, W.G.; Zu, X. Effects of γ-ray irradiation on optical absorption and laser damage performance of KDP crystals containing arsenic impurities. Opt. Express 2014, 22, 29020–29030. [Google Scholar] [CrossRef] [PubMed]
- Guillet, F.; Bertussi, B.; Lamaignere, L.; Leborgne, X.; Minot, B. Preliminary results on mitigation of KDP surface damage using the ball dimpling method. In Proceedings of the Boulder Damage Symposium XXXIX: Annual Symposium on Optical Materials for High Power Lasers, Boulder, CO, USA, 18 December 2007; Volume 6720, p. 672008. [Google Scholar]
- Chen, L.Z.; Xiang, Z.; Jing, C.Y. Simulation study on the influence of subsurface deficiency on fused silica laser damage threshold. In SPIE/SIOM Pacific Rim Laser Damage: Optical Materials for High-Power Lasers; Shanghai, China, 9 July 2013, SPIE Press: Bellingham, WA, USA; Volume 8786.
- Keldysh, L.V. Ionization in the field of a strong electromagnetic wave. Sov. Phys. JETP. 1965, 20, 1307–1314. [Google Scholar]
- Sparks, M.S.; Duthler, C.J. Theoretical Studies of High-Power Ultraviolet and Infrared Materials; Xonics Inc.: Van Nuys, CA, USA, 1974; pp. 78–114. [Google Scholar]
- Jing, X.; Shao, J.; Zhang, J.; Jin, Y.; He, H.; Fan, Z. Calculation of femtosecond pulse laser induced damage threshold for broadband antireflective microstructure arrays. Opt. Express 2009, 17, 24137–24152. [Google Scholar] [CrossRef] [PubMed]
- Feit, M.D.; Rubenchik, A.M. Laser intensity modulation by nonabsorbing defects. In Proceedings of the 28th Annual Symposium on Optical Materials for High Power Lasers—Boulder Damage Symposium, Boulder, CO, USA, 7–9 October 1997; Volume 2966, pp. 475–480. [Google Scholar]
- Cheng, J. Effect of Surface Micro-Defects and Their Repairing on Laser Damage Resistance of KDP Crystal. Ph.D. Thesis, Harbin Institute of Technology, Harbin, China, 2016. [Google Scholar]
- Chen, M.J.; Chen, K.N.; Li, M.Q. FDTD analysis of the effect of micro-waviness on near-field light intensity distribution in KDP crystal. Opto-Electron. Eng. 2010, 37, 19–23. [Google Scholar]
- Manenkov, A.A. Fundamental mechanisms of laser-induced damage in optical materials: Today’s state of understanding and problems. Opt. Eng. 2014, 53, 10901. [Google Scholar] [CrossRef]
- Jing, X.; Tian, Y.; Zhang, J.; Chen, S.L.; Jin, Y.; Shao, J.; Fan, Z. Modeling validity of femtosecond laser breakdown in wide bandgap dielectrics. Appl. Surf. Sci. 2012, 258, 4741–4749. [Google Scholar] [CrossRef]
- Stuart, B.C.; Feit, M.D.; Herman, S.; Rubenchik, A.M.; Shore, B.W.; Perry, M. Optical ablation by high-power short-pulse lasers. J. Opt. Soc. Am. B Opt. Phys. 1996, 13, 459–468. [Google Scholar] [CrossRef] [Green Version]
- Miki, H.; Fukunaga, R.; Asakuma, Y.; Maeda, K.; Fukui, K. Distribution of dye into KDP crystals in a continuous MSMPR crystallizer. Sep. Purif. Technol. 2005, 43, 77–83. [Google Scholar] [CrossRef]
- Chen, M.J.; Pang, Q.L.; Liu, X.Y. Finite element analysis on influence of micro-nano machined surface impurity on optical performance. High Power Laser Part. Beams 2008, 20, 1182–1186. [Google Scholar]
- Hirota, S.; Miki, H.; Fukui, K.; Maeda, K. Coloring and habit modification of dyed KDP crystals as functions of supersaturation and dye concentration. J. Cryst. Growth 2002, 235, 541–546. [Google Scholar] [CrossRef]
- Jing, C.; Guo, X.; Zhang, T.; Chen, L. Analysing the Influence of Subsurface Impurity on Laser-induced Damage Threshold of KDP Crystal. In Proceedings of the 2016 4th International Conference on Machinery, Materials and Information Technology Applications, Xi’an, China, 10–11 December 2016; pp. 45–50. [Google Scholar]
- Koldunov, M.F.; Manenkov, A.A. Theory of laser-induced inclusion-initiated damage in optical materials. Opt. Eng. 2012, 51, 121811. [Google Scholar] [CrossRef]
- Manenkov, A.A. Fundamental mechanisms of laser-induced damage in optical materials: Understanding after 40 years of research. In Proceedings of Boulder Damage Symposium XL Annual Symposium on Optical Materials for High Power Lasers, Boulder, CO, USA, 30 December 2008; Volume 7132, p. 713202. [Google Scholar]
- Rong, Q.; Yong, J.; Decheng, G.; Jinfang, S.; Cui, L.; Cheng, Y.; Qiang, Z.; Wei, H.; Jin, H. Laser-induced damage in fused silica under multi-wavelength simultaneous laser irradiation. High Power Laser Part. Beams 2020, 32, 66–70. [Google Scholar]
- Zhao, L.; Cheng, J.; Chen, M.; Yuan, X.; Liao, W.; Wang, H.; Liu, Q.; Yang, H. Toward little heat-affected area of fused silica materials using short pulse and high power CO2 laser. Results Phys. 2019, 12, 1363–1371. [Google Scholar] [CrossRef]
- Mu, X.M.; Wang, B.; Wang, S.L.; Xu, X.; Sun, X.; Gu, Q.T. Effect of Ca2+ on the damage threshold of KDP single crystals. J. Synth. Cryst. 2008, 37, 1097–1116. [Google Scholar]
- Bercegol, H.; Bonneau, F.; Bouchut, P.; Combis, P.; Gallais, L.; Lamaignère, L.; Natoli, J.-Y.; Rullier, J.-L.; Vierne, J. Comparison of numerical simulations with experiment on generation of craters in silica by a laser. In Laser-Induced Damage in Optical Materials: Proceedings of the 2002 and 7th International Workshop on Laser Beam and Optics Characterization, Boulder, CO, USA, 30 May 2003; SPIE Press: Bellingham, WA, USA, 2003; Volume 4932, pp. 297–308. [Google Scholar]
- Carr, C.W.; Bude, J.; Demange, P. Laser-supported solid-state absorption fronts in silica. Phys. Rev. B 2010, 82, 184304. [Google Scholar] [CrossRef] [Green Version]
- Koldunov, M.F.; Manenkov, A.A.; Pocotilo, I.L. Multishot Laser Damage in Transparent Solids: Theory of Accumulation Effect. In Proceedings of the 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials, Boulder, CO, USA, 14 July 1995; Volume 2428, pp. 653–667. [Google Scholar]
- Balling, P.; Schou, J. Femtosecond-laser ablation dynamics of dielectrics: Basics and applications for thin films. Rep. Prog. Phys. 2013, 76, 036502. [Google Scholar] [CrossRef]
- Carr, C.W.; Radousky, H.B.; Rubenchik, A.M.; Feit, M.; Demos, S.G. Localized Dynamics during Laser-Induced Damage in Optical Materials. Phys. Rev. Lett. 2004, 92, 87401. [Google Scholar] [CrossRef] [PubMed]
- Carr, C.W.; Feit, M.D.; Rubenchik, A.M.; De Mange, P.; Kucheyev, S.O.; Shirk, M.D.; Radousky, H.B.; Demos, S.G. Radiation produced by femtosecond laser–plasma interaction during dielectric breakdown. Opt. Lett. 2005, 30, 661–663. [Google Scholar] [CrossRef]
- Carr, C.W.; Radousky, H.B.; Demos, S.G. Wavelength Dependence of Laser-Induced Damage: Determining the Damage Initiation Mechanisms. Phys. Rev. Lett. 2003, 91, 127402. [Google Scholar] [CrossRef]
- Mevel, E.; Breger, P.; Trainham, R.; Petite, G.; Agostini, P.; Migus, A.; Chambaret, J.-P.; Antonetti, A. Atoms in strong optical fields: Evolution from multiphoton to tunnel ionization. Phys. Rev. Lett. 1993, 70, 406–409. [Google Scholar] [CrossRef] [PubMed]
- Rethfeld, B. Free-Electron Generation in Laser-Irradiated Dielectrics. Contrib. Plasma Phys. 2007, 47, 360–367. [Google Scholar] [CrossRef]
- Schaffer, C.B.; Brodeur, A.; Mazur, E. Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses. Meas. Sci. Technol. 2001, 12, 1784–1794. [Google Scholar] [CrossRef]
- Walser, A.D.; Bouselhami, A.; Yan, M.; Dorsinville, R. Nonlinear Optical Absorption and Refraction in Optical Crystals at 355 Nm. In Proceedings of SPIE’s International Symposium on Optical Science, Engineering, and Instrumentation, Denver, CO, USA, 28 June 1999; Volume 3793, pp. 157–162. [Google Scholar]
- Demos, S.G.; Demange, P.; Negres, R.A.; Feit, M.D. Investigation of the electronic and physical properties of defect structures responsible for laser-induced damage in DKDP crystals. Opt. Express 2010, 18, 13788–13804. [Google Scholar] [CrossRef] [Green Version]
- Vaidyanathan, A.; Walker, T.; Guenther, A. The relative roles of avalanche multiplication and multiphoton absorption in laser-induced damage of dielectrics. IEEE J. Quantum Electron. 1980, 16, 89–93. [Google Scholar] [CrossRef]
- Starke, K.; Ristau, D.; Welling, H.; Amotchkina, T.V.; Trubetskov, M.; Tikhonravov, A.A.; Chirkin, A.S. Investigations in the Nonlinear Behavior of Dielectrics by Using Ultrashort Pulses (Best Oral Presentation). In Proceedings of the XXXV Annual Symposium on Optical Materials for High Power Lasers: Boulder Damage Symposium, Boulder, CO, USA, 10 June 2004; Volume 5273, pp. 501–514. [Google Scholar]
- Papernov, S.; Schmid, A.W. Laser-Induced Surface Damage of Optical Materials: Absorption Sources, Initiation, Growth, and Mitigation. In Proceedings of Boulder Damage Symposium XL Annual Symposium on Optical Materials for High Power Lasers, Coulder, CO, USA, 30 December 2008; Volume 7132, p. 71321J. [Google Scholar]
- Thornber, K.K. Applications of scaling to problems in high-field electronic transport. J. Appl. Phys. 1981, 52, 279–290. [Google Scholar] [CrossRef]
- Shang, X.; Zhang, R.; Ma, P. Analysis of avalanche mechanisms in short-pulses laser-induced damage. Opt. Laser Technol. 2010, 42, 243–246. [Google Scholar] [CrossRef]
- Stuart, B.C.; Feit, M.D.; Herman, S.; Rubenchik, A.M.; Shore, B.W.; Perry, M.D. Nanosecond-to-femtosecond laser-induced breakdown in dielectrics. Phys. Rev. B 1996, 53, 1749–1761. [Google Scholar] [CrossRef] [Green Version]
- Stuart, B.C.; Feit, M.D.; Rubenchik, A.M.; Shore, B.W.; Perry, M.D. Laser-Induced Damage in Dielectrics with Nanosecond-to-Subpicosecond Pulses. In Proceedings of the Conference on Lasers and Electro-Optics, Baltimore, MD, USA, 21–26 May 1995; p. CFD2. [Google Scholar]
- Tan, D.; Sharafudeen, K.N.; Yue, Y.; Qiu, J. Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications. Prog. Mater. Sci. 2016, 76, 154–228. [Google Scholar] [CrossRef]
- Schaffer, C.B.; Nishimura, N.; Glezer, E.N.; Kim, A.M.-T.; Mazur, E. Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds. Opt. Express 2002, 10, 196–203. [Google Scholar] [CrossRef]
- Sakakura, M.; Terazima, M. Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass. Phys. Rev. B 2005, 71, 024113. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Chen, M.; Kafka, K.; Austin, D.; Wang, J.; Xiao, Y.; Chowdhury, E.A. Determination of ultra-short laser induced damage threshold of KH2PO4crystal: Numerical calculation and experimental verification. AIP Adv. 2016, 6, 035221. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Pan, C.; Sun, J.; Wang, Q.; Guo, L.; Jiang, L. Direct observation of structure-assisted filament splitting during ultrafast multiple-pulse laser ablation. Opt. Express 2019, 27, 10050–10057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rayner, D.M.; Naumov, A.; Corkum, P.B. Ultrashort pulse non-linear optical absorption in transparent media. Opt. Express 2005, 13, 3208–3217. [Google Scholar] [CrossRef] [PubMed]
- Kandala, R.; Candler, G.V. Numerical Studies of Laser-Induced Energy Deposition for Supersonic Flow Control. AIAA J. 2004, 42, 2266–2275. [Google Scholar] [CrossRef]
- Liu, Z.; Geng, F.; Wang, X.; Li, Y.; Zheng, Y.; Lei, X.; Wang, J.; Xu, Q. The early transient dynamics reaction of KDP surface during nanosecond laser breakdown. AIP Adv. 2019, 9, 035002. [Google Scholar] [CrossRef] [Green Version]
- Bonneau, F.; Cazalis, B. Theoretical Model for Laser Energy Deposition in Intrinsic Optical Materials and Thermomechanical Effects. In Proceedings of the 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials, Boulder, CO, USA, 27 May 1996; Volume 2714, pp. 650–659. [Google Scholar]
- Reyne, S.; Duchateau, G.; Natoli, J.Y.; Lamaignère, L. Competition between ultraviolet and infrared nanosecond laser pulses during the optical breakdown of KH2PO4 crystals. Appl. Phys. B. 2012, 109, 695–706. [Google Scholar] [CrossRef]
- Xie, J.D. Research on Shock Wave and Ejection Behavior during Laser Damage on the Back Surface of KDP Crystal Component. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2018. [Google Scholar]
- Xiao, Y.; Chen, M.J.; Yang, Y.T.; Cheng, J. Research on the critical condition of Brittle-Ductile Transition about Micro-Milling of KDP crystal and experimental verification. Int. J. Precis. Eng. Man. 2015, 16, 351–359. [Google Scholar] [CrossRef]
- Wang, S.; An, C.; Zhang, F.; Wang, J.; Lei, X.; Zhang, J. An experimental and theoretical investigation on the brittle ductile transition and cutting force anisotropy in cutting KDP crystal. Int. J. Mach. Tools Manuf. 2016, 106, 98–108. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, J.; Geng, F.; Zhou, X.; Feng, S.; Ren, D.; Cheng, X.-L.; Jiang, X.; Wu, W.; Zheng, W.; et al. Fluorescence and Raman spectra on surface of K9 glass by high fluence ultraviolet laser irradiation at 355nm. Opt. Commun. 2013, 308, 91–94. [Google Scholar] [CrossRef]
- Chen, M.; Cheng, J.; Li, M.-Q.; Xiao, Y. Study of modulation property to incident laser by surface micro-defects on KH 2 PO 4 crystal. Chin. Phys. B 2012, 21, 64212. [Google Scholar] [CrossRef]
- Duchateau, G.; Feit, M.D.; Demos, S.G. Strong nonlinear growth of energy coupling during laser irradiation of transparent dielectrics and its significance for laser induced damage. J. Appl. Phys. 2012, 111, 93106. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Yang, H.; Liu, Q.; Zhao, L.; Liu, Z.; Liu, H.; Wang, T.; Xiao, Y.; Hu, K.; Chen, M.; et al. Characterization of manufacturing-induced surface scratches and their effect on laser damage resistance performance of diamond fly-cut KDP crystal. Results Phys. 2019, 15, 102753. [Google Scholar] [CrossRef]
- Zhu, D.; Li, Y.; Zhang, Q.; Wang, J.; Xu, Q. Laser induced damage due to scratches in the surface of nonlinear optical crystals KH2PO4 (KDP). J. Eur. Opt. Soc. Rapid Publ. 2017, 13, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Cheng, J.; Chen, M.; Wang, J.; Liu, Z.; An, C.; Zheng, Y.; Hu, K.; Liu, Q. Optimization of morphological parameters for mitigation pits on rear KDP surface: Experiments and numerical modeling. Opt. Express 2017, 25, 18332–18345. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Liu, M.; Zhang, F.; Mylvaganam, K.; Liu, W. Revealing the mechanical properties of potassium dihydrogen phosphate crystals by nanoindentation. J. Mater. Res. 2016, 31, 1056–1064. [Google Scholar] [CrossRef]
- Wang, J.H.; Chen, M.J.; Dong, S.; Wang, H.; Zong, W.J.; Zhang, J. Critical Cutting Condition for Brittle-Ductile Transition of KDP Crystals in Ultra-Precision Machining. Key Eng. Mater. 2007, 329, 409–414. [Google Scholar] [CrossRef]
- Pan, C.; Jiang, L.; Sun, J.; Wang, Q.; Wang, F.; Lu, Y. The temporal-spatial evolution of electron dynamics induced by femtosecond double pulses. Jpn. J. Appl. Phys. 2019, 58, 030901. [Google Scholar] [CrossRef] [Green Version]
- Guo, B.; Sun, J.; Lu, Y.; Jiang, L. Ultrafast dynamics observation during femtosecond laser-material interaction. Int. J. Extreme Manuf. 2019, 1, 032004. [Google Scholar] [CrossRef] [Green Version]
- Ferrer, A.; De La Cruz, A.R.; Puerto, D.; Gawelda, W.; Valles, J.A.; Rebolledo, M.A.; Berdejo, V.; Siegel, J.; Solis, J. In situ assessment and minimization of nonlinear propagation effects for femtosecond-laser waveguide writing in dielectrics. J. Opt. Soc. Am. B 2010, 27, 1688–1692. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Wang, P.; Wang, X.; Zhai, H.-C.; Zhang, N. Generation of multiple stress waves in silica glass in high fluence femtosecond laser ablation. Appl. Phys. Lett. 2010, 97, 61117. [Google Scholar] [CrossRef]
- Dai, W.; Xiang, X.; Jiang, Y.; Wang, H.; Li, X.; Yuan, X.; Zheng, W.; Lv, H.; Zu, X. Surface evolution and laser damage resistance of CO2 laser irradiated area of fused silica. Opt. Lasers Eng. 2011, 49, 273–280. [Google Scholar] [CrossRef]
- Yang, H.; Cheng, J.; Liu, Z.; Liu, Q.; Zhao, L.; Wang, J.; Chen, M. Dynamic behavior modeling of laser-induced damage initiated by surface defects on KDP crystals under nanosecond laser irradiation. Sci. Rep. 2020, 10, 500. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Cheng, J.; Liu, Z.; Liu, Q.; Zhao, L.; Wang, J.; Chen, M. Transient Dynamic Behavior during Nanosecond Laser-Induced Damage Initiated by Surface Defects on KDP Crystals with Simulation and Experimental Method. In Proceedings of Pacific Rim Laser Damage 2019: Optical Materials for High-Power Lasers, Qingdao, China, 8 July 2019; Volume 11063, p. 110630K. [Google Scholar]
- Wang, S.; Wang, J.; Lei, X.; Liu, Z.; Zhang, J.; Xu, Q. Simulation of the nanosecond-pulse laser damage of KDP surface by the smoothed particle hydrodynamics method. Opt. Lett. 2019, 44, 5338–5341. [Google Scholar] [CrossRef] [PubMed]
- Demos, S.G.; Negres, R.A. Morphology of ejected particles and impact sites on intercepting substrates following exit-surface laser damage with nanosecond pulses in silica. Opt. Eng. 2016, 56, 11016. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Lei, X.; Wang, J.; Liu, Z.; Zhang, J.; Xu, Q. Equivalent Explosion Simulation Model for Studying the Laser-Induced Damage Process of KDP Crystal. In Proceedings of Pacific Rim Laser Damage 2019: Optical Materials for High-Power Lasers, Qingdao, China, 8 July 2019; Volume 11063, p. 110630W. [Google Scholar]
- Wang, S.; Wang, J.; Lei, X.; Liu, Z.; Zhang, J.; Xu, Q. Investigation of the laser-induced surface damage of KDP crystal by explosion simulation. Opt. Express 2019, 27, 15142–15158. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Mao, X.; Wen, S.-B.; Greif, R.; Russo, R.E. Energy deposition and shock wave propagation during pulsed laser ablation in fused silica cavities. J. Phys. D Appl. Phys. 2004, 37, 1132–1136. [Google Scholar] [CrossRef]
- Demos, S.G.; Negres, R.A.; Raman, R.N.; Rubenchik, A.M.; Feit, M.D. Comparison of material response in fused silica and KDP following exit surface laser- induced breakdown. In Proceedings of the 45th Annual Laser Damage Symposium Proceedings—Laser-Induced Damage in Optical Materials, Boulder, CO, USA, 14 November 2013; Volume 8885. [Google Scholar]
- Dowden, J.; Schulz, W. The Theory of Laser Materials Processing. Heat and Mass Transfer in Modern Technology; Springer Netherlands: Dordrecht, The Netherlands, 2009; pp. 95–128. [Google Scholar]
- Yang, S.T.; Matthews, M.J.; Elhadj, S.; Cooke, D.; Guss, G.M.; Draggoo, V.G.; Wegner, P.J. Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica. Appl. Opt. 2010, 49, 2606–2616. [Google Scholar] [CrossRef]
- Wang, D.; Shen, C.; Lan, J.; Huang, P.; Cui, Z.; Kang, T.; Niu, Y.; Wang, S.; Wang, J.; Boughton, R.I. Exploration of the correlation between weak absorption and thermal-stress for KDP and 70%-DKDP crystals. J. Alloy. Compd. 2019, 790, 212–220. [Google Scholar] [CrossRef]
- Su, R.; Liu, H.; Liang, Y.; Yu, F. Residual thermal stress of a mounted KDP crystal after cooling and its effects on second harmonic generation of a high-average-power laser. Opt. Laser Technol. 2017, 87, 43–50. [Google Scholar] [CrossRef]
- Deng, L.M.; Duan, J.; Zeng, X.Y.; Huang, S.; Yang, H. A Study Simulation on Transmission Characteristics of Focused Laser inside KDP Crystal. In Synthesis and Photonics of Nanoscale Materials X, Proceedings of the Laser and Tera-Hertz Science and Technology 2012; San Francisco, CA, USA, 15 March 2013, SPIE Press: Bellingham, WA, USA; Volume 8609, p. 86090.
- Deng, L.; Liu, P.; Duan, J.; Zeng, X.; Wu, B.; Wang, X. Numerical simulation of laser focusing properties inside birefringent crystal. Appl. Opt. 2016, 55, 853–860. [Google Scholar] [CrossRef] [PubMed]
- Li, S.X.; Zhang, Z.P.; Chen, D.L.; Qin, S.J. Study on the micro cavities in the bulk of fused silica produced by picosecond laser-induced microexplosion. Laser Infrared 2019, 49, 808–812. [Google Scholar]
- Liu, Z.; Geng, F.; Li, Y.; Cheng, J.; Yang, H.; Zheng, Y.; Wang, J.; Xu, Q. Study of morphological feature and mechanism of potassium dihydrogen phosphate surface damage under a 351 nm nanosecond laser. Appl. Opt. 2018, 57, 10334–10341. [Google Scholar] [CrossRef] [PubMed]
- Hou, N.; Zhang, Y.; Zhang, L.; Zhang, F. Assessing microstructure changes in potassium dihydrogen phosphate crystals induced by mechanical stresses. Scr. Mater. 2016, 113, 48–50. [Google Scholar] [CrossRef]
- Chen, M.-J.; Cheng, J.; Yuan, X.-D.; Liao, W.; Wang, H.-J.; Wang, J.-H.; Xiao, Y.; Li, M.-Q. Role of tool marks inside spherical mitigation pit fabricated by micro-milling on repairing quality of damaged KH2PO4 crystal. Sci. Rep. 2015, 5, 14422. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Cheng, J.; Xiao, Y.; Chen, M.; Yang, H.; Wang, J. Effect of tool inclination on surface quality of KDP crystal processed by micro ball-end milling. Int. J. Adv. Manuf. Technol. 2018, 99, 2777–2788. [Google Scholar] [CrossRef]
- Liu, Q.; Cheng, J.; Yang, H.; Xu, Y.; Zhao, L.; Tan, C.; Chen, M. Modeling of residual tool mark formation and its influence on the optical performance of KH2PO4 optics repaired by micro-milling. Opt. Mater. Express 2019, 9, 3789–3807. [Google Scholar] [CrossRef]
- Liu, Q.; Liao, Z.; Axinte, D. Temperature effect on the material removal mechanism of soft-brittle crystals at nano/micron scale. Int. J. Mach. Tools Manuf. 2020, 103620. [Google Scholar] [CrossRef]
- Cheng, J.; Xiao, Y.; Liu, Q.; Yang, H.; Zhao, L.; Chen, M.; Tan, J.; Liao, W.; Chen, J.; Yuan, X. Effect of surface scallop tool marks generated in micro-milling repairing process on the optical performance of potassium dihydrogen phosphate crystal. Mater. Des. 2018, 157, 447–456. [Google Scholar] [CrossRef]
- Liu, Q.; Cheng, J.; Liao, Z.; Yang, H.; Zhao, L.; Chen, M. Incident laser modulation by tool marks on micro-milled KDP crystal surface: Numerical simulation and experimental verification. Opt. Laser Technol. 2019, 119, 105610. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.; Ding, W.; Cheng, J.; Yang, H.; Liu, Q. Recent Advances in Laser-Induced Surface Damage of KH2PO4 Crystal. Appl. Sci. 2020, 10, 6642. https://doi.org/10.3390/app10196642
Chen M, Ding W, Cheng J, Yang H, Liu Q. Recent Advances in Laser-Induced Surface Damage of KH2PO4 Crystal. Applied Sciences. 2020; 10(19):6642. https://doi.org/10.3390/app10196642
Chicago/Turabian StyleChen, Mingjun, Wenyu Ding, Jian Cheng, Hao Yang, and Qi Liu. 2020. "Recent Advances in Laser-Induced Surface Damage of KH2PO4 Crystal" Applied Sciences 10, no. 19: 6642. https://doi.org/10.3390/app10196642
APA StyleChen, M., Ding, W., Cheng, J., Yang, H., & Liu, Q. (2020). Recent Advances in Laser-Induced Surface Damage of KH2PO4 Crystal. Applied Sciences, 10(19), 6642. https://doi.org/10.3390/app10196642