Microgrid Cyber-Security: Review and Challenges toward Resilience
Abstract
:1. Introduction
2. Industrial Cybersecurity Incidents Emergence
3. Definitions and Overview
3.1. Cyber-Physical Security
3.2. Modern Distribution Network Vulnerabilities
3.3. Microgrids as a Cyber-Physical System (CPS)
4. Perspective-Based Interventions Addressing Cyber Attacks
4.1. Microgrid Communication
4.2. Impact Analysis
4.3. Microgrid Control
4.3.1. Control Structure
4.3.2. Automation Control against Cyber-Attacks
4.3.3. Protective Control
4.4. Co-Simulation Testbeds
4.5. Smart Meters and Data Security
5. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, W.; Lu, Z. Cyber security in the Smart Grid: Survey and challenges. Comput. Netw. 2013, 57, 1344–1371. [Google Scholar] [CrossRef]
- Rashid, M.H. Energy Systems in Electrical Engineering. In Smart Grids and Their Communication Systems; Kabalci, E., Kabalci, Y., Eds.; Springer: Singapore, 2019; pp. 1–644. [Google Scholar]
- Leszczyna, R. Standards on cyber security assessment of smart grid. Int. J. Crit. Infrastruct. Prot. 2018, 22, 70–89. [Google Scholar] [CrossRef]
- Hossain, E. Communication Architectures and Models for Smart Grid. In Smart Grid Communications and Networking; Hossain, E., Han, Z., Poor, H.V., Eds.; Cambridge University Press: Cambridge, UK, 2012; pp. 1–103. [Google Scholar]
- Prettico, M.; Flammini, G.; Andreadou, M.G.; Vitiello, N.; Fulli, S.; Masera, G. Distribution System Operators Observatory 2018: Overview of the Electricity Distribution System in Europe; Publications Office of the European Union: Ispra, Italy, 2019; pp. 1–77. [Google Scholar]
- Prettico, G.; Gangale, F.; Mengolini, A.; Lucas, A.; Fulli, G. Distribution system operators from european electricity distribution systems to representative distribution networks. JRC Tech. Rep. Luxemb. 2018, 99, 273–280. [Google Scholar]
- Yazdanian, M.; Mehrizi-Sani, A. Distributed control techniques in microgrids. IEEE Trans. Smart Grid 2014. [Google Scholar] [CrossRef]
- Sridhar, S.; Govindarasu, M. Model-based attack detection and mitigation for automatic generation control. IEEE Trans. Smart Grid 2014. [Google Scholar] [CrossRef]
- Chlela, M. Cyber Security Enhancement Against Cyber-Attacks on Microgrid Controllers; McGill University Montréal: Montréal, QC, Canada, 2017; pp. 1–177. [Google Scholar]
- Knapp, E.D.; Samani, R. Applied Cyber Security and the Smart Grid: Implementing Security Controls into the Modern Power Infrastructure, 1st ed.; Syngress: Rockland, MA, USA, 2013. [Google Scholar]
- Sun, C.C.; Hahn, A.; Liu, C.C. Cyber security of a power grid: State-of-the-art. Int. J. Electr. Power Energy Syst. 2017, 99, 45–56. [Google Scholar] [CrossRef]
- Lee, R.M.; Assante, M.J.; Conway, T. Analysis of the Cyber Attack on the Ukrainian Power Grid Defense Use Case.; E-ISAC: Washington, DC, USA, 2016; pp. 1–23. [Google Scholar]
- Rekik, M.; Chtourou, Z.; Gransart, C.; Atieh, A. A cyber-physical threat analysis for microgrids. In Proceedings of the 2018 15th International Multi-Conference on Systems, Signals & Devices (SSD), Hammamet, Tunisia, 19–22 March 2018; Available online: https://ieeexplore.ieee.org/document/8570411 (accessed on 6 May 2020).
- Cai, Y.; Huang, T.C. Cascading failure analysis considering interaction between power grids and communication networks. IEEE Trans. Smart Grid 2016, 7, 530–538. [Google Scholar] [CrossRef]
- Zhang, H.; Peng, M.; Guerrero, J.M.; Gao, X.; Liu, Y. Modelling and Vulnerability Analysis of Cyber-Physical Power Systems Based on Interdependent Networks. Energies 2019, 12, 3439. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Xiao, Y.; Gao, J. Achieving accountability in smart grid. IEEE Syst. J. 2014, 8, 493–508. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, A.; Morris, T.; Ernster, T.; Vellaithurai, C.; Pan, S.; Adhikari, U. Modeling cyber-physical vulnerability of the smart grid with incomplete information. IEEE Trans. Smart Grid 2013, 4, 235–244. [Google Scholar] [CrossRef]
- Fooladivanda, D.; Hu, Q.; Chang, Y.H.; Sauer, P. Secure State Estimation and Control for Cyber Security of AC Microgrids. arXiv 2019, arXiv:1908.05843. [Google Scholar]
- Esmalifalak, M.; Shi, G.; Han, Z.; Song, L. Bad data injection attack and defense in electricity market using game theory study. IEEE Trans. Smart Grid 2013, 4, 160–169. [Google Scholar] [CrossRef] [Green Version]
- Friedberg, I.; Laverty, D.; McLaughlin, F.; Smith, P. A Cyber-Physical Security Analysis of Synchronous-Islanded Microgrid Operation. In Proceedings of the 3rd International Symposium for ICS & SCADA Cyber Security Research 2015, Belfast, Swindon, UK, 17–18 September 2015. [Google Scholar]
- Hayes, B.P. Distribution Generation Optimization and Energy Management. In Distributed Generation Systems; Gharehpetian, G.B., Agah, S.M.M., Eds.; Elsevier Inc.: Oxford, UK, 2017; pp. 415–451. [Google Scholar] [CrossRef]
- Stavros, A.P.; Nikos, D.H.; Pierre, A.; Luiz, M.A.; Bernhard, B.; Clinton, G.C.-B.; Drossos, N.; Bayez, E.; Mingtian, F.; Vincent, G.; et al. Capacity of Distribution Feeders for Hosting Distributed Energy Resources. Papathanassiou 2014 Capacity ODCIGRE 2014. June 2014. Available online: http://cigreaustralia.org.au/assets/ITL-SEPT-2014/3.1-Capacity-of-Distribution-Feeders-for-hosting-Distributed-Energy-Resources-DER-abstract.pdf (accessed on 5 June 2020).
- Feng, X.; Shekhar, A.; Yang, F.; Hebner, R.E.; Bauer, P. Comparison of hierarchical control and distributed control for microgrid. Electr. Power Compon. Syst. 2017. [Google Scholar] [CrossRef]
- Lasseter, B. Microgrids distributed power generation. Power Eng. Soc. Winter Meet. 2001, 1, 146–149. [Google Scholar]
- Lasseter, R. Microgrids. IEEE Power Eng. Soc. Winter Meet. 2002, 1, 305–308. [Google Scholar]
- Katiraei, F.; Iravani, M.R. Power management strategies for a microgrid with multiple distributed generation units. IEEE Trans. Power Syst. 2006, 21, 1821–1831. [Google Scholar] [CrossRef]
- Olivares, D.E. Trends in microgrid control. IEEE Trans. Smart Grid 2014, 5, 1905–1919. [Google Scholar] [CrossRef]
- Buason, P.; Choi, H.; Valdes, A.; Liu, H.J. Cyber-physical systems of microgrids for electrical grid resiliency. ICPS 2019, 492–497. [Google Scholar] [CrossRef]
- Ton, D.; Bryan, E.; Marnay, C. Microgrids Program Overview, Power Systems Engineering Research and Development. Aalb. 2015 Symp. Microgrids. 2015, 1–22. [Google Scholar]
- Rana, M.M.; Li, L.; Su, S.W. Cyber attack protection and control of microgrids. IEEE/CAA J. Autom. Sin. 2018, 5, 602–609. [Google Scholar] [CrossRef]
- Peach, N.; Basseville, M.; Nikiforov, I.V. Detection of Abrupt Changes: Theory and Applications. J. R. Statal Soc. Ser. A (Stats in Soc.) 1993, 1, 185. [Google Scholar] [CrossRef] [Green Version]
- Jiao, Q.; Modares, H.; Lewis, F.L.; Xu, S.; Xie, L. Distributed 2-gain output-feedback control of homogeneous and heterogeneous systems. Automatica 2016, 71, 361–368. [Google Scholar] [CrossRef] [Green Version]
- Manandhar, K.; Cao, X.; Hu, F.; Liu, Y. Detection of faults and attacks including false data injection attack in smart grid using Kalman filter. IEEE Trans. Control Netw. Syst. 2014, 1, 370–379. [Google Scholar] [CrossRef]
- Liu, S.; Wang, X.; Liu, P.X. Impact of communication delays on secondary frequency control in an islanded microgrid. IEEE Trans. Ind. Electron. 2015, 62, 2021–2031. [Google Scholar] [CrossRef]
- Hammad, E.; Farraj, A.; Kundur, D. Fundamental limits on communication latency for distributed control via electromechanical waves. IEEE Int. Conf. Commun. 2017. [Google Scholar] [CrossRef]
- Farraj, A.; Hammad, E.; Kundur, D. A systematic approach to delay: Adaptive control design for smart grids. IEEE Int. Conf. Smart Grid Commun. 2015, 768–773. [Google Scholar] [CrossRef]
- Guo, F. Comprehensive real-time simulation of the smart grid. IEEE Trans. Ind. Appl. 2013, 49, 899–908. [Google Scholar] [CrossRef]
- Cai, Y.; Li, Y.; Cao, Y.; Li, W.; Zeng, X. Modeling and impact analysis of interdependent characteristics on cascading failures in smart grids. Int. J. Electr. Power Energy Syst. 2017, 89, 106–114. [Google Scholar] [CrossRef]
- Khan, R.; McLaughlin, K.; Laverty, D.; Sezer, S. STRIDE-based threat modeling for cyber-physical systems. IEEE Innov. Smart Grid Technol. Conf. Eur. 2017, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Khan, R.; McLaughlin, K.; Laverty, D.; Sezer, S. IEEE C37.118-2 synchrophasor communication framework: Overview, cyber vulnerabilities analysis and performance evaluation. Proc. Int. Conf. Inf. Syst. Secur. Priv. 2016, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Gamage, T.T.; Hauser, C.H. Security implications of transport layer protocols in power grid synchrophasor data communication. IEEE Trans. Smart Grid 2016, 7, 807–816. [Google Scholar] [CrossRef]
- Khan, R.; McLaughlin, K.; Laverty, D.; Sezer, S. Analysis of IEEE C37.118 and IEC 61850-90-5 synchrophasor communication frameworks. IEEE Power Energy Soc. Gen. Meet. 2016. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Liu, P.X.; Wang, X. Effects of cyber attacks on islanded microgrid frequency control. Proc. IEEE Int. Conf. Comput. Support. Coop. Work Des. 2016, 461–464. [Google Scholar] [CrossRef]
- Zhang, H.; Meng, W.; Qi, J.; Wang, X.; Zheng, W.X. Distributed load sharing under false data injection attack in an inverter-based microgrid. IEEE Trans. Ind. Electron. 2019, 66, 1543–1551. [Google Scholar] [CrossRef]
- Chlela, M.; Joos, G.; Kassouf, M.; Brissette, Y. Real-time testing platform for microgrid controllers against false data injection cybersecurity attacks. IEEE Power Energy Soc. Gen. Meet. 2016. [Google Scholar] [CrossRef]
- Nasirian, V.; Moayedi, S.; Davoudi, A.; Lewis, F.L. Distributed cooperative control of dc microgrids. IEEE Trans. Power Electron. 2015, 30, 2288–2303. [Google Scholar] [CrossRef]
- Vu, T.V.; Nguyen, B.H.L.; Ngo, T.A.; Steurer, M.; Schoder, K.; Hovsapian, R. Distributed optimal dynamic state estimation for cyber intrusion detection in networked dc microgrids. In Proceedings of the IECON 45th Annual Conference of the IEEE Industrial Electronics Society 2019, Lisbon, Portugal, 14–17 October 2019; Available online: https://ieeexplore.ieee.org/document/8927045 (accessed on 25 June 2020).
- Zhao, J.; Mili, L.; Wang, M. A generalized false data injection attacks against power system nonlinear state estimator and countermeasures. IEEE Trans. Power Syst. 2018, 33, 4868–4877. [Google Scholar] [CrossRef]
- Sahoo, S.; Mishra, S.; Peng, J.C.H.; Dragicevic, T. A stealth cyber-attack detection strategy for dc microgrids. IEEE Trans. Power Electron. 2019, 34, 8162–8174. [Google Scholar] [CrossRef] [Green Version]
- Alhelou, H.; Golshan, M.E.; Hatziargyriou, N.D. Deterministic dynamic state estimation-based optimal lfc for interconnected power systems using unknown input observer. IEEE Trans. Smart Grid 2020, 11, 1582–1592. [Google Scholar] [CrossRef]
- Chaojun, G.; Jirutitijaroen, P.; Motani, M. Detecting false data injection attacks in ac state estimation. IEEE Trans. Smart Grid 2015, 6, 2476–2483. [Google Scholar] [CrossRef]
- Liu, Y.; Ning, P.; Reiter, M.K. False data injection attacks against state estimation in electric power grids. In Proceedings of the 16th ACM Conference on Computer and Communications Security, Chicago, IL, USA, 9–13 November 2009. [Google Scholar]
- Dán, G.; Sandberg, H. Stealth attacks and protection schemes for state estimators in power systems. IEEE Int. Conf. Smart Grid Commun. 2010, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Hu, Q.; Fooladivanda, D.; Chang, Y.H.; Tomlin, C.J. Secure state estimation and control for cyber security of the nonlinear power systems. IEEE Trans. Control Netw. Syst. 2017, 5. [Google Scholar] [CrossRef]
- Gallo, A.J.; Turan, M.S.; Nahata, P.; Boem, F.; Parisini, T.; Ferrari-Trecate, G. Distributed cyber-attack detection in the secondary control of dc microgrids. In Proceedings of the European Control Conference, Limassol, Cyprus, 12–15 June 2018; Available online: https://zenodo.org/record/2590092#.XzYHZzURXIU (accessed on 3 July 2020).
- Habibi, M.R.; Baghaee, H.R.; Dragicevic, T.; Blaabjerg, F. Detection of false data injection cyber-attacks in dc microgrids based on recurrent neural networks. IEEE J. Emerg. Sel. Top. Power Electron. 2020. [Google Scholar] [CrossRef]
- Sahoo, S.; Peng, J.C.H.; Devakumar, A.; Mishra, S.; Dragičević, T. On detection of false data in cooperative dc microgrids a discordant element approach. IEEE Trans. Ind. Electron. 2020, 67, 6562–6571. [Google Scholar] [CrossRef]
- Beg, O.A.; Johnson, T.T.; Davoudi, A. Detection of false-data injection attacks in cyber-physical DC microgrids. IEEE Trans. Ind. Inform. 2017, 13, 2693–2703. [Google Scholar] [CrossRef]
- Li, W.; Joós, G.; Bélanger, J. Real-time simulation of a wind turbine generator coupled with a battery supercapacitor energy storage system. IEEE Trans. Ind. Electron. 2010, 57, 1137–1145. [Google Scholar] [CrossRef]
- Zhang, J.; Chu, Z.; Sankar, L.; Kosut, O. Can attackers with limited information exploit historical data to mount successful false data injection attacks on power systems? IEEE Trans. Power Syst. 2018, 33, 4775–4786. [Google Scholar] [CrossRef] [Green Version]
- Hammad, E.; Ezeme, M.; Farraj, A. Implementation and development of an offline co-simulation testbed for studies of power systems cyber security and control verification. Int. J. Electr. Power Energy Syst. 2018, 104, 817–826. [Google Scholar] [CrossRef]
- Kosek, A.M.; Lünsdorf, O.; Scherfke, S.; Gehrke, O.; Rohjans, S. Evaluation of smart grid control strategies in co-simulation: Integration of IPSYS and mosaic. In Proceedings of the 2014 Power Systems Computation Conference, Wroclaw, Poland, 18–22 August 2014. [Google Scholar]
- The History of Making the Grid Smart Engineering and Technology History Wiki. Available online: https://ethw.org/The_History_of_Making_the_Grid_Smart (accessed on 18 June 2020).
- Uribe-Pérez, N.; Hernández, L.; de la Vega, D.; Angulo, I. State of the art and trends review of smart metering in electricity grids. Appl. Sci. 2016, 6, 68. [Google Scholar]
- European Parliament and Council. Legislative acts, Directive 2012/27/EU of the European Parliament and of the Council of 25 October on energy efficiency, amending Directives 2009/125/EC and 2010/30/EU and repealing Directives 2004/8/EC and 2006/32/EC, 2012/27/EU. Off. J. Eur. Union 2012, 12, 1–56. [Google Scholar]
- Avancini, D.B.; Rodrigues, J.J.P.C.; Martins, S.G.B.; Rabêlo, R.A.L.; Al-Muhtadi, J.; Solic, P. Energy meters evolution in smart grids: A review. J. Clean. Prod. 2019, 217, 702–715. [Google Scholar] [CrossRef]
- Tellbach, D.; Li, Y.F. Cyber-attacks on smart meters in household nanogrid: Modeling, simulation and analysis. Energies 2018, 11, 316. [Google Scholar] [CrossRef] [Green Version]
- Patil, Y.S.; Sankpal, S.V. Multi-Player Attack Detection Model for Smart Meter Security in Smart Grid Systems. Int. J. Appl. Eng. Res. 2019, 7, 1488–1492. [Google Scholar]
- Hasse, F.; Von Perfall, A.; Hillebrand, T.; Smole, E.; Lay, M.; Charlet, L. Blockchain–an Opportunity for Energy Producers and Consumers? Available online: https://asian-power.com/sites/default/files/asianpower/print/AP_Novdec16_p44-45.pdf (accessed on 12 July 2020).
- Andoni, M.; Valentin, R.; David, F.; Simone, A.; Dale, G.; David, J.; Peter, M.; Andrew, P. Blockchain technology in the energy sector: A systematic review of challenges and opportunities. Renew. Sustain. Energy Rev. 2018, 100, 143–174. [Google Scholar] [CrossRef]
- Li, Z.; Bahramirad, S.; Paaso, A.; Yan, M.; Shahidehpour, M. Blockchain for decentralized transactive energy management system in networked microgrids. Electr. J. 2019, 32, 58–72. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Canaan, B.; Colicchio, B.; Ould Abdeslam, D. Microgrid Cyber-Security: Review and Challenges toward Resilience. Appl. Sci. 2020, 10, 5649. https://doi.org/10.3390/app10165649
Canaan B, Colicchio B, Ould Abdeslam D. Microgrid Cyber-Security: Review and Challenges toward Resilience. Applied Sciences. 2020; 10(16):5649. https://doi.org/10.3390/app10165649
Chicago/Turabian StyleCanaan, Bushra, Bruno Colicchio, and Djaffar Ould Abdeslam. 2020. "Microgrid Cyber-Security: Review and Challenges toward Resilience" Applied Sciences 10, no. 16: 5649. https://doi.org/10.3390/app10165649