Stabilization of Municipal Solid Waste Fly Ash, Obtained by Co-Combustion with Sewage Sludge, Mixed with Bottom Ash Derived by the Same Plant
Abstract
1. Introduction
2. Experimental
2.1. Materials
2.2. Stabilization Procedure
2.3. Leaching Test and TXRF Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chang, Z.; Long, G.; Zhou, J.L.; Ma, C. Valorization of sewage sludge in the fabrication of construction and building materials: A review. Resour. Conserv. Recycl. 2020, 154, 104606. [Google Scholar] [CrossRef]
- Benassi, L.; Zanoletti, A.; Depero, L.E.; Bontempi, E. Sewage sludge ash recovery as valuable raw material for chemical stabilization of leachable heavy metals. J. Environ. Manag. 2019, 245, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Phua, Z.; Giannis, A.; Dong, Z.L.; Lisak, G.; Ng, W.J. Characteristics of incineration ash for sustainable treatment and reutilization. Environ. Sci. Pollut. Res. 2019, 26, 16974–16997. [Google Scholar] [CrossRef]
- Assi, A.; Bilo, F.; Zanoletti, A.; Ponti, J.; Valsesia, A.; La Spina, R.; Zacco, A.; Bontempi, E. Zero-waste approach in municipal solid waste incineration: Reuse of bottom ash to stabilize fly ash. J. Clean. Prod. 2020, 245. [Google Scholar] [CrossRef]
- Rodella, N.; Bosio, A.; Dalipi, R.; Zacco, A.; Borgese, L.; Depero, L.E.; Bontempi, E. Waste silica sources as heavy metal stabilizers for municipal solid waste incineration fly ash. Arab. J. Chem. 2017, 10, S3676–S3681. [Google Scholar] [CrossRef]
- Benassi, L.; Bosio, A.; Dalipi, R.; Borgese, L.; Rodella, N.; Pasquali, M.; Depero, L.E.; Bergese, P.; Bontempi, E. Comparison between rice husk ash grown in different regions for stabilizing fly ash from a solid waste incinerator. J. Environ. Manag. 2015, 159, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Benassi, L.; Franchi, F.; Catina, D.; Cioffi, F.; Rodella, N.; Borgese, L.; Pasquali, M.; Depero, L.E.; Bontempi, E. Rice husk ash to stabilize heavy metals contained in municipal solid waste incineration fly ash: First results by applying new pre-treatment technology. Materials 2015, 8, 6868–6879. [Google Scholar] [CrossRef]
- Bosio, A.; Rodella, N.; Gianoncelli, A.; Zacco, A.; Borgese, L.; Depero, L.E.; Bingham, P.A.; Bontempi, E. A new method to inertize incinerator toxic fly ash with silica from rice husk ash. Environ. Chem. Lett. 2013, 11, 329–333. [Google Scholar] [CrossRef]
- Zacco, A.; Borgese, L.; Gianoncelli, A.; Struis, R.P.W.J.; Depero, L.E.; Bontempi, E. Review of fly ash inertisation treatments and recycling. Environ. Chem. Lett. 2014. [Google Scholar] [CrossRef]
- Assi, A.; Bilo, F.; Zanoletti, A.; Ponti, J.; Valsesia, A.; La Spina, R.; Depero, L.E.; Bontempi, E. Review of the Reuse Possibilities Concerning Ash Residues from Thermal Process in a Medium-Sized Urban System in Northern Italy. Sustainability 2020, 12, 4193. [Google Scholar] [CrossRef]
- Zacco, A.; Gianoncelli, A.; Ardesi, R.; Sacrato, S.; Guerini, L.; Bontempi, E.; Tomasoni, G.; Alberti, M.; Depero, L.E. Use of colloidal silica to obtain a new inert from municipal solid waste incinerator (MSWI) fly ash: First results about reuse. Clean. Technol. Environ. Policy 2012, 14, 291–297. [Google Scholar] [CrossRef]
- Diliberto, C.; Meux, E.; Diliberto, S.; Garoux, L.; Marcadier, E.; Rizet, L.; Lecomte, A. A zero-waste process for the management of MSWI fly ashes: Production of ordinary Portland cement. Environ. Technol. 2020, 41, 1199–1208. [Google Scholar] [CrossRef] [PubMed]
- Assi, A.; Fabjola, B.; Federici, S.; Zacco, A.; Depero, L.E.; Bontempi, E. Bottom ash derived from municipal solid waste and sewage sludge co-incineration: First results about characterization and reuse. Waste Manag. 2020, 116, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Bontempi, E. A new approach for evaluating the sustainability of raw materials substitution based on embodied energy and the CO2 footprint. J. Clean. Prod. 2017, 162, 162–169. [Google Scholar] [CrossRef]
- Benassi, L.; Pasquali, M.; Zanoletti, A.; Dalipi, R.; Borgese, L.; Depero, L.E.; Vassura, I.; Quina, M.J.; Bontempi, E. Chemical Stabilization of Municipal Solid Waste Incineration Fly Ash without Any Commercial Chemicals: First Pilot-Plant Scaling Up. ACS Sustain. Chem. Eng. 2016, 4, 5561–5569. [Google Scholar] [CrossRef]
- Zanoletti, A.; Bilo, F.; Depero, L.E.; Zappa, D.; Bontempi, E. The first sustainable material designed for air particulate matter capture: An introduction to Azure Chemistry. J. Environ. Manag. 2018, 218, 355–362. [Google Scholar] [CrossRef]
- Ramezanianpour, A.A. Cement Replacement Materials, Properties, Durability, Sustainability; Springer: Berlin/Heidelberg, Germany, 2014; Volume 7, ISBN 978-3-642-36720-5. [Google Scholar]
- Pandey, R.A.; Biswas, R.; Chakrabarti, T.; Devotta, S. Flue gas desulfurization: Physicochemical and biotechnological approaches. Crit. Rev. Environ. Sci. Technol. 2005, 35, 571–622. [Google Scholar] [CrossRef]
- Bontempi, E.; Zacco, A.; Borgese, L.; Gianoncelli, A.; Ardesi, R.; Depero, L.E. A new method for municipal solid waste incinerator (MSWI) fly ash inertization, based on colloidal silica. J. Environ. Monit. 2010, 12, 2093–2099. [Google Scholar] [CrossRef]
- Bosio, A.; Zacco, A.; Borgese, L.; Rodella, N.; Colombi, P.; Benassi, L.; Depero, L.E.; Bontempi, E. A sustainable technology for Pb and Zn stabilization based on the use of only waste materials: A green chemistry approach to avoid chemicals and promote CO2 sequestration. Chem. Eng. J. 2014, 253, 377–384. [Google Scholar] [CrossRef]
- Pasquali, M.; Zanoletti, A.; Benassi, L.; Federici, S.; Depero, L.E.; Bontempi, E. Stabilized biomass ash as a sustainable substitute for commercial P-fertilizers. Land Degrad. Dev. 2018, 29, 2199–2207. [Google Scholar] [CrossRef]
- Colombi, P.; Agnihotri, D.K.; Asadchikov, V.E.; Bontempi, E.; Bowen, D.K.; Chang, C.H.; Depero, L.E.; Farnworth, M.; Fujimoto, T.; Gibaud, A.; et al. Reproducibility in X-ray reflectometry: Results from the first world-wide round-robin experiment. J. Appl. Crystallogr. 2008, 41, 143–152. [Google Scholar] [CrossRef]
- Saikia, N.; Kato, S.; Kojima, T. Compositions and leaching behaviours of combustion residues. Fuel 2006, 85, 264–271. [Google Scholar] [CrossRef]
- Youcai, Z.; Ziyang, L. Pollution Control and Resource Recovery, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 9780128116395. [Google Scholar]
- Seniunaite, J.; Vasarevicius, S. Leaching of Copper, Lead and Zinc from Municipal Solid Waste Incineration Bottom Ash. Energy Procedia 2017, 113, 442–449. [Google Scholar] [CrossRef]
- Tytła, M. Identification of the Chemical Forms of Heavy Metals in Municipal Sewage Sludge as a Critical Element of Ecological Risk Assessment in Terms of Its Agricultural or Natural Use. Int. J. Environ. Res. Public Health 2020, 17, 4640. [Google Scholar] [CrossRef]
- van der Kooij, S.; Van Vliet, B.J.M.; Stomph, T.J.; Sutton, N.B.; Anten, N.P.R.; Hoffland, E. Phosphorus recovered from human excreta: A socio-ecological-technical approach to phosphorus recycling. Resour. Conserv. Recycl. 2020, 157, 104744. [Google Scholar] [CrossRef]
- Bosio, A.; Rodella, N.; Depero, L.E.; Bontempi, E. Rice Husk Ash Based Composites, Obtained by Toxic Fly Ash Inertization, and their Applications as Adsorbents. Chem. Eng. 2014, 37. [Google Scholar] [CrossRef]
- Assi, A.; Federici, S.; Bilo, F.; Zacco, A.; Depero, L.E.; Bontempi, E. Increased sustainability of carbon dioxide mineral sequestration by a technology involving fly ash stabilization. Materials 2019, 12, 2714. [Google Scholar] [CrossRef]
- Ji, L.; Yu, H. Carbon dioxide sequestration by direct mineralization of fly ash. In Carbon Dioxide Sequestration in Cementitious Construction Materials; Elsevier: Amsterdam, The Netherlands, 2018; pp. 13–37. ISBN 9780081024447. [Google Scholar]
- Leonard, R.J.; Davidson, D.T. Pozzolanic reactivity study of fly ash. Highw. Res. Board Bull. 1959, 1–17. [Google Scholar]
- Zhang, Y.; Cetin, B.; Likos, W.J.; Edil, T.B. Impacts of pH on leaching potential of elements from MSW incineration fly ash. Fuel 2016, 184, 815–825. [Google Scholar] [CrossRef]
- Rodella, N.; Pasquali, M.; Zacco, A.; Bilo, F.; Borgese, L.; Bontempi, N.; Tomasoni, G.; Depero, L.E.; Bontempi, E. Beyond waste: New sustainable fillers from fly ashes stabilization, obtained by low cost raw materials. Heliyon 2016, 2. [Google Scholar] [CrossRef]
- Liu, P.; Huang, R.; Tang, Y. Comprehensive Understandings of Rare Earth Element (REE) Speciation in Coal Fly Ashes and Implication for REE Extractability. Environ. Sci. Technol. 2019, 53, 5369–5377. [Google Scholar] [CrossRef] [PubMed]
- Junakova, N.; Junak, J.; Balintova, M. Reservoir sediment as a secondary raw material in concrete production. Clean Technol. Environ. Policy 2015, 17, 1161–1169. [Google Scholar] [CrossRef]
- Assi, A.; Bilo, F.; Zanoletti, A.; Ducoli, S.; Ramorino, G.; Gobetti, A.; Zacco, A.; Federici, S.; Depero, L.E.; Bontempi, E. A Circular Economy Virtuous Example—Use of a Stabilized Waste Material Instead of Calcite to Produce Sustainable Composites. Appl. Sci. 2020, 10, 754. [Google Scholar] [CrossRef]
- Guarienti, M.; Gianoncelli, A.; Bontempi, E.; Moscoso Cardozo, S.; Borgese, L.; Zizioli, D.; Mitola, S.; Depero, L.E.; Presta, M. Biosafe inertization of municipal solid waste incinerator residues by COSMOS technology. J. Hazard. Mater. 2014, 279, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Bilo, F.; Moscoso, S.; Borgese, L.; Delbarba, M.V.; Zacco, A.; Bosio, A.; Federici, S.; Guarienti, M.; Presta, M.; Bontempi, E.; et al. Total reflection X-ray fluorescence spectroscopy to study Pb and Zn accumulation in zebrafish embryos. X-ray Spectrom. 2015, 44, 124–128. [Google Scholar] [CrossRef]
- Guarienti, M.; Cardozo, S.M.; Borgese, L.; Lira, G.R.; Depero, L.E.; Bontempi, E.; Presta, M. COSMOS-rice technology abrogates the biotoxic effects of municipal solid waste incinerator residues. Environ. Pollut. 2016, 214, 713–721. [Google Scholar] [CrossRef]
Line | Procedure | Mass (g) | V (mL) | |||
---|---|---|---|---|---|---|
Sewage-MSWI FA | CFA | FGD | Sewage-MSWI BA | H2O | ||
1 | a) | 130.2 | 31 | 40.8 | 20.1 | 200 |
b) | 130.6 | 30.4 | 40.7 | - | 200 | |
2 | a) | 130 | 30.8 | 40 | 20 | 200 |
b) | 130.1 | 30.3 | 40.4 | - | 200 | |
3 | a) | 130.2 | 30.1 | 40.8 | 20 | 200 |
b) | 130.1 | 30 | 40.3 | - | 200 | |
b) | 130.1 | 30 | 40.2 | - | 200 |
Samples | FA-Line 1 | FA-Line 2 | FA-Line 3 | BA-Line 1 | BA-Line 2 | BA-Line 3 |
---|---|---|---|---|---|---|
pH | 11.89 | 11.92 | 11.9 | 12.09 | 12.2 | 12.18 |
Element | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) |
P * | 40.3 ± 16.0 | 25.4 ± 8.4 | 21.9 ± 5.7 | 5.4 ± 2.5 | 9.3 ± 2.6 | 12.7 ± 5.3 |
S * | 273 ± 48 | 267 ± 63 | 217 ± 61 | 71 ± 3.6 | 131 ± 21 | 81 ± 21 |
Cl | 8890 ± 193 | 5969 ± 954 | 6545 ± 958 | 62 ± 36 | 318 ± 185 | 408 ± 81 |
K | 1087 ± 126 | 711 ± 280 | 595 ± 161 | 111 ± 17 | 81 ± 21 | 105 ± 32 |
Ca | 6387 ± 1044 | 4930 ± 913 | 4677 ± 706 | 651 ± 68 | 979 ± 175 | 995 ± 258 |
Cr | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Mn | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Fe | 0.4 ± 0.2 | 0.2 ± 0.1 | 0.2 ± 0.2 | 0.2 ± 0.1 | 0.07 ± 0.03 | 0.09 ± 0.04 |
Cu | 0.23 ± 0.05 | 0.09 ± 0.03 | 0.33 ± 0.05 | 4.5 ± 0.5 | 5.6 ± 0.7 | 6.1 ± 0.7 |
Zn | 11.7 ± 1.4 | 9.0 ± 0.4 | 10.1 ± 1.4 | 0.3 ± 0.2 | 0.7 ± 0.2 | 0.61 ± 0.03 |
Br | 211 ± 26 | 183 ± 19 | 236 ± 21 | 1.7 ± 0.3 | 1.9 ± 0.2 | 1.8 ± 1.0 |
Rb | 7.3 ± 1.5 | 7.1 ± 0.9 | 7.6 ± 0.8 | 0.4 ± 0.2 | 0.2 ± 0.0 | 0.25 ± 0.02 |
Sr | 16.0 ± 4.3 | 13.8 ± 0.4 | 27.8 ± 3.9 | 3.9 ± 0.4 | 5.5 ± 0.6 | 4.7 ± 0.2 |
Pb | 92.0 ± 15.6 | 94.1 ± 6.8 | 127.1 ± 5.4 | 0.58 ± 0.04 | 1.6 ± 0.3 | 1.6 ± 0.4 |
Samples | FA + BA Line 1 | FA + BA Line 2 | FA + BA Line 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
Time | 1 M | 2 M | 3 M | 1 M | 2 M | 3 M | 1 M | 2 M | 3 M |
pH | 13.5 | 12.1 | 10.5 | 13.5 | 12.0 | 10.8 | 13.8 | 12.1 | 11.2 |
Elements | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) |
P * | 42.8 ± 5.6 | 57.4 ± 6.9 | 33.2 ± 10.5 | 28.9 ± 15.2 | 59.6 ± 9.0 | 33.3 ± 13.6 | 37.2 ± 26.7 | 58.3 ± 18.2 | 24.9 ± 6.2 |
S * | 423 ± 168 | 358 ± 21 | 436 ± 81 | 318 ± 53 | 369 ± 82 | 366 ± 129 | 100 ± 30 | 208 ± 32 | 251 ± 41 |
Cl | 3164 ± 234 | 4911 ± 1052 | 2350 ± 571 | 2175 ± 885 | 4735 ± 168 | 3069 ± 978 | 4568 ± 93 | 4797 ± 248 | 2308 ± 699 |
K | 366 ± 58 | 593 ± 182 | 237 ± 34 | 222 ± 78 | 638 ± 55 | 336 ± 79 | 493 ± 47 | 525.1 ± 106 | 174 ± 41 |
Ca | 2222 ± 2008 | 3569 ± 835 | 1518 ± 175 | 1331 ± 232 | 3339 ± 145 | 1938 ± 274 | 3636 ± 197 | 3676 ± 200 | 1498 ± 439 |
Cr | <LOD | 0.1 ± 0.002 | 0.2 ± 0.1 | <LOD | 0.1 ± 0.1 | 0.1 ± 0.1 | <LOD | <LOD | <LOD |
Mn | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 0.1 ± 0.04 | <LOD | <LOD |
Fe | 0.10 ± 0.01 | 0.4 ± 0.2 | 0.2 ± 0.1 | 0.6 ± 0.3 | 0.3 ± 0.1 | 0.4 ± 0.2 | 0.2 ± 0.1 | 0.74 ± 0.04 | 0.2 ± 0.1 |
Cu | 0.07 ± 0.01 | 0.1 ± 0.01 | 0.08 ± 0.01 | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.09 ± 0.04 | 0.3 ± 0.01 | 0.2 ± 0.01 | 0.1 ± 0.1 |
Zn | 0.2 ± 0.1 | 0.4 ± 0.1 | 0.1 ± 0.0 | 0.6 ± 0.04 | 0.6 ± 0.1 | 0.07 ± 0.04 | 3.5 ± 1.9 | 1.4 ± 0.3 | 0.2 ± 0.1 |
Br | 79.5 ± 9.0 | 75.1 ± 4.7 | 88.4 ± 4.2 | 93.3 ± 8.9 | 62.0 ± 1.6 | 76.4 ± 1.7 | 62.5 ± 6.7 | 69.9 ± 6.5 | 81.7 ± 4.3 |
Rb | 3.4 ± 0.7 | 3.3 ± 0.4 | 4.5 ± 0.3 | 4.6 ± 0.8 | 3.2 ± 0.2 | 3.8 ± 0.5 | 2.2 ± 0.3 | 3.1 ± 0.2 | 3.7 ± 1.0 |
Sr | 12.5 ± 0.8 | 9.9 ± 0.5 | 13.2 ± 1.5 | 15.0 ± 2.1 | 10.1 ± 0.4 | 11.0 ± 1.5 | 14.2 ± 2.6 | 16.4 ± 0.7 | 18.7 ± 2.3 |
Pb | 2.1 ± 0.4 | 3.0 ± 0.4 | <LOD | 1.7 ± 0.4 | 2.6 ± 0.5 | <LOD | 17.1 ± 10.0 | 6.5 ± 1.6 | 0.27 ± 0.05 |
Samples | FA + BA Line 1 | FA + BA Line 2 | FA + BA Line 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
Time | 1 M | 2 M | 3 M | 1 M | 2 M | 3 M | 1 M | 2 M | 3 M |
pH | 13.6 | 8.7 | 7.7 | 13.7 | 12.2 | 8.0 | 13.6 | 12.1 | 8.4 |
Elements | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) |
P * | 65.4 ± 23.1 | 30.2 ± 1.9 | 28.2 ± 14.6 | 40.4 ± 17.7 | 57.7 ± 2.8 | 27.9 ± 2.8 | 39.5 ± 1.8 | 49.2 ± 2.3 | 32.5 ± 18.9 |
S * | 640 ± 180 | 422 ± 219 | 604 ± 244 | 330 ± 121 | 363 ± 50 | 469 ± 177 | 244 ± 24 | 378 ± 54 | 562 ± 172 |
Cl | 3740 ± 484 | 3083 ± 1181 | 2185 ± 677 | 2237 ± 1059 | 5123 ± 106 | 1953 ± 835 | 3677 ± 281 | 5381 ± 1236 | 2287 ± 640 |
K | 474 ± 105 | 311 ± 8 | 257 ± 83 | 242 ± 126 | 636 ± 13 | 202 ± 136 | 369 ± 24 | 606 ± 201 | 215 ± 61 |
Ca | 3156. ± 474 | 2190 ± 722 | 1643 ± 443 | 1400 ± 925 | 3810 ± 79 | 1290 ± 642 | 2553 ± 416 | 4248 ± 1396 | 1587 ± 524 |
Cr | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 0.110 ± 0.002 | 0.2 ± 0.1 | <LOD |
Mn | <LOD | <LOD | 0.13 ± 0.02 | <LOD | <LOD | <LOD | 0.11 ± 0.04 | <LOD | <LOD |
Fe | 0.2 ± 0.1 | 0.3 ± 0.1 | 0.5 ± 0.1 | 0.5 ± 0.1 | 0.17 ± 0.01 | 0.3 ± 0.2 | 0.3 ± 0.2 | <LOD | 0.28 ± 0.02 |
Cu | <LOD | <LOD | <LOD | <LOD | 0.1 ± 0.001 | <LOD | <LOD | <LOD | <LOD |
Zn | 0.2 ± 0.1 | 0.3 ± 0.1 | 1.0 ± 0.1 | 0.9 ± 0.2 | 0.9 ± 0.1 | 0.3 ± 0.1 | 1.7 ± 0.5 | 2.0 ± 1.1 | 0.07 ± 0.04 |
Br | 64.9 ± 11.4 | 82.2 ± 13.1 | 75.3 ± 3.4 | 102.3 ± 27.6 | 85.8 ± 7.4 | 90 ± 32 | 94.1 ± 7.4 | 92.1 ± 6.5 | 107.3 ± 2.3 |
Rb | 2.7 ± 0.2 | 4.6 ± 1.5 | 3.4 ± 0.5 | 4.3 ± 2.1 | 3.5 ± 0.3 | 4.5 ± 2.5 | 3.1 ± 0.2 | 3.3 ± 0.4 | 4.5 ± 0.6 |
Sr | 9.7 ± 0.6 | 10.9 ± 1.8 | 9.0 ± 1.6 | 12.9 ± 4.0 | 10.4 ± 0.3 | 9.5 ± 4.3 | 17.4 ± 0.5 | 15.9 ± 1.4 | 19.0 ± 1.2 |
Pb | 2.4 ± 0.4 | <LOD | <LOD | 7.1 ± 1.9 | 7.6 ± 1.3 | <LOD | 8.3 ± 2.8 | 10.7 ± 5.7 | <LOD |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Assi, A.; Bilo, F.; Zanoletti, A.; Borgese, L.; Depero, L.E.; Nenci, M.; Bontempi, E. Stabilization of Municipal Solid Waste Fly Ash, Obtained by Co-Combustion with Sewage Sludge, Mixed with Bottom Ash Derived by the Same Plant. Appl. Sci. 2020, 10, 6075. https://doi.org/10.3390/app10176075
Assi A, Bilo F, Zanoletti A, Borgese L, Depero LE, Nenci M, Bontempi E. Stabilization of Municipal Solid Waste Fly Ash, Obtained by Co-Combustion with Sewage Sludge, Mixed with Bottom Ash Derived by the Same Plant. Applied Sciences. 2020; 10(17):6075. https://doi.org/10.3390/app10176075
Chicago/Turabian StyleAssi, Ahmad, Fabjola Bilo, Alessandra Zanoletti, Laura Borgese, Laura Eleonora Depero, Mario Nenci, and Elza Bontempi. 2020. "Stabilization of Municipal Solid Waste Fly Ash, Obtained by Co-Combustion with Sewage Sludge, Mixed with Bottom Ash Derived by the Same Plant" Applied Sciences 10, no. 17: 6075. https://doi.org/10.3390/app10176075
APA StyleAssi, A., Bilo, F., Zanoletti, A., Borgese, L., Depero, L. E., Nenci, M., & Bontempi, E. (2020). Stabilization of Municipal Solid Waste Fly Ash, Obtained by Co-Combustion with Sewage Sludge, Mixed with Bottom Ash Derived by the Same Plant. Applied Sciences, 10(17), 6075. https://doi.org/10.3390/app10176075