Stabilization of Municipal Solid Waste Fly Ash, Obtained by Co-Combustion with Sewage Sludge, Mixed with Bottom Ash Derived by the Same Plant
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Stabilization Procedure
2.3. Leaching Test and TXRF Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chang, Z.; Long, G.; Zhou, J.L.; Ma, C. Valorization of sewage sludge in the fabrication of construction and building materials: A review. Resour. Conserv. Recycl. 2020, 154, 104606. [Google Scholar] [CrossRef]
- Benassi, L.; Zanoletti, A.; Depero, L.E.; Bontempi, E. Sewage sludge ash recovery as valuable raw material for chemical stabilization of leachable heavy metals. J. Environ. Manag. 2019, 245, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Phua, Z.; Giannis, A.; Dong, Z.L.; Lisak, G.; Ng, W.J. Characteristics of incineration ash for sustainable treatment and reutilization. Environ. Sci. Pollut. Res. 2019, 26, 16974–16997. [Google Scholar] [CrossRef]
- Assi, A.; Bilo, F.; Zanoletti, A.; Ponti, J.; Valsesia, A.; La Spina, R.; Zacco, A.; Bontempi, E. Zero-waste approach in municipal solid waste incineration: Reuse of bottom ash to stabilize fly ash. J. Clean. Prod. 2020, 245. [Google Scholar] [CrossRef]
- Rodella, N.; Bosio, A.; Dalipi, R.; Zacco, A.; Borgese, L.; Depero, L.E.; Bontempi, E. Waste silica sources as heavy metal stabilizers for municipal solid waste incineration fly ash. Arab. J. Chem. 2017, 10, S3676–S3681. [Google Scholar] [CrossRef] [Green Version]
- Benassi, L.; Bosio, A.; Dalipi, R.; Borgese, L.; Rodella, N.; Pasquali, M.; Depero, L.E.; Bergese, P.; Bontempi, E. Comparison between rice husk ash grown in different regions for stabilizing fly ash from a solid waste incinerator. J. Environ. Manag. 2015, 159, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Benassi, L.; Franchi, F.; Catina, D.; Cioffi, F.; Rodella, N.; Borgese, L.; Pasquali, M.; Depero, L.E.; Bontempi, E. Rice husk ash to stabilize heavy metals contained in municipal solid waste incineration fly ash: First results by applying new pre-treatment technology. Materials 2015, 8, 6868–6879. [Google Scholar] [CrossRef]
- Bosio, A.; Rodella, N.; Gianoncelli, A.; Zacco, A.; Borgese, L.; Depero, L.E.; Bingham, P.A.; Bontempi, E. A new method to inertize incinerator toxic fly ash with silica from rice husk ash. Environ. Chem. Lett. 2013, 11, 329–333. [Google Scholar] [CrossRef]
- Zacco, A.; Borgese, L.; Gianoncelli, A.; Struis, R.P.W.J.; Depero, L.E.; Bontempi, E. Review of fly ash inertisation treatments and recycling. Environ. Chem. Lett. 2014. [Google Scholar] [CrossRef]
- Assi, A.; Bilo, F.; Zanoletti, A.; Ponti, J.; Valsesia, A.; La Spina, R.; Depero, L.E.; Bontempi, E. Review of the Reuse Possibilities Concerning Ash Residues from Thermal Process in a Medium-Sized Urban System in Northern Italy. Sustainability 2020, 12, 4193. [Google Scholar] [CrossRef]
- Zacco, A.; Gianoncelli, A.; Ardesi, R.; Sacrato, S.; Guerini, L.; Bontempi, E.; Tomasoni, G.; Alberti, M.; Depero, L.E. Use of colloidal silica to obtain a new inert from municipal solid waste incinerator (MSWI) fly ash: First results about reuse. Clean. Technol. Environ. Policy 2012, 14, 291–297. [Google Scholar] [CrossRef]
- Diliberto, C.; Meux, E.; Diliberto, S.; Garoux, L.; Marcadier, E.; Rizet, L.; Lecomte, A. A zero-waste process for the management of MSWI fly ashes: Production of ordinary Portland cement. Environ. Technol. 2020, 41, 1199–1208. [Google Scholar] [CrossRef] [PubMed]
- Assi, A.; Fabjola, B.; Federici, S.; Zacco, A.; Depero, L.E.; Bontempi, E. Bottom ash derived from municipal solid waste and sewage sludge co-incineration: First results about characterization and reuse. Waste Manag. 2020, 116, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Bontempi, E. A new approach for evaluating the sustainability of raw materials substitution based on embodied energy and the CO2 footprint. J. Clean. Prod. 2017, 162, 162–169. [Google Scholar] [CrossRef]
- Benassi, L.; Pasquali, M.; Zanoletti, A.; Dalipi, R.; Borgese, L.; Depero, L.E.; Vassura, I.; Quina, M.J.; Bontempi, E. Chemical Stabilization of Municipal Solid Waste Incineration Fly Ash without Any Commercial Chemicals: First Pilot-Plant Scaling Up. ACS Sustain. Chem. Eng. 2016, 4, 5561–5569. [Google Scholar] [CrossRef]
- Zanoletti, A.; Bilo, F.; Depero, L.E.; Zappa, D.; Bontempi, E. The first sustainable material designed for air particulate matter capture: An introduction to Azure Chemistry. J. Environ. Manag. 2018, 218, 355–362. [Google Scholar] [CrossRef]
- Ramezanianpour, A.A. Cement Replacement Materials, Properties, Durability, Sustainability; Springer: Berlin/Heidelberg, Germany, 2014; Volume 7, ISBN 978-3-642-36720-5. [Google Scholar]
- Pandey, R.A.; Biswas, R.; Chakrabarti, T.; Devotta, S. Flue gas desulfurization: Physicochemical and biotechnological approaches. Crit. Rev. Environ. Sci. Technol. 2005, 35, 571–622. [Google Scholar] [CrossRef]
- Bontempi, E.; Zacco, A.; Borgese, L.; Gianoncelli, A.; Ardesi, R.; Depero, L.E. A new method for municipal solid waste incinerator (MSWI) fly ash inertization, based on colloidal silica. J. Environ. Monit. 2010, 12, 2093–2099. [Google Scholar] [CrossRef]
- Bosio, A.; Zacco, A.; Borgese, L.; Rodella, N.; Colombi, P.; Benassi, L.; Depero, L.E.; Bontempi, E. A sustainable technology for Pb and Zn stabilization based on the use of only waste materials: A green chemistry approach to avoid chemicals and promote CO2 sequestration. Chem. Eng. J. 2014, 253, 377–384. [Google Scholar] [CrossRef]
- Pasquali, M.; Zanoletti, A.; Benassi, L.; Federici, S.; Depero, L.E.; Bontempi, E. Stabilized biomass ash as a sustainable substitute for commercial P-fertilizers. Land Degrad. Dev. 2018, 29, 2199–2207. [Google Scholar] [CrossRef]
- Colombi, P.; Agnihotri, D.K.; Asadchikov, V.E.; Bontempi, E.; Bowen, D.K.; Chang, C.H.; Depero, L.E.; Farnworth, M.; Fujimoto, T.; Gibaud, A.; et al. Reproducibility in X-ray reflectometry: Results from the first world-wide round-robin experiment. J. Appl. Crystallogr. 2008, 41, 143–152. [Google Scholar] [CrossRef]
- Saikia, N.; Kato, S.; Kojima, T. Compositions and leaching behaviours of combustion residues. Fuel 2006, 85, 264–271. [Google Scholar] [CrossRef]
- Youcai, Z.; Ziyang, L. Pollution Control and Resource Recovery, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 9780128116395. [Google Scholar]
- Seniunaite, J.; Vasarevicius, S. Leaching of Copper, Lead and Zinc from Municipal Solid Waste Incineration Bottom Ash. Energy Procedia 2017, 113, 442–449. [Google Scholar] [CrossRef]
- Tytła, M. Identification of the Chemical Forms of Heavy Metals in Municipal Sewage Sludge as a Critical Element of Ecological Risk Assessment in Terms of Its Agricultural or Natural Use. Int. J. Environ. Res. Public Health 2020, 17, 4640. [Google Scholar] [CrossRef]
- van der Kooij, S.; Van Vliet, B.J.M.; Stomph, T.J.; Sutton, N.B.; Anten, N.P.R.; Hoffland, E. Phosphorus recovered from human excreta: A socio-ecological-technical approach to phosphorus recycling. Resour. Conserv. Recycl. 2020, 157, 104744. [Google Scholar] [CrossRef]
- Bosio, A.; Rodella, N.; Depero, L.E.; Bontempi, E. Rice Husk Ash Based Composites, Obtained by Toxic Fly Ash Inertization, and their Applications as Adsorbents. Chem. Eng. 2014, 37. [Google Scholar] [CrossRef]
- Assi, A.; Federici, S.; Bilo, F.; Zacco, A.; Depero, L.E.; Bontempi, E. Increased sustainability of carbon dioxide mineral sequestration by a technology involving fly ash stabilization. Materials 2019, 12, 2714. [Google Scholar] [CrossRef] [Green Version]
- Ji, L.; Yu, H. Carbon dioxide sequestration by direct mineralization of fly ash. In Carbon Dioxide Sequestration in Cementitious Construction Materials; Elsevier: Amsterdam, The Netherlands, 2018; pp. 13–37. ISBN 9780081024447. [Google Scholar]
- Leonard, R.J.; Davidson, D.T. Pozzolanic reactivity study of fly ash. Highw. Res. Board Bull. 1959, 1–17. [Google Scholar]
- Zhang, Y.; Cetin, B.; Likos, W.J.; Edil, T.B. Impacts of pH on leaching potential of elements from MSW incineration fly ash. Fuel 2016, 184, 815–825. [Google Scholar] [CrossRef]
- Rodella, N.; Pasquali, M.; Zacco, A.; Bilo, F.; Borgese, L.; Bontempi, N.; Tomasoni, G.; Depero, L.E.; Bontempi, E. Beyond waste: New sustainable fillers from fly ashes stabilization, obtained by low cost raw materials. Heliyon 2016, 2. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Huang, R.; Tang, Y. Comprehensive Understandings of Rare Earth Element (REE) Speciation in Coal Fly Ashes and Implication for REE Extractability. Environ. Sci. Technol. 2019, 53, 5369–5377. [Google Scholar] [CrossRef] [PubMed]
- Junakova, N.; Junak, J.; Balintova, M. Reservoir sediment as a secondary raw material in concrete production. Clean Technol. Environ. Policy 2015, 17, 1161–1169. [Google Scholar] [CrossRef]
- Assi, A.; Bilo, F.; Zanoletti, A.; Ducoli, S.; Ramorino, G.; Gobetti, A.; Zacco, A.; Federici, S.; Depero, L.E.; Bontempi, E. A Circular Economy Virtuous Example—Use of a Stabilized Waste Material Instead of Calcite to Produce Sustainable Composites. Appl. Sci. 2020, 10, 754. [Google Scholar] [CrossRef] [Green Version]
- Guarienti, M.; Gianoncelli, A.; Bontempi, E.; Moscoso Cardozo, S.; Borgese, L.; Zizioli, D.; Mitola, S.; Depero, L.E.; Presta, M. Biosafe inertization of municipal solid waste incinerator residues by COSMOS technology. J. Hazard. Mater. 2014, 279, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Bilo, F.; Moscoso, S.; Borgese, L.; Delbarba, M.V.; Zacco, A.; Bosio, A.; Federici, S.; Guarienti, M.; Presta, M.; Bontempi, E.; et al. Total reflection X-ray fluorescence spectroscopy to study Pb and Zn accumulation in zebrafish embryos. X-ray Spectrom. 2015, 44, 124–128. [Google Scholar] [CrossRef]
- Guarienti, M.; Cardozo, S.M.; Borgese, L.; Lira, G.R.; Depero, L.E.; Bontempi, E.; Presta, M. COSMOS-rice technology abrogates the biotoxic effects of municipal solid waste incinerator residues. Environ. Pollut. 2016, 214, 713–721. [Google Scholar] [CrossRef]
Line | Procedure | Mass (g) | V (mL) | |||
---|---|---|---|---|---|---|
Sewage-MSWI FA | CFA | FGD | Sewage-MSWI BA | H2O | ||
1 | a) | 130.2 | 31 | 40.8 | 20.1 | 200 |
b) | 130.6 | 30.4 | 40.7 | - | 200 | |
2 | a) | 130 | 30.8 | 40 | 20 | 200 |
b) | 130.1 | 30.3 | 40.4 | - | 200 | |
3 | a) | 130.2 | 30.1 | 40.8 | 20 | 200 |
b) | 130.1 | 30 | 40.3 | - | 200 | |
b) | 130.1 | 30 | 40.2 | - | 200 |
Samples | FA-Line 1 | FA-Line 2 | FA-Line 3 | BA-Line 1 | BA-Line 2 | BA-Line 3 |
---|---|---|---|---|---|---|
pH | 11.89 | 11.92 | 11.9 | 12.09 | 12.2 | 12.18 |
Element | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) |
P * | 40.3 ± 16.0 | 25.4 ± 8.4 | 21.9 ± 5.7 | 5.4 ± 2.5 | 9.3 ± 2.6 | 12.7 ± 5.3 |
S * | 273 ± 48 | 267 ± 63 | 217 ± 61 | 71 ± 3.6 | 131 ± 21 | 81 ± 21 |
Cl | 8890 ± 193 | 5969 ± 954 | 6545 ± 958 | 62 ± 36 | 318 ± 185 | 408 ± 81 |
K | 1087 ± 126 | 711 ± 280 | 595 ± 161 | 111 ± 17 | 81 ± 21 | 105 ± 32 |
Ca | 6387 ± 1044 | 4930 ± 913 | 4677 ± 706 | 651 ± 68 | 979 ± 175 | 995 ± 258 |
Cr | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Mn | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Fe | 0.4 ± 0.2 | 0.2 ± 0.1 | 0.2 ± 0.2 | 0.2 ± 0.1 | 0.07 ± 0.03 | 0.09 ± 0.04 |
Cu | 0.23 ± 0.05 | 0.09 ± 0.03 | 0.33 ± 0.05 | 4.5 ± 0.5 | 5.6 ± 0.7 | 6.1 ± 0.7 |
Zn | 11.7 ± 1.4 | 9.0 ± 0.4 | 10.1 ± 1.4 | 0.3 ± 0.2 | 0.7 ± 0.2 | 0.61 ± 0.03 |
Br | 211 ± 26 | 183 ± 19 | 236 ± 21 | 1.7 ± 0.3 | 1.9 ± 0.2 | 1.8 ± 1.0 |
Rb | 7.3 ± 1.5 | 7.1 ± 0.9 | 7.6 ± 0.8 | 0.4 ± 0.2 | 0.2 ± 0.0 | 0.25 ± 0.02 |
Sr | 16.0 ± 4.3 | 13.8 ± 0.4 | 27.8 ± 3.9 | 3.9 ± 0.4 | 5.5 ± 0.6 | 4.7 ± 0.2 |
Pb | 92.0 ± 15.6 | 94.1 ± 6.8 | 127.1 ± 5.4 | 0.58 ± 0.04 | 1.6 ± 0.3 | 1.6 ± 0.4 |
Samples | FA + BA Line 1 | FA + BA Line 2 | FA + BA Line 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
Time | 1 M | 2 M | 3 M | 1 M | 2 M | 3 M | 1 M | 2 M | 3 M |
pH | 13.5 | 12.1 | 10.5 | 13.5 | 12.0 | 10.8 | 13.8 | 12.1 | 11.2 |
Elements | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) |
P * | 42.8 ± 5.6 | 57.4 ± 6.9 | 33.2 ± 10.5 | 28.9 ± 15.2 | 59.6 ± 9.0 | 33.3 ± 13.6 | 37.2 ± 26.7 | 58.3 ± 18.2 | 24.9 ± 6.2 |
S * | 423 ± 168 | 358 ± 21 | 436 ± 81 | 318 ± 53 | 369 ± 82 | 366 ± 129 | 100 ± 30 | 208 ± 32 | 251 ± 41 |
Cl | 3164 ± 234 | 4911 ± 1052 | 2350 ± 571 | 2175 ± 885 | 4735 ± 168 | 3069 ± 978 | 4568 ± 93 | 4797 ± 248 | 2308 ± 699 |
K | 366 ± 58 | 593 ± 182 | 237 ± 34 | 222 ± 78 | 638 ± 55 | 336 ± 79 | 493 ± 47 | 525.1 ± 106 | 174 ± 41 |
Ca | 2222 ± 2008 | 3569 ± 835 | 1518 ± 175 | 1331 ± 232 | 3339 ± 145 | 1938 ± 274 | 3636 ± 197 | 3676 ± 200 | 1498 ± 439 |
Cr | <LOD | 0.1 ± 0.002 | 0.2 ± 0.1 | <LOD | 0.1 ± 0.1 | 0.1 ± 0.1 | <LOD | <LOD | <LOD |
Mn | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 0.1 ± 0.04 | <LOD | <LOD |
Fe | 0.10 ± 0.01 | 0.4 ± 0.2 | 0.2 ± 0.1 | 0.6 ± 0.3 | 0.3 ± 0.1 | 0.4 ± 0.2 | 0.2 ± 0.1 | 0.74 ± 0.04 | 0.2 ± 0.1 |
Cu | 0.07 ± 0.01 | 0.1 ± 0.01 | 0.08 ± 0.01 | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.09 ± 0.04 | 0.3 ± 0.01 | 0.2 ± 0.01 | 0.1 ± 0.1 |
Zn | 0.2 ± 0.1 | 0.4 ± 0.1 | 0.1 ± 0.0 | 0.6 ± 0.04 | 0.6 ± 0.1 | 0.07 ± 0.04 | 3.5 ± 1.9 | 1.4 ± 0.3 | 0.2 ± 0.1 |
Br | 79.5 ± 9.0 | 75.1 ± 4.7 | 88.4 ± 4.2 | 93.3 ± 8.9 | 62.0 ± 1.6 | 76.4 ± 1.7 | 62.5 ± 6.7 | 69.9 ± 6.5 | 81.7 ± 4.3 |
Rb | 3.4 ± 0.7 | 3.3 ± 0.4 | 4.5 ± 0.3 | 4.6 ± 0.8 | 3.2 ± 0.2 | 3.8 ± 0.5 | 2.2 ± 0.3 | 3.1 ± 0.2 | 3.7 ± 1.0 |
Sr | 12.5 ± 0.8 | 9.9 ± 0.5 | 13.2 ± 1.5 | 15.0 ± 2.1 | 10.1 ± 0.4 | 11.0 ± 1.5 | 14.2 ± 2.6 | 16.4 ± 0.7 | 18.7 ± 2.3 |
Pb | 2.1 ± 0.4 | 3.0 ± 0.4 | <LOD | 1.7 ± 0.4 | 2.6 ± 0.5 | <LOD | 17.1 ± 10.0 | 6.5 ± 1.6 | 0.27 ± 0.05 |
Samples | FA + BA Line 1 | FA + BA Line 2 | FA + BA Line 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
Time | 1 M | 2 M | 3 M | 1 M | 2 M | 3 M | 1 M | 2 M | 3 M |
pH | 13.6 | 8.7 | 7.7 | 13.7 | 12.2 | 8.0 | 13.6 | 12.1 | 8.4 |
Elements | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) |
P * | 65.4 ± 23.1 | 30.2 ± 1.9 | 28.2 ± 14.6 | 40.4 ± 17.7 | 57.7 ± 2.8 | 27.9 ± 2.8 | 39.5 ± 1.8 | 49.2 ± 2.3 | 32.5 ± 18.9 |
S * | 640 ± 180 | 422 ± 219 | 604 ± 244 | 330 ± 121 | 363 ± 50 | 469 ± 177 | 244 ± 24 | 378 ± 54 | 562 ± 172 |
Cl | 3740 ± 484 | 3083 ± 1181 | 2185 ± 677 | 2237 ± 1059 | 5123 ± 106 | 1953 ± 835 | 3677 ± 281 | 5381 ± 1236 | 2287 ± 640 |
K | 474 ± 105 | 311 ± 8 | 257 ± 83 | 242 ± 126 | 636 ± 13 | 202 ± 136 | 369 ± 24 | 606 ± 201 | 215 ± 61 |
Ca | 3156. ± 474 | 2190 ± 722 | 1643 ± 443 | 1400 ± 925 | 3810 ± 79 | 1290 ± 642 | 2553 ± 416 | 4248 ± 1396 | 1587 ± 524 |
Cr | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 0.110 ± 0.002 | 0.2 ± 0.1 | <LOD |
Mn | <LOD | <LOD | 0.13 ± 0.02 | <LOD | <LOD | <LOD | 0.11 ± 0.04 | <LOD | <LOD |
Fe | 0.2 ± 0.1 | 0.3 ± 0.1 | 0.5 ± 0.1 | 0.5 ± 0.1 | 0.17 ± 0.01 | 0.3 ± 0.2 | 0.3 ± 0.2 | <LOD | 0.28 ± 0.02 |
Cu | <LOD | <LOD | <LOD | <LOD | 0.1 ± 0.001 | <LOD | <LOD | <LOD | <LOD |
Zn | 0.2 ± 0.1 | 0.3 ± 0.1 | 1.0 ± 0.1 | 0.9 ± 0.2 | 0.9 ± 0.1 | 0.3 ± 0.1 | 1.7 ± 0.5 | 2.0 ± 1.1 | 0.07 ± 0.04 |
Br | 64.9 ± 11.4 | 82.2 ± 13.1 | 75.3 ± 3.4 | 102.3 ± 27.6 | 85.8 ± 7.4 | 90 ± 32 | 94.1 ± 7.4 | 92.1 ± 6.5 | 107.3 ± 2.3 |
Rb | 2.7 ± 0.2 | 4.6 ± 1.5 | 3.4 ± 0.5 | 4.3 ± 2.1 | 3.5 ± 0.3 | 4.5 ± 2.5 | 3.1 ± 0.2 | 3.3 ± 0.4 | 4.5 ± 0.6 |
Sr | 9.7 ± 0.6 | 10.9 ± 1.8 | 9.0 ± 1.6 | 12.9 ± 4.0 | 10.4 ± 0.3 | 9.5 ± 4.3 | 17.4 ± 0.5 | 15.9 ± 1.4 | 19.0 ± 1.2 |
Pb | 2.4 ± 0.4 | <LOD | <LOD | 7.1 ± 1.9 | 7.6 ± 1.3 | <LOD | 8.3 ± 2.8 | 10.7 ± 5.7 | <LOD |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Assi, A.; Bilo, F.; Zanoletti, A.; Borgese, L.; Depero, L.E.; Nenci, M.; Bontempi, E. Stabilization of Municipal Solid Waste Fly Ash, Obtained by Co-Combustion with Sewage Sludge, Mixed with Bottom Ash Derived by the Same Plant. Appl. Sci. 2020, 10, 6075. https://doi.org/10.3390/app10176075
Assi A, Bilo F, Zanoletti A, Borgese L, Depero LE, Nenci M, Bontempi E. Stabilization of Municipal Solid Waste Fly Ash, Obtained by Co-Combustion with Sewage Sludge, Mixed with Bottom Ash Derived by the Same Plant. Applied Sciences. 2020; 10(17):6075. https://doi.org/10.3390/app10176075
Chicago/Turabian StyleAssi, Ahmad, Fabjola Bilo, Alessandra Zanoletti, Laura Borgese, Laura Eleonora Depero, Mario Nenci, and Elza Bontempi. 2020. "Stabilization of Municipal Solid Waste Fly Ash, Obtained by Co-Combustion with Sewage Sludge, Mixed with Bottom Ash Derived by the Same Plant" Applied Sciences 10, no. 17: 6075. https://doi.org/10.3390/app10176075
APA StyleAssi, A., Bilo, F., Zanoletti, A., Borgese, L., Depero, L. E., Nenci, M., & Bontempi, E. (2020). Stabilization of Municipal Solid Waste Fly Ash, Obtained by Co-Combustion with Sewage Sludge, Mixed with Bottom Ash Derived by the Same Plant. Applied Sciences, 10(17), 6075. https://doi.org/10.3390/app10176075