Force Reduction in a Short-Stroke Vibration Tubular Generator for Vehicle Energy Harvesting Application
Abstract
:1. Introduction
2. Skewing Effects
2.1. Investigated Model
2.2. Finite Element Analysis
3. Multi-Objective Optimization
3.1. Factorial Design
3.2. Multi-Objective Optimization Based RSM
3.3. Experiments
4. Unbalanced Model
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Abdelkareem, M.A.A.; Xu, L.; Ali, M.K.A.; Elagouz, A.; Mi, J.; Guo, S.; Liu, Y.; Zuo, L. Vibration energy harvesting in automotive suspension system: A detailed review. Appl. Energy 2018, 229, 672–699. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, X.; John, S. A Comprehensive Review of the Techniques on Regenerative Shock Absorber Systems. Energies 2018, 11, 1167. [Google Scholar] [CrossRef] [Green Version]
- Zuo, L.; Scully, B.; Shestani, J.; Zhou, Y. Design and characterization of an electromagnetic energy harvester for vehicle suspensions. Smart Mater. Struct. 2010, 19, 045003. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Lin, T.; Zuo, L. Design and Optimization of a Tubular Linear Electromagnetic Vibration Energy Harvester. IEEE/ASME Trans. Mechatron. 2014, 19, 615–622. [Google Scholar] [CrossRef]
- Duong, M.-T.; Chun, Y.-D.; Han, P.-W.; Park, B.-G.; Bang, D.-J.; Lee, J.-K. Design of an Electromagnetic Energy Harvesting System Applied to the Shock Absorber of a Sport Utility Vehicle: Part I. Single Permanent Magnet Layer Coreless Type. J. Magn. 2017, 22, 435–442. [Google Scholar] [CrossRef] [Green Version]
- Asadi, E.; Ribeiro, R.; Behrad Khamesee, M.; Khajepour, A. A new adaptive hybrid electromagnetic damper: Modelling, optimization, and experiment. Smart Mater. Struct. 2015, 24, 075003. [Google Scholar] [CrossRef]
- Ebrahimi, B.; Khamesee, M.B.; Golnaraghi, F. Eddy current damper feasibility in automobile suspension: Modeling, simulation and testing. Smart Mater. Struct. 2009, 18, 015017. [Google Scholar] [CrossRef]
- Duong, M.-T.; Chun, Y.-D.; Hong, D.-K. Design of a High-Performance 16-Slot 8-Pole Electromagnetic Shock Absorber Using a Novel Permanent Magnet Structure. Energies 2018, 11, 3352. [Google Scholar] [CrossRef] [Green Version]
- Duong, M.; Chun, Y.; Han, P.; Park, B.; Bang, D.; Lee, J. Optimal Design of a Novel Single-Phase 8 Slot-8 Pole Tubular Electromagnetic Shock Absorber to Harvest Energy. IEEE Trans. Ind. Electron. 2019, 67, 1180–1190. [Google Scholar] [CrossRef]
- Duong, M.-T.; Chun, Y.-D. Optimal Design of a Novel Exterior Permanent Magnet Tubular Machine for Energy Harvesting from Vehicle Suspension System. IEEE Trans. Energy Convers. 2020, 1. [Google Scholar] [CrossRef]
- Liu, C.; Yu, H.; Hu, M.; Liu, Q.; Zhou, S. Detent Force Reduction in Permanent Magnet Tubular Linear Generator for Direct-Driver Wave Energy Conversion. IEEE Trans. Magn. 2013, 49, 1913–1916. [Google Scholar] [CrossRef]
- Schmulling, B.; Lessmann, M.; Riemer, B.; Hameyer, K. The Multi-Slice Method for the Design of a Tubular Linear Motor with a Skewed Reaction Rail. In Proceedings of the 2008 18th International Conference on Electrical Machines, Vilamoura, Portugal, 6–9 September 2008; pp. 1–5. [Google Scholar]
- Juliani, A.D.P.; Leβmann, M.; Gonzaga, D.P.; Hameyer, K. Development and Optimization of a Tubular Linear Synchronous Motor Considering Various Skewing Methods and Eddy Current Losses. In Proceedings of the XIX International Conference on Electrical Machines—ICEM 2010, Rome, Italy, 6–8 September 2010; pp. 1–6. [Google Scholar]
- Janssen, J.L.G.; Paulides, J.J.H.; Lomonova, E.A.; Vandenput, A.J.A. Cogging Force Reduction in Tubular Permanent Magnet Actuators. In Proceedings of the 2007 IEEE International Electric Machines Drives Conference, Antalya, Turkey, 3–5 May 2007; Volume 1, pp. 266–271. [Google Scholar]
- Kim, Y.-J.; Lee, K.-M.; Watada, M. A Study on the Reduction of Cogging Force of Stationary Discontinuous Armature Linear Synchronous Motor Using Auxiliary Teeth. J. Magn. 2011, 16, 281–287. [Google Scholar] [CrossRef]
- Zhu, Y.; Lee, S.-G.; Chung, K.-S.; Cho, Y.-H. Investigation of Auxiliary Poles Design Criteria on Reduction of End Effect of Detent Force for PMLSM. IEEE Trans. Magn. 2009, 45, 2863–2866. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Jung, S.-Y. Minimization of Outlet Edge Force Using Stair Shape Auxiliary Teeth in a Stationary Discontinuous Armature Linear Permanent Magnet Motor. IEEE Trans. Magn. 2011, 47, 3228–3231. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, B.; Zhao, H.; Li, Y.; Zou, J. Optimal Design of Tubular Transverse Flux Motors With Low Cogging Forces for Direct Drive Applications. IEEE Trans. Appl. Supercond. 2016, 26, 1–5. [Google Scholar] [CrossRef]
- Chun, Y.D.; Wakao, S.; Kim, T.H.; Jang, K.B.; Lee, J. Multiobjective design optimization of brushless permanent magnet motor using 3D equivalent magnetic circuit network method. IEEE Trans. Appl. Supercond. 2004, 14, 1910–1913. [Google Scholar] [CrossRef]
- Han, P.-W.; Seo, U.-J.; Choi, J.-H.; Chun, Y.-D.; Koo, D.-H.; Lee, J. Optimizing Design Variables for High Efficiency Induction Motor Considering Cost Effect by Using Genetic Algorithm. J. Electr. Eng. Technol. 2012, 7, 948–953. [Google Scholar] [CrossRef]
- Chung, S.-U.; Kim, J.-M. Double-Sided Iron-Core PMLSM Mover Teeth Arrangement Design for Reduction of Detent Force and Speed Ripple. IEEE Trans. Ind. Electron. 2016, 63, 3000–3008. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Chang, J.-H.; Kang, D.-H.; Kim, S.-I.; Hong, J.-P. Tooth Shape Optimization for Cogging Torque Reduction of Transverse Flux Rotary Motor Using Design of Experiment and Response Surface Methodology. IEEE Trans. Magn. 2007, 43, 1817–1820. [Google Scholar] [CrossRef]
- Lee, S.; Hong, J.; Lee, W.; Hwang, S.; Lee, J.; Kim, Y. Optimal Design for Noise Reduction in Interior Permanent Magnet Motor. In Proceedings of the Conference Record of the 2006 IEEE Industry Applications Conference Forty-First IAS Annual Meeting, Tampa, FL, USA, 8–12 October 2006; Volume 4, pp. 1927–1932. [Google Scholar]
- Jolly, L.; Jabbar, M.A.; Qinghua, L. Design optimization of permanent magnet motors using response surface methodology and genetic algorithms. IEEE Trans. Magn. 2005, 41, 3928–3930. [Google Scholar] [CrossRef]
- Park, J.M.; Kim, S.I.; Hong, J.P.; Lee, J.H. Rotor Design on Torque Ripple Reduction for a Synchronous Reluctance Motor With Concentrated Winding Using Response Surface Methodology. IEEE Trans. Magn. 2006, 42, 3479–3481. [Google Scholar] [CrossRef]
- Hong, D.-K.; Woo, B.-C.; Koo, D.-H.; Kang, D.-H. Optimum Design of Transverse Flux Linear Motor for Weight Reduction and Improvement Thrust Force Using Response Surface Methodology. IEEE Trans. Magn. 2008, 44, 4317–4320. [Google Scholar] [CrossRef]
Item | Value |
---|---|
Magnetic air gap, g (mm) | 1.4 |
Radial permanent magnet (PM) thickness, trm (mm) | 7.0 |
Axial PM width, wam (mm) | 5.0 |
Radial PM width, wrm (mm) | 18.0 |
Spacer thickness, tsp (mm) | 2.0 |
Spacer width, wsp (mm) | 18.0 |
Tooth width, wt (mm) | 6.4 |
Tooth thickness, tt (mm) | 14.0 |
Pole pitch, τp (mm) | 23.0 |
Slot pitch, τs (mm) | 23.0 |
Back iron thickness, tb (mm) | 4.0 |
Number of turns/slot | 361 |
Phase resistance, (Ω) | 5.37 |
Material of the axial PM/radial PM | 50SH, Br = 1.4 T/40SH, Br = 1.26 T |
Material of the tooth, back iron, spacer | S20C |
Skewing Angle | Output Power (W) | Force (N) | ||
---|---|---|---|---|
Maximum | Average | Detent | Electromagnetic | |
0° | 51.43 | 18.25 | 171.19 | 325.82 |
30° | 50.15 | 17.84 | 160.08 | 305.75 |
(97.5%) | (97.8%) | (93.5%) | (93.8%) | |
45° | 47.89 | 17.37 | 149.91 | 284.26 |
(85.1%) | (95.2%) | (87.6%) | (87.2%) | |
60° | 45.33 | 16.69 | 135.57 | 260.65 |
(87.5%) | (91.5%) | (79.2%) | (80.0%) | |
75° | 42.28 | 15.87 | 121.37 | 236.35 |
(88.1%) | (87.0%) | (70.9%) | (72.5%) | |
120° | 31.60 | 13.04 | 82.56 | 182.83 |
(61.4%) | (71.5%) | (48.2%) | (56.1%) |
wt | wam | trm | Pm | Pav | Pd_m | Pd_av | Fm |
---|---|---|---|---|---|---|---|
(mm) | (mm) | (mm) | (W) | (W) | (W/cm3) | (W/cm3) | (N) |
6 | 8 | 8 | 335.67 | 111.71 | 0.328 | 0.109 | 2729.24 |
6 | 8 | 3 | 284.10 | 104.73 | 0.277 | 0.102 | 2444.29 |
6 | 12 | 8 | 262.85 | 105.12 | 0.258 | 0.103 | 3826.74 |
6 | 12 | 3 | 229.62 | 100.34 | 0.225 | 0.098 | 3481.17 |
10 | 8 | 8 | 302.74 | 100.40 | 0.277 | 0.092 | 1789.28 |
10 | 8 | 3 | 275.41 | 99.80 | 0.252 | 0.091 | 1635.07 |
10 | 12 | 8 | 308.61 | 106.34 | 0.283 | 0.098 | 2876.06 |
10 | 12 | 3 | 288.78 | 108.33 | 0.265 | 0.100 | 2835.73 |
Item | Case 1 | Case 2 | Case 3 | Target | |
---|---|---|---|---|---|
Setup | Pm | Maximize | Maximize | Maximize | 250 |
Pav | Maximize | Maximize | Maximize | 100 | |
Pd_m | Maximize | Maximize | Maximize | 0.250 | |
Pd_av | Maximize | Maximize | Maximize | 0.100 | |
Fm | Free | Minimize | ≤2000 | ≤2000 | |
Response | wt | 6.8 | 7.4 | 8.6 | - |
wam | 8.2 | 7.2 | 7.2 | - | |
Pm | 345.71 | 349.20 | 339.32 | 250 | |
Pav | 126.43 | 125.22 | 121.60 | 100 | |
Pd_m | 0.332 | 0.333 | 0.318 | 0.250 | |
Pd_av | 0.121 | 0.119 | 0.114 | 0.100 | |
Fm | 2683.30 | 2121.39 | 1755.07 | ≤2000 |
Item | SUS | S20C | |
---|---|---|---|
396 Turns/Slot | 440 Turns/Slot | ||
Max. output power, Pm (W) | 350.5 | 401.5 | 435.4 |
Ave. output power, Pav (W) | 127.7 | 152.0 | 166.4 |
Max. power density, Pd_m (W) | 0.337 | 0.386 | 0.419 |
Ave. power density, Pd_av (W) | 0.123 | 0.146 | 0.160 |
Max. electromagnetic force, Fm (N) | 2683.3 | 3131.6 | 3223.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duong, M.-T.; Perriard, Y.; Chun, Y.-D. Force Reduction in a Short-Stroke Vibration Tubular Generator for Vehicle Energy Harvesting Application. Appl. Sci. 2020, 10, 5847. https://doi.org/10.3390/app10175847
Duong M-T, Perriard Y, Chun Y-D. Force Reduction in a Short-Stroke Vibration Tubular Generator for Vehicle Energy Harvesting Application. Applied Sciences. 2020; 10(17):5847. https://doi.org/10.3390/app10175847
Chicago/Turabian StyleDuong, Minh-Trung, Yves Perriard, and Yon-Do Chun. 2020. "Force Reduction in a Short-Stroke Vibration Tubular Generator for Vehicle Energy Harvesting Application" Applied Sciences 10, no. 17: 5847. https://doi.org/10.3390/app10175847
APA StyleDuong, M.-T., Perriard, Y., & Chun, Y.-D. (2020). Force Reduction in a Short-Stroke Vibration Tubular Generator for Vehicle Energy Harvesting Application. Applied Sciences, 10(17), 5847. https://doi.org/10.3390/app10175847