Biocidal Activity of Phyto-Derivative Products Used on Phototrophic Biofilms Growing on Stone Surfaces of the Domus Aurea in Rome (Italy)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Site
2.2. Sampling of Biofilms and Microscopy Observations
2.3. Heterotrophic Microorganisms
2.4. Laboratory Treatments with Phyto-Derivatives
2.5. In Situ Application of Phyto-Derivatives
2.6. Photosynthetic Parameters
3. Results and Discussions
3.1. Macro and Micro-Environmental Conditions
3.2. Biofilm Characterization
3.3. Associated Heterotrophic Microorganisms
3.4. Effects of Phyto-Derivatives Treatments
3.5. In Situ Treatments
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Albertano, P.; Moscone, D.; Palleschi, G.; Hermosín, B.; Saiz-Jimenez, C.; Sanchez-Moral, S.; Hernández-Mariné, M.; Urzì, C.; Groth, I.; Schroeckh, V.; et al. Cyanobacteria attack rocks (CATS): Control and preventive strategies to avoid damage caused by cyanobacteriaand associated microorganisms in Roman hypogean monuments. In Molecular Biology and Cultural Heritage; Saiz-Jimenez, C., Ed.; Balkema: Amsterdam, The Netherlands, 2003; pp. 151–162. [Google Scholar]
- Bruno, L.; Valle, V. Effect of white and monochromatic lights on cyanobacteria and biofilms from Roman Catacombs. Int. Biodeterior. Biodegrad. 2017, 123, 286–295. [Google Scholar] [CrossRef]
- Mulec, J.; Kosi, G. Lampenflora algae and methods of growth control. J. Cave Karst Stud. 2009, 71, 109–115. [Google Scholar]
- Albertano, P. Cyanobacterial biofilms in monuments and caves. In Ecology of Cyanobacteria II: Their Diversity in Space and Time; Whitton, B.A., Ed.; Springer: Amsterdam, The Netherlands, 2012; pp. 317–343. [Google Scholar]
- Urzì, C.; Bruno, L.; De Leo, F. Biodeterioration of paintings in caves, catacombs and other hypogean sites. In Art, Archaeology and Architecture; Mitchell, R., Clifford, J., Eds.; Archetype Publications Ltd.: London, UK, 2018; pp. 114–129. [Google Scholar]
- Gaylarde, C.; Baptista-Neto, J.A.; Ogawa, A.; Kowalski, M.; Celikkol-Aydin, S.; Beech, I. Epilithic and endolithic microorganisms and deterioration on stone church facades subject to urban pollution in a sub-tropical climate. Biofouling 2017, 33, 113–127. [Google Scholar] [CrossRef] [PubMed]
- Nugari, M.P.; Pietrini, A.M.; Caneva, G.; Imperi, F.; Visca, P. Biodeterioration of mural paintings in a rocky habitat: The Crypt of the Original Sin. Int. Biodeterior. Biodegrad. 2009, 63, 705–711. [Google Scholar] [CrossRef]
- Koziróg, A.; Rajkowska, K.; Otlewska, A.; Piotrowska, M.; Kunicka-Styczy, A.; Brycki, B.; Nowicka-Krawczyk, P.; Ko´scielniak, M.; Gutarowska, B. Colonising organisms as a biodegradation factor affecting historical wood materials at the former concentration camp of Auschwitz II e Birkenau. Int. J. Mol. Sci. 2016, 17, 1364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marano, F.; Di Rita, F.; Palombo, M.R.; Ellwood, N.T.W.; Bruno, L. A first report of biodeterioration caused by cyanobacterial biofilms of exposed fossil bones: A case study of the Middle Pleistocene site of La Polledrara di Cecanibbio (Rome, Italy). Int. Biodeterior. Biodegrad. 2016, 106, 67–74. [Google Scholar] [CrossRef]
- Slimen, A.; Barboux, R.; Mihajlovski, A. High diversity of fungi associated with altered wood materials in the hunting lodge of “La Muette”, Saint-Germain-en-Laye, France. Mycol. Prog. 2020, 19, 139–146. [Google Scholar] [CrossRef]
- Urzì, C.; De Leo, F.; Krakova, L.; Pangallo, D.; Bruno, L. Effects of biocide treatments on the biofilm community in Domitilla’s catacombs in Rome. Sci. Total Environ. 2016, 572, 252–262. [Google Scholar] [CrossRef]
- Barresi, G.; Cammarata, M.; Palla, F. Biocide. In Biotechnology and Conservation of Cultural Heritage; Palla, F., Barresi, G., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 49–65. [Google Scholar]
- Bruno, L.; Rugnini, L.; Spizzichino, V.; Caneve, L.; Canini, A.; Ellwood, N.T.W. Biodeterioration of Roman hypogea: The case study of the Catacombs of SS. Marcellino and Pietro (Rome, Italy). Ann. Microbiol. 2019, 69, 1023–1032. [Google Scholar] [CrossRef]
- Genova, C.; Fuentes, E.; Sanmartín, P.; Favero, G.; Prieto, B. Phytochemical Compounds as Cleaning Agents on Granite Colonized by Phototrophic Subaerial Biofilms. Coatings 2020, 10, 295. [Google Scholar] [CrossRef] [Green Version]
- Ruffolo, S.A.; De Leo, F.; Ricca, M.; Arcudi, A.; Silvestri, C.; Bruno, L.; Urzì, C.; La Russa, M.F. Medium-term in situ experiment by using organic biocides and titanium dioxide for the mitigation of microbial colonization on stone surfaces. Int. Biodeterior. Biodegrad. 2017, 123, 17–26. [Google Scholar] [CrossRef]
- Hsieh, P.; Pedersen, J.Z.; Bruno, L. Photoinhibition of cyanobacteria and its application in cultural heritage conservation. Photochem. Photobiol. 2014, 90, 533–543. [Google Scholar] [CrossRef] [PubMed]
- Sanmartín, P.; Villa, F.; Polo, A.; Silva, B.; Prieto, B.; Cappitelli, F. Rapid evaluation of three biocide treatments against the cyanobacterium Nostoc sp. PCC 9104 by color changes. Ann. Microbiol. 2015, 65, 1153–1158. [Google Scholar] [CrossRef]
- European Chemicals Agency. Impacts of REACH Restriction and Authorisation on Substitution in the EU; ECHA-20-R-09-EN978-92-9481-618-4; European Chemicals Agency: Helsinki, Finland, 2020. [CrossRef]
- Genova, C.; Zoppis, E.; Grottoli, A.; Cencetti, C.; Matricardi, P.; Favero, G. An integrated approach to the recovery of travertine biodegradation by combining phyto-cleaning with genomic characterization. Microchem. J. 2020, 156. [Google Scholar] [CrossRef]
- Abbas, A.; Zubair, M.; Rasool, N.; Rizwan, K. Antimicrobial Potential of Glycyrrhiza glabra. J. Drug Des. Med. Chem. 2015, 1, 17–20. [Google Scholar]
- Gupta, V.K.; Fatima, A.; Faridi, U. Antimicrobial potential of Glycyrrhiza glabra roots. J. Ethnopharmacol. 2008, 116, 377–380. [Google Scholar] [CrossRef]
- Fatima, A.; Gupta, V.K.; Luqman, S.S.; Negi, A.S.; Kumar, J.K.; Shanker, K.; Saikia, D.; Srivastava, S.; Darokar, M.P.; Suman, P.S. Antifungal activity of Glycyrrhiza glabra extracts and its active constituent glabridin. Phytother. Res. 2009, 23, 1190–1193. [Google Scholar] [CrossRef]
- Fukui, H.; Katsumi, G.; Tabata, M. Two antimicrobial flavanones from the leaves of Glycyrrhiza glabra. Chem. Pharm. Bull. 2008, 36, 4174–4176. [Google Scholar] [CrossRef] [Green Version]
- Irani, M.; Sarmadi, M.; Bernard, F.; Ebrahimi, G.H.; Ebrahimi, G.H.; Bazarnov, H.S. Leaves antimicrobial activity of Glycyrrhiza glabra L. Iran. J. Pharm. Res. 2010, 9, 425–428. [Google Scholar]
- Bassyouni, R.H.; Kamel, Z.; Megahid, A.; Samir, E. Antimicrobial potential of licorice: Leaves versus roots. Afr. J. Microbiol. Res. 2012, 6, 7485–7493. [Google Scholar]
- Scherf, A.; Treutwein, J.; Kleeberg, H.; Schmitt, A. Efficacy of leaf extract fractions of Glycyrrhiza glabra L. against downy mildew of cucumber (Pseudoperonospora cubensis). Eur. J. Plant Pathol. 2010, 134, 755–762. [Google Scholar] [CrossRef]
- Sprocati, A.R.; Alisi, C.; Migliore, G.; Marconi, P.; Tasso, F. Sustainable restoration through biotechnological processes: A proof of concept. In Roles of Microorganisms in Heritage Degradation and Preservation; Springer: Cham, Switzerland, 2020. (in press) [Google Scholar]
- Urzì, C.; De Leo, F. Sampling with adhesive tape strips: An easy and rapid method to monitor microbial colonization on monument surfaces. J. Microbiol. Methods 2001, 44, 1–11. [Google Scholar] [CrossRef]
- Komárek, J. Cyanoprokaryota: 3rd part: Heterocytous genera. In Süswasserflora von Mitteleuropa 19/3; Büdel, B., Gärtner, G., Krienitz, L., Schagerl, M., Eds.; Springer Spektrum: Heidelberg/Berlin, Germany, 2013; p. 1130. [Google Scholar]
- Komárek, J.; Anagnostidis, K. Cyanoprokaryota. 2nd part: Oscillatoriales. In Süsswasserflora von Mitteleuropa 19/2; Büdel, B., Krienitz, L., Gärtner, G., Schagerl, M., Eds.; Elsevier Spektrum: Heidelberg, Germany, 2005; p. 759. [Google Scholar]
- Mühling, M.; Woolven-Allen, J.; Murrell, J.C.; Joint, I. Improved group-specific PCR primers for denaturing gradient gel electrophoresis analysis of the genetic diversity of complex microbial communities. ISME J. 2008, 2, 379–392. [Google Scholar] [CrossRef] [PubMed]
- Dayan, F.E.; Zaccaro, M.L.M. Chlorophyll fluorescence as a marker for herbicide mechanisms of action. Pestic. Biochem. Phys. 2012, 102, 189–197. [Google Scholar] [CrossRef]
- Schreiber, U.; Neubauer, C.; Schliwa, U. PAM fluorometer based on medium-frequency pulsed X-flash measuring light: A highly sensitive new tool in basic and applied photosynthesis research. Photosynth. Res. 1993, 36, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Bruno, L.; Bellezza, S.; De Leo, F.; Urzì, C. A study for monitoring and conservation in the Roman Catacombs of St. Callistus and Domitilla, Rome (Italy). In The Conservation of Subterranean Cultural Heritage; Saiz-Jimenez, C., Ed.; CRC Press, Taylor & Francis Group: London, UK, 2014; pp. 37–44. [Google Scholar]
- Eckhardt, F.E.W. Mechanisms of the microbial degradation of minerals in sandstone monuments, medieval frescoes and plasters. In Proceedings of the 5th International Congress on Deterioration and Conservation of Stone, Lausanne, Switzerland, 25–27 September 1985; Felix, G., Ed.; Presses Polytechniques Romandes: Lausanne, Switzerland, 1985; Volume 2, pp. 643–665. [Google Scholar]
- Alberano, P.; Urzì, C. Structural interactions among epilithic cyanobacteria and heterotrophic microorganisms in Roman hypogea. Microbiol. Ecol. 1999, 38, 244–252. [Google Scholar] [CrossRef]
- Saarela, M.; Alakomi, H.L.; Suihko, M.L.; Maunuksela, L.; Raaska, L.; Mattila-Sandholm, T. Heterotrophic microorganisms in air and biofilm samples from Roman catacombs with a special emphasis on actinobacteria and fungi. Int. Biodeterior. Biodegrad. 2004, 1, 27–37. [Google Scholar] [CrossRef]
- Krakova, L.; De Leo, F.; Bruno, L.; Pangallo, D.; Urzì, C. Complex bacterial diversity in the white biofilms of St. Callixtus Catacombs in Rome evidenced by different investigation strategies. Environ. Microbiol. 2015, 17, 1738–1752. [Google Scholar] [CrossRef]
- Di Martino, S. Bacterial adherence: Much more than a bond. AIMS Microbiol. 2020, 4, 563–566. [Google Scholar] [CrossRef]
- Limoli, D.H.; Jones, C.J.; Wozniak, D.J. Bacterial extracellular polysaccharides in biofilm formation and function. In Microbial Biofilms, 2nd ed.; Ghannoum, M., Parsek, M., Whiteley, M., Mukherjee, P.K., Eds.; American Society of Microbiology: Washington, DC, USA, 2015. [Google Scholar] [CrossRef] [Green Version]
- Miller, A.Z.; Laiz, L.; Gonzalez, J.M.; Dionísio, A.; Macedo, M.F.; Saiz-Jimenez, C. Reproducing stone monument photosynthetic-based colonization under laboratory conditions. Sci. Total Environ. 2008, 278–285. [Google Scholar] [CrossRef] [Green Version]
- Mihajlovski, A.; Gabarre, A.; Seyer, D.; Boust, F.; Di Martino, P. Bacterial diversity on rock surface of the ruined part of a French historic monument: The Chaalis abbey. Int. Biodeterior. Biodegrad. 2017, 120, 161–169. [Google Scholar] [CrossRef]
- Blom, C.W.P.M. Adaptations to flooding stress: From plant community to molecule. Plant Biol. 1999, 1, 263–273. [Google Scholar] [CrossRef]
- Murchie, E.H.; Lawson, T. Chlorophyll fluorescence analysis: A guide to good practice and understanding some new applications. J. Exp. Bot. 2013, 64, 3983–3998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kusama, Y.; Inoue, S.; Jimbo, H.; Takaichi, S.; Sonoike, K.; Hihara, Y. Zeaxanthin and echinenone protect the repair of photosystem II from inhibition by singlet oxygen in Synechocystis sp. PCC 6803. Plant Cell Physiol. 2015, 56, 906–916. [Google Scholar] [CrossRef]
- Proia, L.; Morin, S.; Peipoch, M.; Romaní, A.M.; Sabater, S. Resistance and recovery of river biofilms receiving short pulses of Triclosan and Diuron. Sci. Total Environ. 2011, 409, 3129–3137. [Google Scholar] [CrossRef]
- Lüttge, U.; Büdel, B. Resurrection kinetics of photosynthesis in desiccation-tolerant terrestrial green algae (Chlorophyta) on tree bark. Plant Biol. 2010, 12, 437–444. [Google Scholar] [CrossRef]
- Gray, D.W.; Lewis, L.A.; Cardon, Z.G. Photosynthetic recovery following desiccation of desert green algae (Chlorophyta) and their aquatic relatives. Plant Cell Environ. 2007, 30, 1240–1255. [Google Scholar] [CrossRef]
Strain Name | Phylum | Species | ID % |
---|---|---|---|
DA1 | Bacteroidetes | Chriseobacterium plytrichastri | 98 |
DA2 | Proteobacteria | Ensifer adhaerens | 98 |
DA3 | Proteobacteria | Inquilinus ginsengisoli | 96 |
DA4 | Proteobacteria | Pseudomonas asplenii | 97 |
DA5 | Proteobacteria | Pseudomonas glareae | 97 |
DA6 | Proteobacteria | Pseudomonas helmanticensis | 99 |
DA7 | Proteobacteria | Pseudomonas vancouverensis | 99 |
DA8 | Actinobacteria | Rhodococcus jostii | 98 |
DA9 | Actinobacteria | Rhodocossus koreensis | 98 |
DA10 | Actinobacteria | Streptomyces spororaveus | 99 |
Treatments | I (CFU/g Wet Biofilm) | II (CFU/g Wet Biofilm) | No. Bacterial Strains after II Application |
---|---|---|---|
CTRL | (2.50 ± 0.3) × 108 | (1.00 ± 0.5) × 108 | 6 |
LIQ | (1.20 ± 0.2) × 109 | (8.50 ± 0.3) × 108 | 1 |
LAV | (6.20 ± 0.5) × 109 | (4.40 ± 0.2) × 108 | 5 |
LIQLAV | (1.10 ± 0.2) × 109 | (3.50 ± 0.4) × 108 | 3 |
BENZ | (2.60 ± 0.3) × 108 | (2.00 ± 0.5) × 108 | 6 |
Strain nr | ID | Sampled Biofilm | CTRL | LIQ | LIQLAV | LAV | BENZ | Phylum |
---|---|---|---|---|---|---|---|---|
DA17 | Brevundimonas alba | X | Proteobacteria | |||||
DA1 | Chriseobacterium plytrichastri | X | Bacteroidetes | |||||
DA18 | Dyadobacter sp. | X | Proteobacteria | |||||
DA2 | Ensifer adhaerens | X | X | X | X | Proteobacteria | ||
DA15 | Exiguobacterium mexicanum | X | Firmicutes | |||||
DA3 | Inquilinus gingengisoli | X | Proteobacteria | |||||
DA19 | Lysovacter sp. | X | Proteobacteria | |||||
DA11 | Mesorhizobium olivaresii | X | Proteobacteria | |||||
DA16 | Microbacterium hydrocarbonoxydans | X | Actinobacteria | |||||
DA20 | Phyllobacterium catacumbae | X | Proteobacteria | |||||
DA4 | Pseudomonas asplenii | X | X | Proteobacteria | ||||
DA5 | Pseudomonas glaerae | X | X | X | X | X | Proteobacteria | |
DA6 | Pseudomonas helmanticensis | X | X | Proteobacteria | ||||
DA7 | Pseudomonas vancouverensis | X | X | Proteobacteria | ||||
DA12 | Pseudoxanthomonas dokdonensis | X | Proteobacteria | |||||
DA8 | Rhodococcus jostii | X | Actinobacteria | |||||
DA9 | Rhodococcus korensis | X | Actinobacteria | |||||
DA13 | Sphingomonas desiccabilis | X | Proteobacteria | |||||
DA14 | Stenotrophomonas rhizophila | X | X | Proteobacteria | ||||
DA10 | Streptomyces spororaveus | X | Actinobacteria |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rugnini, L.; Migliore, G.; Tasso, F.; Ellwood, N.T.W.; Sprocati, A.R.; Bruno, L. Biocidal Activity of Phyto-Derivative Products Used on Phototrophic Biofilms Growing on Stone Surfaces of the Domus Aurea in Rome (Italy). Appl. Sci. 2020, 10, 6584. https://doi.org/10.3390/app10186584
Rugnini L, Migliore G, Tasso F, Ellwood NTW, Sprocati AR, Bruno L. Biocidal Activity of Phyto-Derivative Products Used on Phototrophic Biofilms Growing on Stone Surfaces of the Domus Aurea in Rome (Italy). Applied Sciences. 2020; 10(18):6584. https://doi.org/10.3390/app10186584
Chicago/Turabian StyleRugnini, Lorenza, Giada Migliore, Flavia Tasso, Neil Thomas William Ellwood, Anna Rosa Sprocati, and Laura Bruno. 2020. "Biocidal Activity of Phyto-Derivative Products Used on Phototrophic Biofilms Growing on Stone Surfaces of the Domus Aurea in Rome (Italy)" Applied Sciences 10, no. 18: 6584. https://doi.org/10.3390/app10186584
APA StyleRugnini, L., Migliore, G., Tasso, F., Ellwood, N. T. W., Sprocati, A. R., & Bruno, L. (2020). Biocidal Activity of Phyto-Derivative Products Used on Phototrophic Biofilms Growing on Stone Surfaces of the Domus Aurea in Rome (Italy). Applied Sciences, 10(18), 6584. https://doi.org/10.3390/app10186584