Pole Assignment for Active Vibration Control of Linear Vibrating Systems through Linear Matrix Inequalities
Abstract
:1. Introduction
1.1. State of the Art
1.2. Motivations and Contributions of This Paper
2. Definitions
Control Specifications
- the controlled system has exactly the p desired poles in ,
- the remaining poles must belong to some prescribed regions of the complex plane.
3. First Step: Exact Placement of the Dominant Poles
3.1. Formulation for Symmetric Systems
3.2. Extension to Asymmetric Systems
4. Second Step: Regional Pole Placement
4.1. Overview
4.2. Linear Matrix Inequalities
4.3. Control Gain Synthesis
4.4. Insights on the Reduced Model and on the Inclusion Principle
5. Results
5.1. Test-Case 1: Three-Mass System
5.2. Test-Case 2: Slider-Belt System
5.3. Test-Case 3: Aircraft Wing System
5.4. Test-Case 4: Four-Bar Flexible-Link Multibody System
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ram, Y.M.; Mottershead, J.E. Receptance method in active vibration control. AIAA J. 2007. [Google Scholar] [CrossRef]
- Ouyang, H. Pole assignment of friction-induced vibration for stabilisation through state-feedback control. J. Sound Vib. 2010. [Google Scholar] [CrossRef]
- Ghandchi Tehrani, M.; Mottershead, J.E.; Shenton, A.T.; Ram, Y.M. Robust pole placement in structures by the method of receptances. Mech. Syst. Signal Process. 2011. [Google Scholar] [CrossRef]
- Ouyang, H.; Richiedei, D.; Trevisani, A. Pole assignment for control of flexible link mechanisms. J. Sound Vib. 2013. [Google Scholar] [CrossRef]
- Olanipekun, K.A.; Rustighi, E.; Ferguson, N.S. Active vibration control of planetary gears by pole placement. J. Phys. Conf. Ser. 2019, 1264, 012004. [Google Scholar] [CrossRef]
- Tehrani, M.G.; Ouyang, H. Receptance-Based Partial Pole Assignment for Asymmetric Systems Using State-Feedback. Shock Vib. 2012. [Google Scholar] [CrossRef]
- Ghandchi Tehrani, M.; Elliott, R.N.R.; Mottershead, J.E. Partial pole placement in structures by the method of receptances: Theory and experiments. J. Sound Vib. 2010. [Google Scholar] [CrossRef]
- Liang, Y.; Ouyang, H.J.; Yamaura, H. Active partial eigenvalue assignment for friction-induced vibration using receptance method. J. Phys. Conf. Ser. 2016, 744, 012008. [Google Scholar] [CrossRef] [Green Version]
- Araujo, J.M.; Dorea, C.E.; Goncalves, L.M.; Carvalho, J.B.; Datta, B.N. Robustness of the quadratic partial eigenvalue assignment using spectrum sensitivities for state and derivative feedback designs. J. Low Freq. Noise Vib. Act. Control 2018, 37, 253–268. [Google Scholar] [CrossRef]
- Bai, Z.J.; Wan, Q.Y. Partial quadratic eigenvalue assignment in vibrating structures using receptances and system matrices. Mech. Syst. Signal Process 2017, 88, 290–301. [Google Scholar] [CrossRef]
- Ou, L.; Han, S.; Wang, Y.; Dong, S.; Liu, L. Partial pole placement in LMI region. J. Control Sci. Eng. 2014. [Google Scholar] [CrossRef] [Green Version]
- Haddad, W.M.; Bernstein, D.S. Controller Design with Regional Pole Constraints. IEEE Trans. Automat. Contr. 1992. [Google Scholar] [CrossRef]
- Chilali, M.; Gahinet, P. H∞ design with pole placement constraints: An LMI approach. IEEE Trans. Automat. Contr. 1996. [Google Scholar] [CrossRef]
- Datta, S.; Chakraborty, D.; Chaudhuri, B. Partial pole placement with controller optimization. IEEE Trans. Automat. Contr. 2012. [Google Scholar] [CrossRef] [Green Version]
- de Almeida, M.O.; Araújo, J.M. Partial Eigenvalue Assignment for LTI Systems with D-Stability and LMI. J. Control Autom. Electr. Syst. 2019. [Google Scholar] [CrossRef]
- Belotti, R.; Richiedei, D. Pole assignment in vibrating systems with time delay: An approach embedding an a-priori stability condition based on Linear Matrix Inequality. Mech. Syst. Signal Process. 2020. [Google Scholar] [CrossRef]
- Caracciolo, R.; Richiedei, D.; Trevisani, A. Robust piecewise-linear state observers for flexible link mechanisms. J. Dyn. Syst. Meas. Control. Trans. ASME 2008. [Google Scholar] [CrossRef]
- Xiang, J.; Zhen, C.; Li, D. Partial pole assignment with time delay by the receptance method using multi-input control from measurement output feedback. Mech. Syst. Signal Process. 2016. [Google Scholar] [CrossRef]
- Ouyang, H. A hybrid control approach for pole assignment to second-order asymmetric systems. Mech. Syst. Signal Process. 2011. [Google Scholar] [CrossRef]
- Chen, M.; Ouyang, H.; Li, W.; Wang, D.; Liu, S. Partial Frequency Assignment for Torsional Vibration Control of Complex Marine Propulsion Shafting Systems. Appl. Sci. 2020, 10, 147. [Google Scholar] [CrossRef] [Green Version]
- Richiedei, D.; Tamellin, I.; Trevisani, A. Simultaneous assignment of resonances and antiresonances in vibrating systems through inverse dynamic structural modification. J. Sound Vib. 2020, 485, 115552. [Google Scholar] [CrossRef]
- Boyd, S.; El Ghaoui, L.; Feron, E.; Balakrishnan, V. Linear Matrix Inequalities in System and Control Theory; SIAM: Philadelphia, PA USA, 1994. [Google Scholar]
- Ikeda, M.; Siljak, D.D.; White, D.E. An Inclusion Principle for Dynamic Systems. IEEE Trans. Automat. Contr. 1984. [Google Scholar] [CrossRef]
- Löfberg, J. YALMIP: A toolbox for modeling and optimization in MATLAB. In Proceedings of the Proceedings of the IEEE International Symposium on Computer-Aided Control System Design, New Orleans, LA, USA, 2–4 September 2004. [Google Scholar]
- Pappalardo, C.M.; Guida, D. Development of a new inertial-based vibration absorber for the active vibration control of flexible structures. Eng. Lett. 2018, 3, 372–385. [Google Scholar]
- Liang, Y.; Yamaura, H.; Ouyang, H. Active assignment of eigenvalues and eigen-sensitivities for robust stabilization of friction-induced vibration. Mech. Syst. Signal Process. 2017. [Google Scholar] [CrossRef]
- Soong, T.T. Active Structural Control: Theory and Practice, 1st ed.; Longman Scientific & Technical: Harlow, UK, 1990. [Google Scholar]
- Henrion, D.; Šebek, M.; Kučera, V. Robust pole placement for second-order systems: An LMI approach. Kybernetika 2005, 41, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Abdelaziz, T.H.S. Robust pole assignment using velocity-acceleration feedback for second-order dynamical systems with singular mass matrix. ISA Trans. 2015. [Google Scholar] [CrossRef]
- Belotti, R.; Caracciolo, R.; Palomba, I.; Richiedei, D.; Trevisani, A. An Updating Method for Finite Element Models of Flexible-Link Mechanisms Based on an Equivalent Rigid-Link System. Shock Vib. 2018. [Google Scholar] [CrossRef]
- Boscariol, P.; Gasparetto, A.; Zanotto, V. Simultaneous position and vibration control system for flexible link mechanisms. Meccanica 2011. [Google Scholar] [CrossRef]
- Boscariol, P.; Gasparetto, A.; Zanotto, V. Active position and vibration control of a flexible links mechanism using model-based predictive control. J. Dyn. Syst. Meas. Control. Trans. ASME 2010. [Google Scholar] [CrossRef]
Test-Case Section | 5.1 | 5.2 | 5.3 | 5.4 |
---|---|---|---|---|
System matrices | M, C, K Symmetric | M, C Symmetric K Asymmetric | M Symmetric C, K Asymmetric | M Symmetric C, K Asymmetric |
Number of DOFs | 3 | 4 | 3 | 16 |
Modeling approach | Lumped parameters | Lumped parameters | Lumped parameters | ERLS with FEM |
Number of Assigned poles | 2 complex conjugate pole pair | 2 complex conjugate pole pairs | 1 complex conjugate pole pairs | 2 real poles and 3 complex conjugate pole pairs |
LMI constraint | Real part, minimum damping and maximum natural frequency | Real part | Shifted disk | Minimum damping |
Open-loop poles | Desired Closed-Loop Poles | ||
---|---|---|---|
−0.006 ± 1.896i | −0.001 ± 1.500i | −0.001 ± 1.500i | −0.001 ± 1.500i |
−0.013 ± 2.769i | −0.001 ± 3.000i | −0.001 ± 3.000i | −0.001 ± 3.000i |
−0.021 ± 3.569i | - | 0.010 ± 3.520i | −0.146 ± 3.430i |
−0.0962 | −0.3545 | 0.2185 | −0.9705 |
0.1581 | −1.6452 | −0.5433 | −0.2314 |
−0.0349 | −3.3434 | 0.2670 | −4.0191 |
Open-Loop Poles | Desired Closed-Loop Poles | Closed-Loop Poles | Desired Closed-Loop Poles | Closed-Loop Poles | |
---|---|---|---|---|---|
0.00 ± 8.73i | −1 ± 9i | −1 ± 9i | −1 ± 9i | −1 ± 9i | −1 ± 9i |
−0.05 ± 12.19i | −1 ± 13.5i | −1 ± 13.5i | −1 ± 13.5i | −1 ± 13.5i | −1 ± 13.5i |
−0.51 ± 16.75i | −0.51 ± 16.75i | −0.51 ± 16.75i | - | −5.55 ± 12.4i | −5.55 ± 12.4i |
−0.19 ± 19.86i | −0.19 ± 19.86i | −0.19 ± 19.86i | - | −0.15 ± 19.98i | −0.23 ± 20.0 |
3.8949 | 43.7930 | 13.9035 | −12.3773 | 14.0522 | −8.9368 |
−4.2244 | −150.4119 | −13.0355 | −6.5512 | −13.0777 | −33.0146 |
4.3004 | 26.3084 | −1.8911 | −5.1848 | −1.9718 | −16.8434 |
−2.3322 | −79.6829 | −10.6007 | −3.5384 | −10.6159 | 51.3344 |
1.0479 | −0.0053 | 7.0008 | 25.6070 |
1.1222 | 3.8335 | 1.709 | 1.9598 |
2.8765 | 1.3771 | 4.5693 | 1.8524 |
Open-Loop Poles | Desired Closed-Loop Poles | ||
---|---|---|---|
−0.918 ±1.7606i | −1.500 ± 3.000i | −1.500 ± 3.000i | −1.500 ± 3.000i |
0.0947 ± 2.5229i | - | 0.1306 ± 2.7016i | −2.6323 ± 0.2707i |
−0.8848 ± 8.4415i | - | −4.6282 ± 5.5858i | −3.134 ± 0.3095i |
Link Parameters [unit] | Value |
---|---|
Young modulus [Pa] | 210 · 109 |
Second area moment [m4] | 11.1 · 10−10 |
Width [m] | 6 · 10−3 |
Thickness [m] | 6 · 10−3 |
Linear mass density [kg m−1] | 272 · 10−3 |
Link 0 length [m] | 0.360 |
Link 1 length [m] | 0.390 |
Link 2 length [m] | 0.535 |
Link 3 length [m] | 0.632 |
Rayleigh coefficients [s−1], [s] | αR = 8.5·10−2, βR = 2·10−5 |
Nodal lumped masses [kg]: | |
Joint B | 70 · 10−3 |
Joint C | 70 · 10−3 |
Joint inertia [kg m2] | |
Joint A | 5 · 10−4 |
Joint D | 12 · 10−6 |
Open-Loop Poles | Desired Closed-Loop Poles | ||||
---|---|---|---|---|---|
3.17 | −15 | −15 | 1 | −15 | 1 |
-3.17 | −20 | −20 | 1 | −20 | 1 |
−1.20 ± 226.2i | −10 ± 220i | −10 ± 220i | 0.045 | −10 ± 220i | 0.045 |
−2.40 ± 322.3i | - | 28.6 ± 244.7i | −0.116 | −74.0 ± 215.7i | 0.324 |
−5.33 ± 483.1i | −15 ± 320i | −15 ± 320i | 0.047 | −15 ± 320i | 0.047 |
−20.86 ± 958.4i | −50 ± 500i | −50 ± 500i | 0.100 | −50 ± 500i | 0.100 |
−46.24 ± 1427.4i | −22.19 ± 966.96i | 0.023 | −66.59 ± 923.49i | 0.072 | |
−58.49 ± 1605.3i | - | −46.41 ± 1429.3i | 0.033 | −85.13 ± 1426.8i | 0.060 |
−121.1 ± 2308.9i | - | −121.1 ± 2308.5i | 0.052 | −121.1 ± 2308.5i | 0.052 |
−287.6 ± 3551.7i | - | −287.6 ± 3551.7i | 0.080 | −287.6 ± 3551.7i | 0.081 |
−390.8 ± 4134.8i | - | −390.7 ± 4134.9i | 0.094 | −390.7 ± 4134.9i | 0.094 |
−947.0 ± 6396.2i | - | −947.0 ± 6396i | 0.147 | −947.0 ± 6396.2i | 0.147 |
−1820 ± 8777.4i | - | −1820.0 ± 8777i | 0.203 | −1819.8 ± 8777.3i | 0.203 |
−3440.7 ± 11835i | - | −3440.1 ± 11834i | 0.279 | −3439.9 ± 11834i | 0.279 |
−6348.2 ± 15491i | - | −6348.2 ± 15490i | 0.379 | −6348.3 ± 15490i | 0.379 |
−23417 ± 22033i | - | −23417 ± 22033i | 0.728 | −23417 ± 22033i | 0.728 |
−40747 ± 11774i | - | −40747 ± 11773i | 0.961 | −40747 ± 11774i | 0.961 |
−0.00359 | −639.62 | 0.0738 | −639.26 |
0.00000 | -0.01 | −9.8664 | −4850.30 |
0.00000 | 0.13 | −5.5614 | −3456.7 |
0.00163 | −951.75 | 0.1526 | −950.73 |
−0.02214 | 15.34 | 0.5697 | 302.04 |
0.00277 | −0.34 | −1.8326 | −618.71 |
0.00245 | −0.23 | 2.1344 | 719.62 |
−0.000001 | −10.26 | −1.1898 | −587.82 |
0.00000 | 0.02 | 8.7912 | 5210.00 |
0.02216 | 8.43 | 0.6184 | 313.22 |
0.00011 | 29.19 | 0.2044 | −68.49 |
0.00000 | −2.00 | 0.3313 | 53.01 |
0.00000 | 1.39 | −0.0977 | 95.78 |
−0.00008 | −27.40 | −0.4665 | 158.70 |
0.00006 | 34.45 | 0.2638 | −62.60 |
0.04228 | 0.36 | 0.0343 | 0.30 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belotti, R.; Richiedei, D.; Tamellin, I.; Trevisani, A. Pole Assignment for Active Vibration Control of Linear Vibrating Systems through Linear Matrix Inequalities. Appl. Sci. 2020, 10, 5494. https://doi.org/10.3390/app10165494
Belotti R, Richiedei D, Tamellin I, Trevisani A. Pole Assignment for Active Vibration Control of Linear Vibrating Systems through Linear Matrix Inequalities. Applied Sciences. 2020; 10(16):5494. https://doi.org/10.3390/app10165494
Chicago/Turabian StyleBelotti, Roberto, Dario Richiedei, Iacopo Tamellin, and Alberto Trevisani. 2020. "Pole Assignment for Active Vibration Control of Linear Vibrating Systems through Linear Matrix Inequalities" Applied Sciences 10, no. 16: 5494. https://doi.org/10.3390/app10165494
APA StyleBelotti, R., Richiedei, D., Tamellin, I., & Trevisani, A. (2020). Pole Assignment for Active Vibration Control of Linear Vibrating Systems through Linear Matrix Inequalities. Applied Sciences, 10(16), 5494. https://doi.org/10.3390/app10165494