Effect of Stand-Alone and Combined Ultraviolet and Ultrasound Treatments on Physicochemical and Microbial Characteristics of Pomegranate Juice
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of Pomegranate Juice
2.2.2. Conventional Pasteurization Treatment
2.2.3. Ultraviolet Treatment
2.2.4. Ultrasound Treatment
2.2.5. UV and Ultrasound Treatment
2.2.6. Physicochemical Analysis
2.2.7. Bioactive Properties
2.2.8. Phenolic Profile by HPLC
2.2.9. Microbiological Analysis
2.2.10. Experimental Design and Statistical Analysis
3. Results
3.1. Optimization of Parameters and Design Checks in UV Processing
3.2. Optimization the Parameters and Verification of Design in US Processing
3.3. Optimization of Parameters and Design Verification for UV and US Pasteurization
3.4. Comparison of UV, US, and UV+US Pasteurization Applications with Conventional Pasteurization
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Aviram, M.; Dornfeld, L.; Rosenblat, M.; Volkova, N.; Kaplan, M.; Coleman, R.; Hayek, T.; Presser, D.; Fuhrman, B. Pomegranate juice consumption reduces oxidative stress, atherogenic modifications to LDL, and platelet aggregation: Studies in humans and in atherosclerotic apolipoprotein E–deficient mice. Am. J. Clin. Nutr. 2000, 71, 1062–1076. [Google Scholar] [CrossRef] [PubMed]
- Borochov-Neori, H.; Judeinstein, S.; Tripler, E.; Harari, M.; Greenberg, A.; Shomer, I.; Holland, D. Seasonal and cultivar variations in antioxidant and sensory quality of pomegranate (Punica granatum L.) fruit. J. Food Compos. Anal. 2009, 22, 189–195. [Google Scholar] [CrossRef]
- Gil, M.I.; Tomás-Barberán, F.A.; Hess-Pierce, B.; Holcroft, D.M.; Kader, A.A. Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. J. Agric. Food Chem. 2000, 48, 4581–4589. [Google Scholar] [CrossRef] [PubMed]
- Alighourchi, H.; Barzegar, M. Some physicochemical characteristics and degradation kinetic of anthocyanin of reconstituted pomegranate juice during storage. J. Food Eng. 2009, 90, 179–185. [Google Scholar] [CrossRef]
- Patras, A.; Brunton, N.P.; O’Donnell, C.; Tiwari, B. Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends Food Sci. Technol. 2010, 21, 3–11. [Google Scholar] [CrossRef]
- Tournas, V.; Heeres, J.; Burgess, L. Moulds and yeasts in fruit salads and fruit juices. Food Microbiol. 2006, 23, 684–688. [Google Scholar] [CrossRef] [Green Version]
- López-Rubira, V.; Conesa, A.; Allende, A.; Artés, F. Shelf life and overall quality of minimally processed pomegranate arils modified atmosphere packaged and treated with UV-C. Postharvest Biol. Technol. 2005, 37, 174–185. [Google Scholar] [CrossRef]
- Adekunte, A.; Tiwari, B.; Cullen, P.; Scannell, A.; O’donnell, C. Effect of sonication on colour, ascorbic acid and yeast inactivation in tomato juice. Food Chem. 2010, 122, 500–507. [Google Scholar] [CrossRef]
- Putnik, P.; Kresoja, Ž.; Bosiljkov, T.; Jambrak, A.R.; Barba, F.J.; Lorenzo, J.M.; Roohinejad, S.; Granato, D.; Žuntar, I.; Kovačević, D.B. Comparing the effects of thermal and non-thermal technologies on pomegranate juice quality: A review. Food Chem. 2019, 279, 150–161. [Google Scholar] [CrossRef]
- Plaza, L.; Sánchez-Moreno, C.; Elez-Martínez, P.; de Ancos, B.; Martín-Belloso, O.; Cano, M.P. Effect of refrigerated storage on vitamin C and antioxidant activity of orange juice processed by high-pressure or pulsed electric fields with regard to low pasteurization. Eur. Food Res. Technol. 2006, 223, 487–493. [Google Scholar] [CrossRef]
- Knorr, D.; Zenker, M.; Heinz, V.; Lee, D.-U. Applications and potential of ultrasonics in food processing. Trends Food Sci. Technol. 2004, 15, 261–266. [Google Scholar] [CrossRef]
- Piyasena, P.; Mohareb, E.; McKellar, R. Inactivation of microbes using ultrasound: A review. Int. J. Food Microbiol. 2003, 87, 207–216. [Google Scholar] [CrossRef]
- Cheng, L.; Soh, C.; Liew, S.; Teh, F. Effects of sonication and carbonation on guava juice quality. Food Chem. 2007, 104, 1396–1401. [Google Scholar] [CrossRef]
- Caminiti, I.M.; Palgan, I.; Muñoz, A.; Noci, F.; Whyte, P.; Morgan, D.J.; Cronin, D.A.; Lyng, J.G. The effect of ultraviolet light on microbial inactivation and quality attributes of apple juice. Food Bioprocess Technol. 2012, 5, 680–686. [Google Scholar] [CrossRef]
- Franz, C.M.; Specht, I.; Cho, G.-S.; Graef, V.; Stahl, M.R. UV-C-inactivation of microorganisms in naturally cloudy apple juice using novel inactivation equipment based on Dean vortex technology. Food Control 2009, 20, 1103–1107. [Google Scholar] [CrossRef]
- National Advisory Committee Onmicrobiological Criteria for Foods. Requisite scientific parameters for establishing the equivalence of alternative methods of pasteurization. J. Food Prot. 2006, 69, 1190–1216. [Google Scholar] [CrossRef] [Green Version]
- Koutchma, T. Advances in ultraviolet light technology for non-thermal processing of liquid foods. Food Bioprocess Technol. 2009, 2, 138–155. [Google Scholar] [CrossRef]
- FDA. Available online: https://www.fda.gov/drugs/cder-biomarker-qualification-program/list-qualified-biomarkers (accessed on 25 May 2020).
- Keyser, M.; Műller, I.A.; Cilliers, F.P.; Nel, W.; Gouws, P.A. Ultraviolet radiation as a non-thermal treatment for the inactivation of microorganisms in fruit juice. Innov. Food Sci. Emerg. Technol. 2008, 9, 348–354. [Google Scholar] [CrossRef]
- Fonteles, T.V.; Costa, M.G.M.; de Jesus, A.L.T.; de Miranda, M.R.A.; Fernandes, F.A.N.; Rodrigues, S. Power ultrasound processing of cantaloupe melon juice: Effects on quality parameters. Food Res. Int. 2012, 48, 41–48. [Google Scholar] [CrossRef]
- Tiwari, B.; Muthukumarappan, K.; O’donnell, C.; Cullen, P. Colour degradation and quality parameters of sonicated orange juice using response surface methodology. LWT–Food Sci. Technol. 2008, 41, 1876–1883. [Google Scholar] [CrossRef]
- Chandrapala, J.; Oliver, C.; Kentish, S.; Ashokkumar, M. Ultrasonics in food processing. Ultrason. Sonochemistry 2012, 19, 975–983. [Google Scholar] [CrossRef] [PubMed]
- Awad, T.; Moharram, H.; Shaltout, O.; Asker, D.; Youssef, M. Applications of ultrasound in analysis, processing and quality control of food: A review. Food Res. Int. 2012, 48, 410–427. [Google Scholar] [CrossRef]
- Su, D.; Xiao, T.; Gu, D.; Cao, Y.; Jin, Y.; Zhang, W.; Wu, T. Ultrasonic bleaching of rapeseed oil: Effects of bleaching conditions and underlying mechanisms. J. Food Eng. 2013, 117, 8–13. [Google Scholar] [CrossRef]
- Muñoz, A.; Palgan, I.; Noci, F.; Morgan, D.; Cronin, D.; Whyte, P.; Lyng, J. Combinations of high intensity light pulses and thermosonication for the inactivation of Escherichia coli in orange juice. Food Microbiol. 2011, 28, 1200–1204. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, B.; Muthukumarappan, K.; O’Donnell, C.; Cullen, P. Effects of sonication on the kinetics of orange juice quality parameters. J. Agric. Food Chem. 2008, 56, 2423–2428. [Google Scholar] [CrossRef]
- Nafar, M.; Emam-Djomeh, Z.; Yousefi, S.; Hashemi Ravan, M. An optimization study on the ultrasonic treatments for saccharomyces cerevisiae inactivation in red grape juice with maintaining critical quality attributes. J. Food Qual. 2013, 36, 269–281. [Google Scholar] [CrossRef]
- Ngo, T.H.D.; Ngo, D.N. Effects of low–frequency ultrasound on heterogenous deacetylation of chitin. Int. J. Biol. Macromol. 2017, 104, 1604–1610. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Wrolstad, R.E.; Durst, R.W.; Lee, J. Tracking color and pigment changes in anthocyanin products. Trends Food Sci. Technol. 2005, 16, 423–428. [Google Scholar] [CrossRef]
- Durak, M.Z.; Ucak, G. Solvent optimization and characterization of fatty acid profile and antimicrobial and antioxidant activities of Turkish Pistacia terebinthus L. extracts. Turk. J. Agric. For. 2015, 39, 10–19. [Google Scholar] [CrossRef]
- Fischer, U.A.; Carle, R.; Kammerer, D.R. Identification and quantification of phenolic compounds from pomegranate (Punica granatum L.) peel, mesocarp, aril and differently produced juices by HPLC-DAD–ESI/MSn. Food Chem. 2011, 127, 807–821. [Google Scholar] [CrossRef] [PubMed]
- Shamsudin, R.; Adzahan, N.M.; Yee, Y.P.; Mansor, A. Effect of repetitive ultraviolet irradiation on the physico-chemical properties and microbial stability of pineapple juice. Innov. Food Sci. Emerg. Technol. 2014, 23, 114–120. [Google Scholar] [CrossRef]
- Noci, F.; Riener, J.; Walkling-Ribeiro, M.; Cronin, D.; Morgan, D.; Lyng, J. Ultraviolet irradiation and pulsed electric fields (PEF) in a hurdle strategy for the preservation of fresh apple juice. J. Food Eng. 2008, 85, 141–146. [Google Scholar] [CrossRef]
- Pala, Ç.U.; Toklucu, A.K. Effect of UV-C light on anthocyanin content and other quality parameters of pomegranate juice. J. Food Compos. Anal. 2011, 24, 790–795. [Google Scholar] [CrossRef]
- Orlowska, M.; Koutchma, T.; Kostrzynska, M.; Tang, J.; Defelice, C. Evaluation of mixing flow conditions to inactivate Escherichia coli in opaque liquids using pilot-scale Taylor–Couette UV unit. J. Food Eng. 2014, 120, 100–109. [Google Scholar] [CrossRef]
- Guerrero-Beltrán, J.; Welti-Chanes, J.; Barbosa-Cánovas, G.V. Ultraviolet-C light processing of grape, cranberry and grapefruit juices to inactivate Saccharomyces cerevisiae. J. Food Process Eng. 2009, 32, 916–932. [Google Scholar] [CrossRef]
- Rivas, A.; Rodrigo, D.; Martinez, A.; Barbosa-Cánovas, G.; Rodrigo, M. Effect of PEF and heat pasteurization on the physical–chemical characteristics of blended orange and carrot juice. LWT–Food Sci. Technol. 2006, 39, 1163–1170. [Google Scholar] [CrossRef]
- Tandon, K.; Worobo, R.W.; Churey, J.J.; Padilla-Zakour, O.I. Storage quality of pasteurized and UV treated apple cider. J. Food Process. Preserv. 2003, 27, 21–35. [Google Scholar] [CrossRef]
- Chia, S.; Rosnah, S.; Noranizan, M.; Ramli, W.W. The effect of storage on the quality attributes of ultraviolet-irradiated and thermally pasteurised pineapple juices. Int. Food Res. J. 2012, 19, 1001. [Google Scholar]
- Bermúdez-Aguirre, D.; Barbosa-Cánovas, G.V. Inactivation of Saccharomyces cerevisiae in pineapple, grape and cranberry juices under pulsed and continuous thermo-sonication treatments. J. Food Eng. 2012, 108, 383–392. [Google Scholar] [CrossRef]
- Char, C.D.; Mitilinaki, E.; Guerrero, S.N.; Alzamora, S.M. Use of high-intensity ultrasound and UV-C light to inactivate some microorganisms in fruit juices. Food Bioprocess Technol. 2010, 3, 797–803. [Google Scholar] [CrossRef]
- Guerrero, S.; López-Malo, A.; Alzamora, S. Effect of ultrasound on the survival of Saccharomyces cerevisiae: Influence of temperature, pH and amplitude. Innov. Food Sci. Emerg. Technol. 2001, 2, 31–39. [Google Scholar] [CrossRef]
- Guerrero, S.; Tognon, M.; Alzamora, S.M. Response of Saccharomyces cerevisiae to the combined action of ultrasound and low weight chitosan. Food Control 2005, 16, 131–139. [Google Scholar] [CrossRef]
- Abid, M.; Jabbar, S.; Wu, T.; Hashim, M.M.; Hu, B.; Lei, S.; Zhang, X.; Zeng, X. Effect of ultrasound on different quality parameters of apple juice. Ultrason. Sonochemistry 2013, 20, 1182–1187. [Google Scholar] [CrossRef]
- Zafra-Rojas, Q.Y.; Cruz-Cansino, N.; Ramírez-Moreno, E.; Delgado-Olivares, L.; Villanueva-Sánchez, J.; Alanís-García, E. Effects of ultrasound treatment in purple cactus pear (Opuntia ficus-indica) juice. Ultrason. Sonochemistry 2013, 20, 1283–1288. [Google Scholar] [CrossRef] [PubMed]
- Alighourchi, H.; Barzegar, M.; Sahari, M.A.; Abbasi, S. The effects of sonication and gamma irradiation on the inactivation of Escherichia coli and Saccharomyces cerevisiae in pomegranate juice. Iran. J. Microbiol. 2014, 6, 51. [Google Scholar]
- Tiwari, B.; Patras, A.; Brunton, N.; Cullen, P.; O’donnell, C. Effect of ultrasound processing on anthocyanins and color of red grape juice. Ultrason. Sonochemistry 2010, 17, 598–604. [Google Scholar] [CrossRef]
- Tiwari, B.; O’Donnell, C.; Cullen, P. Effect of sonication on retention of anthocyanins in blackberry juice. J. Food Eng. 2009, 93, 166–171. [Google Scholar] [CrossRef]
- Kilicli, M.; Baslar, M.; Durak, M.Z.; Sagdic, O. Effect of ultrasound and low-intensity electrical current for microbial safety of lettuce. LWT 2019, 116, 108509. [Google Scholar] [CrossRef]
TPC | Turbidity | °Brix Value | Color a* | Yeast and Mold Count log CFU/mL |
---|---|---|---|---|
(mg GAE/L) | ||||
1078 ± 5.72 | 4.2 ± 0.19 | 14 ± 0.0 | 2.3 ± 0.0 | 5.3 ± 0.1 |
Run Order | X1 | X2 | X3 | Phenolic Content (mg GAE/L) | Turbidity | °Brix | Color a* | Yeast and Mold Count log CFU/mL |
---|---|---|---|---|---|---|---|---|
1 | 50 | 1.5 | 1 LAMP | 920 ± 4.42 g | 4.01 ± 0.007 j | 14 ± 0.0 c | 2.3 ± 0.08 ab | 3.09 ± 0.96 g |
2 | 60 | 1.5 | 1 LAMP | 857 ± 0.44 i | 3.59 ± 0.000 k | 15 ± 0.0 b | 2.3 ± 0.07 ab | <0.5 k |
3 | 50 | 3.5 | 2 LAMPS | 969 ± 0.59 d | 3.99 ± 0.007 g | 15 ± 0.0 b | 2.3 ± 0.05 ab | 3.11 ± 0.00 f |
4 | 40 | 1.5 | 1 LAMP | 1055 ± 2.21 ab | 4.58 ± 0.007 b | 14 ± 0.0 c | 2.3 ± 0.09 ab | 3.75 ± 0.82 c |
5 | 40 | 3.5 | 2 LAMPS | 1053 ± 0.00 b | 4.34 ± 0.000 d | 14 ± 0.0 c | 2.3 ± 0.03 ab | 3.86 ± 0.50 b |
6 | 50 | 3.5 | 1 LAMP | 1020 ± 0.00 c | 4.05 ± 0.003 f | 15 ± 0.0 b | 2.3 ± 0.00 ab | 3.34 ± 0.50 e |
7 | 50 | 1.5 | 2 LAMPS | 890 ± 0.14 h | 4.19 ± 0.004 e | 15 ± 0.0 b | 2.3 ± 0.05 ab | 2.97 ± 0.58 h |
8 | 60 | 1.5 | 2 LAMPS | 840 ± 0.25 j | 3.61 ± 0.014 k | 16 ± 0.0 a | 2.5 ± 0.03 ab | <0.5 k |
9 | 40 | 3.5 | 1 LAMP | 1060 ± 0.00 a | 4.41 ± 0.000 c | 14 ± 0.0 c | 2.3 ± 0.06 ab | 3.92 ± 0.56 a |
10 | 40 | 1.5 | 2 LAMPS | 938 ± 1.80 f | 4.61 ± 0.021 a | 14 ± 0.0 c | 2.3 ± 0.01 ab | 3.59 ± 0.50 d |
11 | 60 | 3.5 | 1 LAMP | 958 ± 0.00 e | 3.82 ± 0.004 h | 15 ± 0.0 b | 2.3 ± 0.00 ab | 2.00 ± 0.00 i |
12 | 60 | 3.5 | 2 LAMPS | 925 ± 0.00 g | 3.76 ± 0.014 i | 15 ± 0.0 b | 2.5 ± 0.07 a | 1.69 ± 0.82 j |
Source | Sum of Squares | Mean of Square | F Value | p–Value |
---|---|---|---|---|
Model | 21.50 | 2.39 | 227.37 | 0.0044 |
X1 | 17.94 | 8.97 | 853.49 | 0.0012 |
X2 | 1.70 | 1.70 | 162.02 | 0.0061 |
X3 | 0.06 | 0.06 | 6.14 | 0.1315 |
X1X2 | 1.79 | 0.89 | 85.07 | 0.0116 |
X1X3 | 0.00 | 0.00 | 0.11 | 0.9046 |
X2X3 | 0.01 | 0.01 | 0.81 | 0.4626 |
Residual | 0.02 | 0.01 | ||
Correction Total | 21.52 | |||
R2 = 0.9990 |
Run Order | X1 | X2 | X3 | Phenolic Content (mg GAE/L) | Turbidity | °Brix | Color a* | Yeast and Mold Count log CFU/mL |
---|---|---|---|---|---|---|---|---|
1 | 50 | 10 | ON | 1252 ± 1.81 d | 4.23 ± 0.000 bcde | 15 ± 0.0 a | 3.46 ± 0.00 f | 3.4 ± 0.67 i |
2 | 40 | 10 | OFF | 1103 ± 0.27 gh | 4.11 ± 0.003 h | 15 ± 0.0 a | 3.46 ± 0.01 f | 4.4 ± 0.80 a |
3 | 50 | 15 | ON | 1273 ± 0.18 d | 4.24 ± 0.011 bcd | 15 ± 0.0 a | 3.46 ± 0.00 f | 3.0 ± 0.96 k |
4 | 40 | 15 | ON | 1138 ± 0.18 f | 4.20 ± 0.003 def | 15 ± 0.0 a | 3.54 ± 0.02 c | 4.0 ± 0.5 e |
5 | 60 | 5 | ON | 1310 ± 0.18 c | 4.28 ± 0.018 b | 15 ± 0.0 a | 3.53 ± 0.05 d | 3.1 ± 0.38 j |
6 | 60 | 10 | ON | 1358 ± 0.18 b | 4.28 ± 0.018 b | 15 ± 0.0 a | 3.16 ± 0.00 h | 2.8 ± 0.20 l |
7 | 60 | 5 | OFF | 1173 ± 0.18 e | 4.25 ± 0.004 bcd | 14 ± 0.0 b | 3.03 ± 0.03 j | 3.9 ± 0.79 f |
8 | 50 | 5 | OFF | 1116 ± 0.02 fg | 4.14 ± 0.003 fgh | 14 ± 0.0 b | 3.53 ± 0.00 d | 4.1 ± 0.82 c |
9 | 40 | 15 | OFF | 1119 ± 0.18 fg | 4.13 ± 0.007 gh | 15 ± 0.0 a | 3.46 ± 0.01 f | 4.2 ± 0.58 c |
10 | 40 | 5 | OFF | 1080 ± 0.18 h | 3.88 ± 0.000 j | 14 ± 0.0 b | 3.47 ± 0.00 e | 4.8 ± 1.20a |
11 | 60 | 15 | ON | 1481 ± 0.18 a | 4.71 ± 0.021 a | 15 ± 0.0 a | 3.16 ± 0.00 h | <0.5 m |
12 | 60 | 10 | OFF | 1173 ± 0.00 e | 4.26 ± 0.011 bc | 15 ± 0.0 a | 3.16 ± 0.06 h | 3.9 ± 0.70 g |
13 | 60 | 15 | OFF | 1192 ± 0.18 e | 4.28 ± 0.003 b | 15 ± 0.0 a | 3.17 ± 0.08 g | 3.8 ± 0.85 h |
14 | 40 | 10 | ON | 1121 ± 0.18 fg | 4.18 ± 0.011 efg | 15 ± 0.0 a | 3.54 ± 0.01 c | 4.3 ± 0.56 b |
15 | 40 | 5 | ON | 1082 ± 0.18 h | 4.03 ± 0.007 i | 15 ± 0.0 a | 3.05 ± 0.00 i | 4.3 ± 0.50 a |
16 | 50 | 15 | OFF | 1123 ± 0.18 fg | 4.23 ± 0.003 bcde | 15 ± 0.0 a | 3.88 ± 0.00 a | 3.9 ± 0.80 f |
17 | 50 | 5 | ON | 1140 ± 1.80 f | 4.14 ± 0.018 fgh | 15 ± 0.0 a | 3.16 ± 0.02 h | 3.8 ± 0.90 h |
18 | 50 | 10 | OFF | 1124 ± 1.81 fg | 4.21 ± 0.000 cde | 15 ± 0.0 a | 3.63 ± 0.05 b | 4.0 ± 0.40 d |
Source | Sum of Squares | Mean of Square | F Value | p–Value |
---|---|---|---|---|
Model | 15.12 | 1.89 | 7.55 | 0.0033 |
X1 | 5.07 | 5.07 | 20.24 | 0.0015 |
X2 | 1.84 | 1.84 | 7.35 | 0.024 |
X3 | 3.21 | 3.21 | 12.81 | 0.0059 |
X1X2 | 0.91 | 0.91 | 3.64 | 0.0889 |
X1X3 | 2.61 | 2.61 | 10.43 | 0.103 |
X2X3 | 1.14 | 1.14 | 4.55 | 0.0616 |
X12 | 0.071 | 0.071 | 0.28 | 0.6071 |
X22 | 0.27 | 0.27 | 1.07 | 0.3289 |
Residual | 2.25 | 0.25 | ||
Correction Total | 17.38 | |||
R2=0.8703 |
Run Order | X1 | X2 | X3 | X4 | X5 | TPC (mg GAE /L) | Turbidity | °Brix | Color a* | Yeast and Mold (log CFU/mL) |
---|---|---|---|---|---|---|---|---|---|---|
1 | 40 | 5 | ON | 1 LAMP | 3.5 | 1051 ± 3.09 a | 4.18 ± 0.02 a | 14 ± 0.0 a | 3.51 ± 0.09 a | 3.8 ± 0.0 b |
2 | 40 | 10 | ON | 1 LAMP | 3.5 | 1067 ± 3.13 b | 4.23 ± 0.01 a | 14 ± 0.0 a | 3.73 ± 0.06 b | 3.5 ± 0.1 b |
3 | 40 | 15 | ON | 1 LAMP | 3.5 | 1135 ± 4.17 c | 4.21 ± 0.05 a | 14 ± 0.0 a | 3.53 ± 0.02 ab | 3.1 ± 0.0 b |
4 | 50 | 5 | ON | 1 LAMP | 3.5 | 1226 ± 2.09 d | 4.19 ± 0.04 a | 14 ± 0.0 a | 3.51 ± 0.09 ab | 2.9 ± 0.1 a |
5 | 50 | 10 | ON | 1 LAMP | 3.5 | 1244 ± 3.39 e | 4.21 ± 0.01 ab | 14 ± 0.0 a | 3.56 ± 0.07 ab | <0.5 c |
6 | 50 | 15 | ON | 1 LAMP | 3.5 | 1263 ± 4.11 f | 4.27 ± 0.02 ab | 15 ± 0.0 b | 3.35 ± 0.01 ab | <0.5 c |
7 | 60 | 5 | ON | 1 LAMP | 3.5 | 1281 ± 1.22 g | 4.23 ± 0.03 c | 15 ± 0.0 b | 3.40 ± 0.05 ab | <0.5 c |
8 | 60 | 10 | ON | 1 LAMP | 3.5 | 1289 ± 3.83 h | 4.38 ± 0.03 c | 15 ± 0.0 b | 3.40 ± 0.08 ab | <0.5 c |
9 | 60 | 15 | ON | 1 LAMP | 3.5 | 1357 ± 6.26I | 4.49 ± 0.02 d | 15 ± 0.0 b | 3.50 ± 0.00 ab | <0.5 c |
Quality Parameters | Non-Processed | Conventional | US | UV | US+UV |
---|---|---|---|---|---|
Anthocyanins (mg/L) | 25.1 ± 0.1 e | 17.95 ± 0.2 a | 20.6 ± 0.1 b | 20.85 ± 0.2 d | 20.7 ± 0.2 c |
% Inhibition (DPPH) | 32.69 ± 0.2 e | 26.57 ± 0.1 a | 31.67 ± 0.2 d | 27.59 ± 0.2 c | 27.08 ± 0.1 b |
HPLC TPC (µg/g) | 855 ± 5.1 b | 701 ± 4.9 a | 1141 ± 7.2 e | 865 ± 1.2 c | 1012 ± 3.8 d |
gallic acid | 648.9 ± 0.07 b | 507.42 ± 0.06 a | 967.72 ± 0.03 e | 689.415 ± 0.05 c | 843.24 ± 0.04 d |
protocatechuic acid | 126.02 ± 0.11 e | 117.91 ± 0.11 d | 85.94 ± 0.14 b | 89.27 ± 0.15 c | 83.24 ± 0.010 a |
catechin | 38.44 ± 0.13 d | 24.19 ± 0.10 a | 27.521 ± 0.01 c | 27.93 ± 0.10 c | 25.44 ± 0.08 b |
p–hydroxybenzoic acid | 4.34 ± 0.19 a | 10.56 ± 0.15 b | 13.10 ± 0.20 d | 11.68 ± 0.16 c | 14.04 ± 0.14 e |
caffeic acid | 11.80 ± 0.10 a | 13.71 ± 0.13 b | 15.33 ± 0.15 d | 15.88 ± 0.13 d | 14.24 ± 0.09 c |
myricetin | 15.48 ± 0.01 a | 23.39 ± 0.08 b | 25.91 ± 0.09 c | 25.87 ± 0.04 c | 25.92 ± 0.06 c |
others | 10.02 ± 0.08 d | 3.82 ± 0.02 a | 5.479 ± 0.07 c | 4.955 ± 0.07 b | 5.88 ± 0.01 c |
TPC (mg GAE/L) | 1078 ± 5.7 b | 889 ± 4.1 a | 1273 ± 6.7 c | 890 ± 7.2 a | 1263 ± 4.1 c |
Turbidity | 4.13 ± 0.0 b | 4.84 ± 0.1 d | 4.26 ± 0.0 c | 4.02 ± 0.0 a | 4.27 ± 0.0 c |
Color a* | 3.40 ± 0.0 a | 3.45 ± 0.0 a | 3.44 ± 0.0 a | 3.45 ± 0.0 a | 3.35 ± 0.0 a |
°Brix value | 14 ± 0.0 b | 15 ± 0.0 a | 15 ± 0.0 a | 15 ± 0.0 a | 15 ± 0.0 a |
Yeast and mold count (log CFU/mL) | 5.3 ± 0.1 d | <0.5 a | 2.96 ± 0.0 b | 3.06 ± 0.0 c | <0.5 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alabdali, T.A.M.; Icyer, N.C.; Ucak Ozkaya, G.; Durak, M.Z. Effect of Stand-Alone and Combined Ultraviolet and Ultrasound Treatments on Physicochemical and Microbial Characteristics of Pomegranate Juice. Appl. Sci. 2020, 10, 5458. https://doi.org/10.3390/app10165458
Alabdali TAM, Icyer NC, Ucak Ozkaya G, Durak MZ. Effect of Stand-Alone and Combined Ultraviolet and Ultrasound Treatments on Physicochemical and Microbial Characteristics of Pomegranate Juice. Applied Sciences. 2020; 10(16):5458. https://doi.org/10.3390/app10165458
Chicago/Turabian StyleAlabdali, Tareq A. M., Necattin Cihat Icyer, Gulsum Ucak Ozkaya, and Muhammed Zeki Durak. 2020. "Effect of Stand-Alone and Combined Ultraviolet and Ultrasound Treatments on Physicochemical and Microbial Characteristics of Pomegranate Juice" Applied Sciences 10, no. 16: 5458. https://doi.org/10.3390/app10165458
APA StyleAlabdali, T. A. M., Icyer, N. C., Ucak Ozkaya, G., & Durak, M. Z. (2020). Effect of Stand-Alone and Combined Ultraviolet and Ultrasound Treatments on Physicochemical and Microbial Characteristics of Pomegranate Juice. Applied Sciences, 10(16), 5458. https://doi.org/10.3390/app10165458