1. Introduction
2. Study Area
3. Monitoring Data Collection and Preparation
3.1. 3D Dilatometer Data
3.2. Climatic Variables
3.3. Seismic Data
4. Methodological Approach
4.1. Input Data Pre-Processing
4.2. Detection of Change-Points in Time Series of Individual Components
5. Results and Discussion
6. Conclusions
- (i)
- decreasing the subjectivity of interpretation and
- (ii)
- allowing fully quantitative analysis of the monitored data of a slow-moving landslide.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Corominas, J.; Moya, J.; Ledesma, A.; Lloret, A.; Gill, J.A. Prediction of ground displacements and velocities from groundwater level changes at the Vallcebre Landslide (Eastern Pyrenees, Spain). Landslides 2005, 2, 83–96. [Google Scholar] [CrossRef]
- Van Asch, T.W.J.; Van Beek, L.P.H.; Bogaard, T.A. Problems in predicting the mobility of slow-moving landslides. Eng. Geol. 2007, 91, 46–55. [Google Scholar] [CrossRef]
- Klimeš, J.; Rowberry, M.; Blahůt, J.; Briestenský, M.; Hartvich, F.; Košťák, B.; Rybář, J.; Stemberk, J.; Štěpančíková, P. The monitoring of slow-moving landslides and assessment of stabilisation measures using an optical–mechanical crack gauge. Landslides 2012, 9, 407–415. [Google Scholar] [CrossRef]
- Carey, J.M.; Massey, C.I.; Lyndsell, B.; Petley, D.N. Displacement mechanisms of slow-moving landslides in response to changes in porewater pressure and dynamic stress. Earth Surf. Dynam. 2019, 7, 707–722. [Google Scholar] [CrossRef]
- Singh, L.P.; Van Westen, C.J.; Champati Ray, P.K.; Pasquali, P. Accuracy assessment of InSAR derived input maps for landslide susceptibility analysis: A case study from the Swiss Alps. Landslides 2005, 2, 221–228. [Google Scholar] [CrossRef]
- Schmidt, K.; Reimann, J.; Tous Ramon, N.; Schwerdt, M. Geometric accuracy of Sentinel-1A and 1B derived from SAR raw data with GPS surveyed corner reflector positions. Remote Sens. 2018, 10, 523. [Google Scholar] [CrossRef]
- Sinharay, S. An Overview of Statistics in Education. In International Encyclopedia of Education, 3rd ed.; Peterson, P., Baker, E., McGaw, B., Eds.; Elsevier: Amsterdam, The Netherlands, 2010; pp. 1–11. [Google Scholar] [CrossRef]
- Brillinger, D.R. Time Series: General. In International Encyclopedia of the Social & Behavioral Sciences, 1st ed.; Smelser, N.J., Baltes, P.B., Eds.; Elsevier: Amsterdam, The Netherlands, 2001; pp. 15724–15731. [Google Scholar] [CrossRef]
- Lütkepohl, H. New Introduction to Multiple Time Series Analysis; Springer: Heidelberg, Germany, 2005; p. 764. [Google Scholar]
- Neusser, K. Time Series Econometrics; Springer: Heidelberg, Germany, 2016; p. 409. [Google Scholar] [CrossRef]
- Montillet, J.-P.; Bos, M.S. Geodetic Time Series Analysis in Earth Sciences; Springer: Heidelberg, Germany, 2020; p. 422. [Google Scholar] [CrossRef]
- Mudelsee, M. Climate Time Series Analysis; Springer: Heidelberg, Germany, 2014; p. 454. [Google Scholar] [CrossRef]
- Sun, L.; Muller, J.-P.; Chen, J. Time series analysis of very slow landslides in the Three Gorges Region through small baseline SAR offset tracking. Remote Sens. 2017, 9, 1314. [Google Scholar] [CrossRef]
- Pfeiffer, J.; Zieher, T.; Rutzinger, M.; Bremer, M.; Wichmann, V. Comparison and time series analysis of landslide displacement mapped by airborne, terrestrial and unmanned aerial vehicle based platforms. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, IV-2/W5, 421–428. [Google Scholar] [CrossRef]
- Huang Lin, C.; Liu, D.; Liu, G. Landslide detection in La Paz City (Bolivia) based on time series analysis of InSAR data. Int. J. Remote Sens. 2019, 40, 6775–6795. [Google Scholar] [CrossRef]
- Zvelebil, J.; Stemberk, J. Slope monitoring applied to rock fall management in NW Bohemia. In Landslide Research, Theory and Practice: Proceedings of the 8th International Symposium on Landslides held in Cardiff on 26–30 June 2000; Broomhead, E., Ed.; Thomas-Telford: London, UK, 2000; Volume 3, pp. 1659–1664. [Google Scholar]
- Košťák, B. Deformation effects in rock massifs and their long-term monitoring. Q. J. Eng. Geol. Hydrogeol. 2006, 39, 249–258. [Google Scholar] [CrossRef]
- Nikolakopoulos, K.; Kavoura, K.; Depountis, N.; Kyriou, A.; Argyropoulos, N.; Koukouvelas, I.; Sabatakakis, N. Preliminary results from active landslide monitoring using multidisciplinary surveys. Eur. J. Remote Sens. 2017, 50, 280–299. [Google Scholar] [CrossRef]
- Guignard, F.; Laib, M.; Amato, F.; Kanevski, M. Advanced analysis of temporal data using Fisher-Shannon Information: Theoretical development and application in Geosciences. Fron. Earth Sci. 2020, 8, 255. [Google Scholar] [CrossRef]
- Toutounji, H.; Durstewitz, D. Detecting multiple change points using adaptive regression splines with application to neural recordings. Front. Neuroinform. 2018, 12, 67. [Google Scholar] [CrossRef] [PubMed]
- Alippi, C.; Camplani, R.; Galperti, C.; Marullo, A.; Roveri, M. An hybrid wireless-wired monitoring system for real-time rock collapse forecasting. In Proceedings of the 7th International Conference on Mobile Ad hoc and Sensor System (MASS), San Francisco, CA, USA, 8–12 November 2010; pp. 224–231. [Google Scholar]
- Barile, G.; Leoni, A.; Pantoli, L.; Stornelli, V. Real-Time Autonomous System for Structural and Environmental Monitoring of Dynamic Events. Electronics 2018, 7, 420. [Google Scholar] [CrossRef]
- Tordesillas, A.; Zhou, Z.; Batterham, R. A data-driven complex systems approach to early prediction of landslides. Mech. Res. Commun. 2018, 92, 137–141. [Google Scholar] [CrossRef]
- Bontemps, N.; Lacroix, P.; Larose, E.; Jara, J.; Taipe, E. Rain and small earthquakes maintain a slow-moving landslide in a persistent critical state. Nat. Commun. 2020, 11, 780. [Google Scholar] [CrossRef]
- Guillou, H.; Carracedo, J.-C.; Pérez Torrado, F.; Rodríguez Badiola, E. K-Ar ages and magnetic stratigraphy of a hotspot-induced, fast grown oceanic island: El Hierro, Canary Islands. J. Volcanol. Geotherm. Res. 1996, 73, 141–155. [Google Scholar] [CrossRef]
- Becerril, L.; Ubide, T.; Sudo, M.; Martí, J.; Galindo, I.; Galé, C.; Morales, J.; Yepes, J.; Lago, M. Geochronological constraints on the evolution of El Hierro (Canary Islands). J. Afr. Earth Sci. 2016, 113, 88–94. [Google Scholar] [CrossRef]
- Carracedo, J.-C.; Rodríguez Badiola, E.; Guillou, H.; de la Nuez, H.; Pérez Torrado, F. Geology and volcanology of the western Canaries: La Palma and El Hierro. Estudios Geológicos 2001, 57, 171–295. [Google Scholar] [CrossRef]
- López, C.; Blanco, M.J.; Abella, R.; Brenes, B.; Cabrera Rodríguez, V.; Casas, B.; Domínguez Cerdeña, I.; Felpeto, A.; Fernández de Villalta, M.; del Fresno, C.; et al. Monitoring the volcanic unrest of El Hierro (Canary Islands) before the onset of the 2011–2012 submarine eruption. Geophys. Res. Lett. 2012, 39, L13303. [Google Scholar] [CrossRef]
- Benito-Saz, M.; Parks, M.; Sigmundsson, F.; Hooper, A.; García-Cañada, L. Repeated magmatic intrusions at El Hierro Island following the 2011–2012 submarine eruption. J. Volcanol. Geotherm. Res. 2017, 344, 79–91. [Google Scholar] [CrossRef]
- Meletlidis, S.; Di Roberto, A.; Domínguez Cerdeña, I.; Pompilio, M.; García-Cañada, L.; Bertagnini, A.; Benito-Saz, M.; Del Carlo, P.; Sainz-Maza Aparicio, S. New insight into the 2011–2012 unrest and eruption of El Hierro Island (Canary Islands) based on integrated geophysical, geodetical, and petrological data. Ann. Geophys. 2015, 58, S0546. [Google Scholar] [CrossRef]
- Carracedo, J.-C.; Troll, V. The Geology of Canary Islands, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2016; p. 622. [Google Scholar]
- Blahůt, J.; Baroň, I.; Sokol, Ľ.; Meletlidis, S.; Klimeš, J.; Rowberry, M.; Melichar, R.; García-Cañada, L.; Martí, X. Large landslide stress states calculated during extreme climatic and tectonic events on El Hierro, Canary Islands. Landslides 2018, 15, 1801–1814. [Google Scholar] [CrossRef]
- Masson, D. Catastrophic collapse of the volcanic island of Hierro 15 ka ago and the history of landslides in the Canary Islands. Geology 1996, 24, 231–234. [Google Scholar] [CrossRef]
- Urgeles, R.; Canals, M.; Baraza, J.; Alonso, B. The submarine El Golfo debris avalanche and the Canary debris flow, west Hierro Island: The last major slides in the Canary Archipelago. Geogaceta 1996, 20, 390–393. [Google Scholar]
- Urgeles, R.; Canals, M.; Baraza, J.; Alonso, B.; Masson, D. The most recent megalandslides on the Canary Islands: The El Golfo debris avalanche and the Canary debris flow, west El Hierro Island. J. Geophys. Res. Solid Earth 1997, 102, 20305–20323. [Google Scholar] [CrossRef]
- Carracedo, J.-C.; Day, S.; Guillou, H.; Pérez Torrado, F. Giant quaternary landslides in the evolution of La Palma and El Hierro, Canary Islands. J. Volcanol. Geotherm. Res. 1999, 94, 169–190. [Google Scholar] [CrossRef]
- Masson, D.; Watts, A.B.; Gee, M.J.; Urgeles, R.; Mitchell, N.; Le Bas, T.; Canals, M. Slope failures on the flanks of the western Canary Islands. Earth Sci. Rev. 2002, 57, 1–35. [Google Scholar] [CrossRef]
- Longpré, M.; Chadwick, J.; Wijbrans, J.; Iping, R. Age of the El Golfo debris avalanche, El Hierro (Canary Islands): New constraints from laser and furnace 40Ar/39Ar dating. J. Volcanol. Geotherm. Res. 2011, 203, 76–80. [Google Scholar] [CrossRef]
- Becerril, L.; Galve, J.; Morales, J.; Romero, C.; Sánchez, N.; Martí, J.; Galindo, I. Volcanostructure of El Hierro (Canary Islands). J. Maps 2016, 12, 43–52. [Google Scholar] [CrossRef]
- León, R.; Somoza, L.; Urgeles, R.; Medialdea, T.; Ferrer, M.; Biain, A.; García-Crespo, J.; Mediato, J.; Galindo, I.; Yepes, J.; et al. Multi-event oceanic island landslides: New onshore-offshore insights from El Hierro Island, Canary archipelago. Mar. Geol. 2017, 393, 156–175. [Google Scholar] [CrossRef]
- Blahůt, J.; Klimeš, J.; Rowberry, M.; Kusák, M. Database of giant landslides on volcanic islands—First results from the Atlantic Ocean. Landslides 2018, 15, 823–827. [Google Scholar] [CrossRef]
- Blahůt, J.; Balek, J.; Klimeš, J.; Rowberry, M.; Kusák, M.; Kalina, J. A comprehensive global database of giant landslides on volcanic islands. Landslides 2019, 16, 2045–2052. [Google Scholar] [CrossRef]
- Agliardi, F.; Crosta, G.; Zanchi, A. Structural constraints on deep seated slope deformation kinematics. Eng. Geol. 2001, 59, 83–102. [Google Scholar] [CrossRef]
- Moscardelli, L.; Wood, L. New classification system for mass transport complexes in offshore Trinidad. Basin Res. 2008, 20, 73–98. [Google Scholar] [CrossRef]
- Day, S.; Carracedo, J.-C.; Guillou, H. Age and geometry of an aborted rift flank collapse: The San Andres fault system, El Hierro, Canary Islands. Geol. Mag. 1997, 134, 523–537. [Google Scholar] [CrossRef]
- Blahůt, J.; Mitrovic-Woodell, I.; Baroň, I.; René, M.; Rowberry, M.; Blard, P.-H.; Hartvich, F.; Balek, J.; Meletlidis, S. Volcanic edifice slip events recorded on the fault plane of the San Andrés Landslide, El Hierro, Canary Islands. Tectonophysics 2020, 776, 228317. [Google Scholar] [CrossRef]
- Klimeš, J.; Yepes, J.; Becerril, L.; Kusák, M.; Galindo, I.; Blahůt, J. Development and recent activity of the San Andrés Landslide on El Hierro, Canary Islands, Spain. Geomorphology 2016, 261, 119–131. [Google Scholar] [CrossRef]
- Blahůt, J.; Rowberry, M.; Balek, J.; Klimeš, J.; Baroň, I.; Meletlidis, S.; Martí, X. Monitoring giant landslide detachment planes in the era of big data analytics. In Advancing Culture of Living with Landslides; Mikoš, M., Arbanas, Ž., Yin, Y., Sassa, K., Eds.; Springer: Cham, Switzerland, 2017; Volume 3, pp. 333–340. [Google Scholar] [CrossRef]
- Blahůt, J.; Olejár, F.; Rott, J.; Petružálek, M. Current stability modelling of an incipient San Andrés giant landslide on El Hierro Island, Canaries, Spain—First attempt using limited input data. Acta Geodyn. Geomater. 2020, 17, 89–99. [Google Scholar] [CrossRef]
- Martí, X.; Rowberry, M.D.; Blahůt, J. A MATLAB® code for counting the moiré fringe patterns recorded on the optical-mechanical crack gauge TM-71. Comput. Geosci. 2013, 52, 164–167. [Google Scholar] [CrossRef]
- Stemberk, J.; Briestenský, M.; Cacoń, S. The recognition of transient compressional fault slow-slip along the northern shore of Hornsund Fjord, SW Spitsbergen, Svalbard. Pol. Polar Res. 2015, 36, 109–123. [Google Scholar] [CrossRef]
- Weather Information Service. Available online: http://www.ogimet.com/index.phtml.en (accessed on 6 June 2019).
- Kohler, M.A.; Linsley, R.K., Jr. Predicting Runoff from Storm Rainfall, Research Paper 34; US Weather Bureau: Washington, DC, USA, 1951.
- Mishra, S.K.; Singh, V.P. Soil Conservation Service Number (SCS-CN) Methodology; Kluwer Academic Publisher: Dordrecht, The Netherlands, 2003; p. 516. [Google Scholar]
- Smolíková, J.; Blahůt, J.; Vilímek, V. Analysis of rainfall preceding debris flows on the Smědavská hora Mt., Jizerské hory Mts., Czech Republic. Landslides 2016, 13, 683–696. [Google Scholar] [CrossRef]
- Viessman, W.; Lewis, G.L. Introduction to Hydrology, 4th ed.; Harper Collins: New York, NY, USA, 1996; p. 760. [Google Scholar]
- Racek, O.; Blahůt, J.; Hartvich, F. Monitoring of thermoelastic wave within a rock mass coupling information from IR camera and crack meters: A 24-hour experiment on “Branická skála” Rock in Prague, Czechia. In WLF5 Book—Volume 3 “Monitoring and Early Warning”; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Instituto Geográfico Nacional. Available online: https://www.ign.es/web/ign/portal/sis-catalogo-terremotos (accessed on 6 June 2019).
- Munson, C.G.; Thurber, C.H. Analysis of the attenuation of strong ground motion on the Island of Hawaii. Bull. Seismol. Soc. Am. 1997, 87, 945–960. [Google Scholar]
- Gonzáles de Vallejo, L.I.; García-Mayordomo, J.; Insua, J.M. Probabilistic seismic-hazard assessment of the Canary Islands. Bull. Seismol. Soc. Am. 2006, 96, 2040–2049. [Google Scholar] [CrossRef]
- Page, E.S. Continuous inspection schemes. Biometrika 1954, 41, 100–115. [Google Scholar] [CrossRef]
- Balek, J.; Urban, R.; Štroner, M. Laboratory testing of the precision and accuracy of the TM-71 dilatometer. Pap. SGEM 2018, 18, 433–439. [Google Scholar] [CrossRef]
- Visvalingam, M.; Whyatt, J.D. The Douglas-Peucker algorithm for line simplification: Re-evaluation through visualization. Comput. Graph. Forum 1990, 9, 213–228. [Google Scholar] [CrossRef]
- Granger, C.W.J. Investigating causal relations by econometric models and cross-spectral methods. Econometrica 1969, 37, 424–438. [Google Scholar] [CrossRef]
- Brasca Merlin, A.; Lanfri, M.; Carignano, C.; Pascual, I.; Schlögel, R.; Cuozzo, G. Sensado Remoto de procesos de remoción en masa: Pautas para el monitoreo operativo. In Proceedings of the 2018 IEEE Biennial Congress of Argentina (ARGENCON), San Miguel de Tucumán, Argentina, 6 June 2018; p. 8. [Google Scholar]











© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).