# Enhancement of the Purcell Effect by the Wire Metamaterials Formed by the Hexagonal Unit Cells

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

^{2}, where λ is the wavelength and a is the lattice period [9], stands as a particular feature of the wire medium. This causes the remarkable enhancement of the light–matter interaction outcomes; the former includes the spontaneous emission (the Purcell effect) [10,11,12], Vavilov–Cherenkov radiation [13,14], and heat transport [15].

## 2. Methods

_{m}were implanted in a host media with the permittivity ε

_{d}. It is worthwhile mentioning that the unit cell of the metamaterial possessed a hexagonal shape. The former arrangement was possible through utilizing the DNA origami nanostructures to guide the higher-order arrangement of the nanowires in a controlled and programmable manner [17]. In doing so, the structure under consideration stands as a promising tool for further applications.

## 3. Results

## 4. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Shekhar, P.; Atkinson, J.; Jacob, Z. Hyperbolic metamaterials: Fundamentals and applications. Nano Converg.
**2014**, 1, 14. [Google Scholar] [CrossRef] [PubMed] - Noginov, M.A.; Barnakov, Y.A.; Zhu, G.; Tumkur, T.; Li, H.; Narimanov, E.E. Bulk photonic metamaterial with hyperbolic dispersion. Appl. Phys. Lett.
**2009**, 94, 151105. [Google Scholar] [CrossRef] [Green Version] - Jacob, Z.; Smolyaninov, I.I.; Narimanov, E.E. Broadband Purcell effect: Radiative decay engineering with metamaterials. Appl. Phys. Lett.
**2012**, 100, 181105. [Google Scholar] [CrossRef] [Green Version] - Gric, T. Surface-plasmon-polaritons at the interface of nanostructured metamaterials. Prog. Electromagn. Res. M
**2016**, 46, 165–172. [Google Scholar] [CrossRef] [Green Version] - Liu, Y.M. Plasmonic Metamaterials. Ph.D. Thesis, University of California, Berkeley, CA, USA, 2009. [Google Scholar]
- Jacob, Z.; Shalaev, V.M. Physics. Plasmonics goes quantum. Science
**2011**, 334, 463. [Google Scholar] [CrossRef] [PubMed] - Krishnamoorthy, H.N.S.; Jacob, Z.; Narimanov, E.; Kretzschmar, I.; Menon, V.M. Topological transitions in metamaterials. Science
**2012**, 336, 205. [Google Scholar] [CrossRef] [Green Version] - Poddubny, A.; Iorsh, I.; Belov, P.; Kivshar, Y. Hyperbolic metamaterials. Nat. Photonics
**2013**, 7, 948. [Google Scholar] [CrossRef] - Silveirinha, M.G.; Maslovski, S.I. Radiation from elementary sources in a uniaxial wire medium. Phys. Rev. B
**2012**, 85, 155125. [Google Scholar] [CrossRef] [Green Version] - Lemoult, F.; Fink, M.; Lerosey, G. Revisiting the wire medium: An ideal resonant metalens. Waves Random Complex Media
**2011**, 21, 591. [Google Scholar] [CrossRef] [Green Version] - Noginov, M.A.; Li, H.; Barnakov, Y.A.; Dryden, D.; Nataraj, G.; Zhu, G.; Bonner, C.E.; Mayy, M.; Jacob, Z.; Narimanov, E.E. Controlling spontaneous emission with metamaterials. Opt. Lett.
**2010**, 35, 1863. [Google Scholar] [CrossRef] [Green Version] - Poddubny, A.N.; Belov, P.A.; Kivshar, Y.S. Purcell effect in wire metamaterials. Phys. Rev. B
**2013**, 87, 035136. [Google Scholar] [CrossRef] [Green Version] - Fernandes, D.E.; Maslovski, S.I.; Silveirinha, M.G. Cherenkov emission in a nanowire material. Phys. Rev. B
**2012**, 85, 155107. [Google Scholar] [CrossRef] - Vorobev, V.V.; Tyukhtin, A.V. Nondivergent Cherenkov radiation in a wire metamaterial. Phys. Rev. Lett.
**2012**, 108, 184801. [Google Scholar] [CrossRef] [PubMed] - Biehs, S.-A.; Tschikin, M.; Ben-Abdallah, P. Hyperbolic metamaterials as an analog of a backbody in the near field. Phys. Rev. Lett.
**2012**, 109, 104301. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Fernandes, D.E.; Maslovski, S.I.; Hanson, G.W.; Silveirinha, M.G. Fano resonances in nested wire media. Phys. Rev. B
**2013**, 88, 045130. [Google Scholar] [CrossRef] - Julin, S.; Korpi, A.; Nonappa, N.; Shen, B.; Liljeström, V.; Ikkala, O.; Keller, A.; Linko, V.; Kostiainen, M.A. DNA origami directed 3D nanoparticle superlattice via electrostatic assembly. Nanoscale
**2019**, 11, 4546. [Google Scholar] [CrossRef] [Green Version] - Johnson, P.B.; Christy, R.W. Optical constants of the noble metals. Phys. Rev. B
**1972**, 6, 4370. [Google Scholar] [CrossRef] - Oubre, C.; Nordlander, P. Finite-difference time-domain studies of the optical properties of nanoshell dimers. J. Phys. Chem. B
**2005**, 109, 10042–10051. [Google Scholar] [CrossRef] - Starko-Bowes, R.; Atkinson, J.; Newman, W.; Hu, H.; Kallos, T.; Palikaras, G.; Fedosejevs, R.; Pramanik, S.; Jacob, Z. Optical characterization of Epsilon Near Zero, Epsilon Near Pole and hyperbolic response in nanowire metamaterials. J. Opt. Soc. Am. B
**2015**, 32, 2074–2080. [Google Scholar] [CrossRef] [Green Version] - Iorsh, I.; Orlov, A.; Belov, P.; Kivshar, Y. Interface modes in nanostructured metal-dielectric metamaterials. Appl. Phys. Lett.
**2011**, 99, 151914. [Google Scholar] [CrossRef] [Green Version] - Chebykin, A.V.; Orlov, A.A.; Shalin, A.S.; Poddubny, A.N.; Belov, P.A. Strong Purcell effect in anisotropic epsilonnear-zero metamaterials. Phys. Rev. B
**2015**, 91, 205126. [Google Scholar] [CrossRef] [Green Version] - Mirmoosa, M.S.; Kosulnikov, S.Y.; Simovski, C.R. Double resonant wideband Purcell effect in wire metamaterials. J. Opt.
**2016**, 18, 095101. [Google Scholar] [CrossRef]

**Figure 1.**A view of the boundary, splitting up the nanowire composite and dielectric medium (

**a**); a hexagonal unit cell (

**b**).

**Figure 2.**(

**a**) Dependences of the real parts of the perpendicular and parallel permittivity components, upon frequency of the silver nanowire metamaterial. (

**b**) Dependence of the imaginary part of the perpendicular permittivity component upon frequency. S = 70 nm.

**Figure 3.**(

**a**) Dependences of the real parts of the perpendicular and parallel permittivity components, upon frequency of the silver nanowire metamaterial. (

**b**) Dependence of the imaginary part of the perpendicular permittivity component, upon frequency. d = 30 nm.

**Figure 4.**Mode patterns of the surface waves at the interface of metamaterial and dielectric (ε

_{d}= 11.8). S = 70 nm. Dependencies of the real (

**a**) and imaginary (

**b**) parts of the propagation constant, upon frequency.

**Figure 5.**Mode patterns of the surface waves at the interface of metamaterial and dielectric (ε

_{d}= 11.8). d = 30 nm. Dependencies of the real (

**a**) and imaginary (

**b**) parts of the propagation constant, upon frequency.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Gric, T.; Rafailov, E.
Enhancement of the Purcell Effect by the Wire Metamaterials Formed by the Hexagonal Unit Cells. *Appl. Sci.* **2020**, *10*, 5687.
https://doi.org/10.3390/app10165687

**AMA Style**

Gric T, Rafailov E.
Enhancement of the Purcell Effect by the Wire Metamaterials Formed by the Hexagonal Unit Cells. *Applied Sciences*. 2020; 10(16):5687.
https://doi.org/10.3390/app10165687

**Chicago/Turabian Style**

Gric, Tatjana, and Edik Rafailov.
2020. "Enhancement of the Purcell Effect by the Wire Metamaterials Formed by the Hexagonal Unit Cells" *Applied Sciences* 10, no. 16: 5687.
https://doi.org/10.3390/app10165687