Empirical Analysis and Geomechanical Modelling of an Underground Water Reservoir for Hydroelectric Power Plants
Abstract
:1. Introduction
2. Methodology
2.1. Preliminary Energy Balance
2.2. Geology
2.3. Underground Hydroelectric Power Plant
2.4. Empirical Analysis
2.5. Material Properties
2.6. Numerical Modelling
2.7. Simulation Procedure
2.8. Numerical Modelling. Support System Design
3. Results and Discussion
3.1. Q-System Method
3.2. Numerical Simulations
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
3D | Three-dimensional |
ACCB | Asturian Central Coal Basin |
CAES | Compressed air energy storage |
EDZ | Excavation damage zone |
ESR | Excavation support ratio |
FESS | Flexible energy storage system |
GSI | Geological strength index |
MC | Mohr-Coulomb |
PSH | Pumped-storage hydropower |
RQD | Rock quality designation, |
SFR | Steel fibre reinforced shotcrete |
SRF | Stress reduction factor |
UPSH | Underground pumped-storage hydropower |
VRE | Variable renewable energies |
References
- Menéndez, J.; Fernández-Oro, J.M.; Loredo, J. Economic feasibility of underground pumped storage hydropower plants providing ancillary services. Appl. Sci. 2020, 10, 3947. [Google Scholar] [CrossRef]
- U.S. Energy Information Administration (EIA). International Energy Statistics. Available online: https://www.iea.org/ (accessed on 20 August 2020).
- International Renewable Energy Agency. Renewables and Electricity Storage: A Technology Roadmap for Remap 2030; IREA: Abu Dhabi, UAE, 2015. [Google Scholar]
- Wong, I.H. An underground pumped storage scheme in the bukit Timah granite of Singapore. Tunn. Undergr. Space Technol. 1996, 11, 485–489. [Google Scholar] [CrossRef]
- Kucukali, S. Finding the most suitable existing hydropower reservoirs for the development of pumped-storage schemes: An integrated approach. Renew. Sustain. Energy Rev. 2014, 37, 502–508. [Google Scholar] [CrossRef]
- Minakshi, M.; Mitchell, D.R.G.; Jones, R.T.; Pramanik, N.C.; Jean-Fulcrand, A.; Garnweitner, G. A hybrid electrochemical energy storage device using sustainable electrode materials. Chem. Sel. 2020, 5, 1597–1606. [Google Scholar] [CrossRef]
- Divakaran, A.M.; Hamilton, D.; Manjunatha, K.N.; Minakshi, M. Design, development and thermal analysis of reusable Li-Ion battery module for future mobile and stationary applications. Energies 2020, 13, 1477. [Google Scholar] [CrossRef] [Green Version]
- Menéndez, J.; Schmidt, F.; Konietzky, H.; Fernández-Oro, J.M.; Galdo, M.; Loredo, J.; Díaz-Aguado, M.B. Stability analysis of the underground infrastructure for pumped storage hydropower plants in closed coal mines. Tunn. Undergr. Space Technol. 2019, 94. [Google Scholar] [CrossRef]
- Uddin, N.; Asce, M. Preliminary design of an underground reservoir for pumped storage. Geotech. Geol. Eng. 2003, 21, 331–355. [Google Scholar] [CrossRef]
- Carneiro, J.F.; Matos, C.R.; van Gessel, S. Opportunities for large-scale energy storage in geological formations in mainland Portugal. Renew. Sustain. Energy Rev. 2019, 99, 201–211. [Google Scholar] [CrossRef] [Green Version]
- Khaledi, K.; Mahmoudi, E.; Datcheva, M.; Schanz, T. Analysis of compressed air storage caverns in rock salt considering thermomechanical cyclic loading. Environ. Earth Sci. 2016, 75. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, X.D.; Zhang, S.J.; Xie, L.K. Analysis of support requirements for underground water-sealed oil storage cavern in China. Tunn. Undergr. Space Technol. 2018, 71, 36–46. [Google Scholar] [CrossRef]
- Chen, J.; Lu, D.; Liu, W.; Fan, J.; Jiang, D.; Yi, L.; Kang, Y. Stability study and optimization design of small-spacing two-well (SSTW) salt caverns for natural gas storages. J. Energy Storage 2020, 27. [Google Scholar] [CrossRef]
- Rutqvist, J.; Kim, H.M.; Ryu, D.W.; Synn, J.H.; Song, W.K. Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage in lined rock caverns. Int. J. Rock Mech. Min. Sci. 2012, 52, 71–81. [Google Scholar] [CrossRef]
- Zhu, W.S.; Li, X.J.; Zhang, Q.B.; Zheng, W.H.; Xin, X.L.; Sun, A.H.; Li, S.C. A study on sidewall displacement prediction and stability evaluations for large underground power station caverns. Int. J. Rock Mech. Min. Sci. 2010, 47, 1055–1062. [Google Scholar] [CrossRef]
- Harza, R.D. Hydro and pumped storage for peaking. Power Eng. 1960, 64, 79–82. [Google Scholar]
- Isaaksson, G.; Nilsson, D.; Sjostrand, T. Pumped storage power plants with underground lower reservoirs. In Proceedings of the Seventh World Power Conference, Moscow, Russia, 20–24 August 1968; Section 2. p. 160. [Google Scholar]
- Sorensen, K.E. Underground reservoirs: Pumped storage of the future? Civ. Eng. 1969, 39, 66–70. [Google Scholar]
- Dames and Moore. An Assessment of Hydroelectric Pumped Storage. National Hydroelectric Power Resources Study. Under Contract No. DACW-31-80 C-0090 to US Army Corps of Engineers. 1981. Available online: https://www.iwr.usace.army.mil/Portals/70/docs/iwrreports/IWR019-000001-000517.pdf (accessed on 20 August 2020).
- Tam, S.W.; Blomquist, C.A.; Kartsounes, G.T. Underground pumped hydro storage—An overview. Energy Sources 1979, 4, 329–351. [Google Scholar] [CrossRef]
- Braat, K.B.; Van Lohuizen, H.P.S.; De Haan, J.F. Underground pumped hydro-storage project for the Netherlands. Tunn. Tunn. 1985, 17, 19–22. [Google Scholar]
- Menendez, J.; Loredo, J.; Fernandez-Oro, J.M.; Galdo, M. Energy storage in underground coal mines in NW Spain: Assessment of an underground lower water reservoir and preliminary energy balance. Renew. Energy 2019, 134, 1381–1391. [Google Scholar] [CrossRef]
- Menéndez, J.; Loredo, J.; Fernández-Oro, J.M.; Galdo, M. Underground Pumped-Storage Hydro Power Plants with Mine Water in Abandoned Coal Mines. In Proceedings of the 2017 International Mine water Association Congress ‘Mine Water and Circular Economy’, Lappeenranta, Finland, 25–30 June 2017; Wolkersdorfer, C., Sartz, L., Sillanpää, M., Häkkinen, A., Eds.; LUT Scientific and Expertise Publications: Lappeenranta, Finland, 2017; pp. 6–13. [Google Scholar]
- Wessel, M.; Madlener, R.; Hilgers, C. Economic Feasibility of Semi-Underground Pumped Storage Hydropower Plants in Open-Pit Mines. Energies 2020, 13, 4178. [Google Scholar] [CrossRef]
- Luick, H.; Niemann, A.; Perau, E.; Schreiber, U. Coalmines as Underground Pumped Storage Power Plants (UPP)—A contribution to a sustainable energy supply? Geophys. Res. Abstr. 2012, 14, 4205. [Google Scholar]
- Madlener, R.; Specht, J.M. An Exploratory Economic Analysis of Underground Pumped-Storage Hydro Power Plants in Abandoned Coal Mines; FCN Working Paper No. 2/2013; FCN: Aachen, Germany, 2013. [Google Scholar]
- Pujades, E.; Orban, P.; Archambeau, P.; Kitsikoudis, V.; Erpicum, S.; Dassargues, A. Underground pumped-storage hydropower (UPSH) at the martelange mine (Belgium): Interactions with groundwater flow. Energies 2020, 13, 2353. [Google Scholar] [CrossRef]
- Kitsikoudis, V.; Archambeau, P.; Dewals, B.; Pujades, E.; Orban, P.; Dassargues, A.; Pirotton, M.; Erpicum, S. Underground Pumped-Storage Hydropower (UPSH) at the Martelange Mine (Belgium): Underground Reservoir Hydraulics. Energies 2020, 13, 3512. [Google Scholar] [CrossRef]
- Menéndez, J.; Fernandez-Oro, J.M.; Galdo, M.; Loredo, J. Efficiency analysis of underground pumped storage hydropower plants. J. Energy Storage 2020, 28. [Google Scholar] [CrossRef]
- Barton, N.; Lien, R.; Lunde, J. Engineering classification of rock masses for the design of tunnel support. Rock Mech. 1974, 6, 189–236. [Google Scholar] [CrossRef]
- Grimstad, E.; Barton, N. Updating the Q-system for NMT. In Proceedings of the Int. Symp. Sprayed Concrete, Fagernes, Norway, 17–21 October 1993; Norwegian Concrete Association: Oslo, Norway, 1993; pp. 46–66. [Google Scholar]
- Barton, N. Some new Q-value correlations to assist in site characterization and tunnel design. Int. J. Rock Mech. Min. Sci. 2002, 39, 185–216. [Google Scholar] [CrossRef]
- Goel, R.K.; Jethwa, J.L.; Paithankar, A.G. Indian experiences with Q and RMR systems. Tunn. Undergr. Space Technol. 1995, 10, 97–109. [Google Scholar] [CrossRef]
- Ulusay, R. The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007–2014; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Ray, A.K. Influence of cutting sequence on development of cutters and roof falls in underground coal mine. In Proceedings of the 28th International Conference on Ground Control in Mining, Morgantown, WV, USA, 28–30 July 2009; Peng, S.S., Ed.; West Virginia University: Morgantown, WV, USA, 2009. [Google Scholar]
Lithology | Unit Weight, γ (KN m−3) | Intact Modulus, Ei (MPa) | Compressive Strength, σci (MPa) | Intact Rock Constant (mi) | GSI |
---|---|---|---|---|---|
Shale | 23.83 | 28,988 | 59.7 | 9.2 | 35 |
Sandstone | 25.87 | 43,650 | 150.8 | 15.4 | 50 |
Lithology | Young’s Modulus (MPa) | Poisson’s Ratio | Tensile Strength (MPa) | Cohesion (MPa) | Friction Angle (°) |
---|---|---|---|---|---|
Shale | 3287 | 0.27 | 0.048 | 0.82 | 37.7 |
Sandstone | 13,409 | 0.25 | 0.226 | 2.02 | 52.7 |
Shale Rock Mass | |
Central tunnel | Systematic bolting 245 kN, ϕ = 25 mm, L = 3 m, Reinforced shotcrete 150 mm |
Transversal tunnels | Systematic bolting 245 kN, ϕ = 25 mm, L = 3 m, Reinforced shotcrete 120 mm |
Sandstone Rock Mass | |
Central tunnel | Systematic bolting 245 kN, ϕ = 25 mm, L = 3 m, Reinforced shotcrete 80 mm |
Transversal tunnels | Systematic bolting 245 kN ϕ = 25 mm, L = 3 m, Reinforced shotcrete 60 mm |
Lithology | RQD | Jn | Jr | Ja | Jw | SRF | Q | QN | GSI |
---|---|---|---|---|---|---|---|---|---|
Shale | 31 | 15 | 1 | 2 | 0.4 | 1.8 | 0.23 | 0.41 | 35 |
Sandstone | 48 | 12 | 1.4 | 2.2 | 0.5 | 1 | 1.27 | 1.27 | 50 |
Shale Rock Mass | |
Central tunnel | Systematic grouted bolts spaced 1.4 m, L = 2.7 m, Fibre reinforced shotcrete 120 mm |
Transversal tunnels | Systematic grouted bolts spaced 1.4 m, L = 2.7 m, Fibre reinforced shotcrete 100 mm |
Sandstone Rock Mass | |
Central tunnel | Systematic grouted bolts spaced 1.7 m, L = 2.4 m, Fibre reinforced shotcrete 80 mm |
Transversal tunnels | Systematic grouted bolts spaced 1.7 m, L = 2.4 m, Fibre reinforced shotcrete 50 mm |
Variable | Unsupported Case | Supported Case | |||
---|---|---|---|---|---|
Shale | Sandstone | Shale | Sandstone | ||
Vertical displacements (mm) | 17.1 | 2.93 | 12.5 | 1.92 | |
Horizontal displacements (mm) | 17.4 | 2.91 | 14.8 | 2.27 | |
Thickness of EDZ (m) | 2.1 | 0.72 | 1.3 | 0.37 | |
Axial load rock bolts (kN) | 130.0 | 30.5 | |||
Shotcrete | Axial force (kN) | 699.46 | 62.41 | ||
Bending moment (KNm) | 1.5 | 0.03 | |||
Shear force (kN) | 5.02 | 0.08 |
Variable | Unsupported Case | Supported Case | |||
---|---|---|---|---|---|
Shale | Sandstone | Shale | Sandstone | ||
Vertical displacements (mm) | 20.92 | 3.29 | 12.97 | 2.51 | |
Horizontal displacements (mm) | 18.32 | 2.72 | 11.62 | 1.54 | |
Thickness of EDZ (m) | 2.9 | 1.1 | 1.75 | 0.65 | |
Axial load rock bolts (kN) | 188.9 | 18.5 | |||
Shotcrete | Axial force (kN) | 883.64 | 56.29 | ||
Bending moment (KNm) | 8.08 | 0.16 | |||
Shear force (kN) | 22.35 | 0.42 |
Variable | Unsupported Case | Supported Case | |||
---|---|---|---|---|---|
Shale | Sandstone | Shale | Sandstone | ||
Vertical displacements (mm) | 18.20 | 2.96 | 13.84 | 1.76 | |
Horizontal displacements (mm) | 16.03 | 2.17 | 11.51 | 1.82 | |
Thickness of EDZ (m) | 2.9 | 1.2 | 1.8 | 0.7 | |
Axial load rock bolts (kN) | 160.4 | 29.6 | |||
Shotcrete | Axial force (kN) | 1,570.0 | 168.72 | ||
Bending moment (KNm) | 9.31 | 0.21 | |||
Shear force (kN) | 27.13 | 0.59 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menéndez, J.; Schmidt, F.; Konietzky, H.; Bernardo Sánchez, A.; Loredo, J. Empirical Analysis and Geomechanical Modelling of an Underground Water Reservoir for Hydroelectric Power Plants. Appl. Sci. 2020, 10, 5853. https://doi.org/10.3390/app10175853
Menéndez J, Schmidt F, Konietzky H, Bernardo Sánchez A, Loredo J. Empirical Analysis and Geomechanical Modelling of an Underground Water Reservoir for Hydroelectric Power Plants. Applied Sciences. 2020; 10(17):5853. https://doi.org/10.3390/app10175853
Chicago/Turabian StyleMenéndez, Javier, Falko Schmidt, Heinz Konietzky, Antonio Bernardo Sánchez, and Jorge Loredo. 2020. "Empirical Analysis and Geomechanical Modelling of an Underground Water Reservoir for Hydroelectric Power Plants" Applied Sciences 10, no. 17: 5853. https://doi.org/10.3390/app10175853
APA StyleMenéndez, J., Schmidt, F., Konietzky, H., Bernardo Sánchez, A., & Loredo, J. (2020). Empirical Analysis and Geomechanical Modelling of an Underground Water Reservoir for Hydroelectric Power Plants. Applied Sciences, 10(17), 5853. https://doi.org/10.3390/app10175853