The Potential of Non-Ionic Surfactants for Extraction of Lactic Acid from Aqueous Solution
Abstract
:Featured Application
Abstract
1. Introduction
2. Experimental Section
2.1. Materials
2.2. Equilibrium Sample Preparation and Procedure
2.3. Equilibrium Time Determination
2.4. Sample Analyses
3. Results and Discussion
3.1. Qualitative Liquid–Liquid Equilibria
3.2. Phase Separation or Equilibrium Time
3.3. Liquid–Liquid Equilibrium (LLE) Data
3.4. Reliability of Tie-Line Data
4. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Joglekar, H.G.; Rahman, I.; Babu, S.; Kulkarni, B.D.; Joshi, A. Comparative Assessment of Downstream Processing Options for Lactic Acid. Sep. Purif. Technol. 2006, 52, 1–17. [Google Scholar] [CrossRef]
- Komesu, A.; Wolf Maciel, M.R.; Maciel Filho, R. Separation and Purification Technologies for Lactic Acid—A Brief Review. BioResources 2017, 12, 6885–6901. [Google Scholar] [CrossRef]
- Komesu, A.; Wolf Maciel, M.R.; Rocha de Oliveira, J.A.; da Silva Martins, L.H.; Maciel Filho, R. Purification of Lactic Acid Produced by Fermentation: Focus on Non-Traditional Distillation Processes. Sep. Purif. Rev. 2017, 46, 241–254. [Google Scholar] [CrossRef]
- Schreurs, V.V.A.M.; Schaafsma, G. Lactic Acid and Lactates. Nutrafoods 2010, 9, 7–16. [Google Scholar] [CrossRef]
- Cubas-Cano, E.; González-Fernández, C.; Ballesteros, M.; Tomás-Pejó, E. Biotechnological Advances in Lactic Acid Production by Lactic Acid Bacteria: Lignocellulose as Novel Substrate. Biofuel. Bioprod. Biorefin. 2018, 12, 290–303. [Google Scholar] [CrossRef]
- Biddy, M.J.; Scarlata, C.; Kinchin, C. Chemicals from Biomass: A Market Assessment of Bioproducts with Near-Term Potential; NREL: Golden, CO, USA, 2016. [Google Scholar]
- Alves de Oliveira, R.; Schneider, R.; Vaz Rossell, C.E.; Maciel Filho, R.; Venus, J. Polymer Grade L-Lactic Acid Production from Sugarcane Bagasse Hemicellulosic Hydrolysate Using Bacillus coagulans. Bioresour. Technol. Rep. 2019, 6, 26–31. [Google Scholar] [CrossRef]
- Tu, W.-L.; Hsu, T.-C.; Wang, C.-A.; Guo, G.-L.; Chao, Y. Using Novel Lactobacillus plantarum to Produce Lactic Acid from Lignocellulosic Biomass in an Integrated Simultaneous Saccharification and Fermentation Process. BioResources 2019, 14, 3873–3885. [Google Scholar]
- Berlowska, J.; Cieciura, W.; Borowski, S.; Dudkiewicz, M.; Binczarski, M.; Witonska, I.; Otlewska, A.; Kregiel, D. Simultaneous Saccharification and Fermentation of Sugar Beet Pulp with Mixed Bacterial Cultures for Lactic Acid and Propylene Glycol Production. Molecules 2016, 21, 1380. [Google Scholar] [CrossRef] [PubMed]
- Othman, M.; Ariff, A.B.; Rios-Solis, L.; Halim, M. Extractive Fermentation of Lactic Acid in Lactic Acid Bacteria Cultivation: A Review. Front. Microbiol. 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Song, J.-Y.; Park, J.-S.; Kang, C.D.; Cho, H.-Y.; Yang, D.; Lee, S.; Cho, K.M. Introduction of a Bacterial Acetyl-CoA Synthesis Pathway Improves Lactic Acid Production in Saccharomyces cerevisiae. Metab. Eng. 2016, 35, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Baek, S.-H.; Kwon, E.Y.; Bae, S.-J.; Cho, B.-R.; Kim, S.-Y.; Hahn, J.-S. Improvement of D-Lactic Acid Production in Saccharomyces cerevisiae under Acidic Conditions by Evolutionary and Rational Metabolic Engineering. Biotechnol. J. 2017, 12, 1700015. [Google Scholar] [CrossRef] [PubMed]
- Upadhyaya, B.P.; DeVeaux, L.C.; Christopher, L.P. Metabolic Engineering as a Tool for Enhanced Lactic Acid Production. Trends Biotechnol. 2014, 32, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Eş, I.; Mousavi Khaneghah, A.; Barba, F.J.; Saraiva, J.A.; Sant Ana, A.S.; Hashemi, S.M.B. Recent Advancements in Lactic Acid Production—A Review. Food Res. Int. 2018, 107, 763–770. [Google Scholar] [CrossRef] [PubMed]
- Mears, L.; Stocks, S.M.; Sin, G.; Gernaey, K.V. A Review of Control Strategies for Manipulating the Feed Rate in Fed-Batch Fermentation Processes. J. Biotechnol. 2017, 245, 34–46. [Google Scholar] [CrossRef] [PubMed]
- Ÿztürk, S.; ÿalık, P.; ÿzdamar, T.H. Fed-Batch Biomolecule Production by Bacillus subtilis: A State of the Art Review. Trends Biotechnol. 2016, 34, 329–345. [Google Scholar] [CrossRef]
- Aso, Y.; Tsubaki, M.; Dang Long, B.H.; Murakami, R.; Nagata, K.; Okano, H.; Phuong Dung, N.T.; Ohara, H. Continuous Production of D-Lactic Acid from Cellobiose in Cell Recycle Fermentation Using Β-Glucosidase-Displaying Escherichia coli. J. Biosci. Bioeng. 2019, 127, 441–446. [Google Scholar] [CrossRef]
- Gao, M.-T.; Shimamura, T.; Ishida, N.; Nagamori, E.; Takahashi, H.; Umemoto, S.; Omasa, T.; Ohtake, H. Extractive Lactic Acid Fermentation with Tri-N-Decylamine as the Extractant. Enzym. Microb. Technol. 2009, 44, 350–354. [Google Scholar] [CrossRef]
- Boonmee, M.; Cotano, O.; Amnuaypanich, S.; Grisadanurak, N. Improved Lactic Acid Production by in Situ Removal of Lactic Acid During Fermentation and a Proposed Scheme for Its Recovery. Arab. J. Sci. Eng. 2016, 41, 2067–2075. [Google Scholar] [CrossRef]
- Yuwono, S.D.; Mulyono, M.; Buhani, B.; Suharso, S.; Sukmana, I. Purification of Lactic Acid from Cassava Bagasse Fermentation Using Ion Exchange. ARPN J. Eng. Appl. Sci. 2017, 12, 3853–3857. [Google Scholar]
- Min-tian, G.; Koide, M.; Gotou, R.; Takanashi, H.; Hirata, M.; Hano, T. Development of a Continuous Electrodialysis Fermentation System for Production of Lactic Acid by Lactobacillus rhamnosus. Process. Biochem. 2005, 40, 1033–1036. [Google Scholar] [CrossRef]
- Fan, R.; Ebrahimi, M.; Czermak, P. Anaerobic Membrane Bioreactor for Continuous Lactic Acid Fermentation. Membranes 2017, 7, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuznetsov, A.; Beloded, A.; Derunets, A.; Grosheva, V.; Vakar, L.; Kozlovskiy, R.; Shvets, V. Biosynthesis of Lactic Acid in a Membrane Bioreactor for Cleaner Technology of Polylactide Production. Clean Technol. Environ. 2017, 19, 869–882. [Google Scholar] [CrossRef]
- Wasewar, K.L.; Yawalkar, A.A.; Moulijn, J.A.; Pangarkar, V.G. Fermentation of Glucose to Lactic Acid Coupled with Reactive Extraction: A Review. Ind. Eng. Chem. Res. 2004, 43, 5969–5982. [Google Scholar] [CrossRef]
- Brink, L.E.S.; Tramper, J. Optimization of Organic Solvent in Multiphase Biocatalysis. Biotechnol. Bioeng. 1985, 27, 1258–1269. [Google Scholar] [CrossRef]
- Merrettig-Bruns, U.; Jelen, E. Anaerobic Biodegradation of Detergent Surfactants. Materials 2009, 2, 181–206. [Google Scholar] [CrossRef] [Green Version]
- Elsamadony, M.; Tawfik, A.; Suzuki, M. Surfactant-Enhanced Biohydrogen Production from Organic Fraction of Municipal Solid Waste (OFMSW) via Dry Anaerobic Digestion. Appl. Energy 2015, 149, 272–282. [Google Scholar] [CrossRef]
- Belgodere, J.A.; Revellame, E.D.; Hernandez, R.; Holmes, W.; Collazos, L.; Bajpai, R.; Zappi, M.E. Liquid-Liquid Equilibria for (Volatile Fatty Acids + Water + Alcohol Ethoxylates): Experimental Measurement of Pseudo-Ternary Systems. J. Chem. Thermodyn. 2019, 128, 207–214. [Google Scholar] [CrossRef]
- Dhamole, P.B.; Wang, Z.; Liu, Y.; Wang, B.; Feng, H. Extractive Fermentation with Non-Ionic Surfactants to Enhance Butanol Production. Biomass Bioenergy 2012, 40, 112–119. [Google Scholar] [CrossRef]
- Kravetz, L.; Chung, H.; Rapean, J.C.; Guin, K.F.; Shebs, W.T. Ultimate Biodegradability of Detergent Range Alcohol Ethoxylates. In Proceedings of the 69th Annual Meeting of the American Oil Chemists’ Society, St. Louis, MO, USA, 15 May 1978. [Google Scholar]
- Balson, T.; Felix, M.S.B. Biodegradability of Non-Ionic Surfactants. In Biodegradability of Surfactants; Karsa, D.R., Porter, M.R., Eds.; Springer: Dordrecht, The Netherlands, 1995; pp. 204–230. [Google Scholar] [CrossRef]
- Bhairi, S.M.; Mohan, C. Detergents. A Guide to the Properties and Uses of Detergents in Biological Systems. Ph.D. Thesis, Calbiochem®, EMD Biosciences, San Diego, CA, USA, 1999. [Google Scholar]
- ICI Americas Inc. The HLB System a Time-Saving Guide to Emulsifier Selection; ICI Americas Inc.: Delaware, DE, USA, 1980. [Google Scholar]
- Rang, M.J.; Miller, C.A. Spontaneous Emulsification of Oils Containing Hydrocarbon, Nonionic Surfactant, and Oleyl Alcohol. J. Colloid Inter. Sci. 1999, 209, 179–192. [Google Scholar] [CrossRef]
- Gomis, A.M.; Reyes-Labarta, J.A.; Cayuelas, M.D.S.; López, M.d.M.O. Ge Models and Algorithms for Condensed Phase Equilibrium Data Regression in Ternary Systems: Limitations and Proposals. Open Thermodyn. J. 2011, 5, 48–62. [Google Scholar] [CrossRef] [Green Version]
- Broze, G. Phase Equilibria. In Liquid Detergents, 2nd ed.; Lai, K.-Y., Ed.; CRC Press: Boca Raton, FL, USA, 2005; pp. 39–72. [Google Scholar] [CrossRef]
- Centre for Industry Education Collaboration. Surfactants. Available online: https://www.mcpolymers.com/library/whats-in-a-can-a-chat-with-solvay-about-surfactants (accessed on 6 January 2020).
- Al-Sabagh, A.M.; Nasser, N.M.; Migahed, M.A.; Kandil, N.G. Effect of Chemical Structure on the Cloud Point of Some New Non-Ionic Surfactants Based on Bisphenol in Relation to Their Surface Active Properties. Egypt. J. Pet. 2011, 20, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Ghouas, H.; Haddou, B.; Kameche, M.; Canselier, J.P.; Gourdon, C. Removal of Tannic Acid from Aqueous Solution by Cloud Point Extraction and Investigation of Surfactant Regeneration by Microemulsion Extraction. J. Surfactants Deterg. 2016, 19, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Goodner, K.L. Estimating Turbidity (NTU) from Absorption Data. Ph.D. Thesis, LLC, Synergy Flavors, OH, USA, 2009. [Google Scholar]
- Han, D.H.; Hong, Y.K.; Hong, W.H. Separation Characteristics of Lactic Acid in Reactive Extraction and Stripping. Korean J. Chem. Eng. 2000, 17, 528–533. [Google Scholar] [CrossRef]
- Richard, R.; Ferrando, N.; Jacquin, M. Liquid–Liquid Equilibria for Ternary Systems Acetic Acid + N-Butyl Acetate + Hydrocarbons at 293.15 K. Fluid Phase Equilibr. 2013, 356, 264–270. [Google Scholar] [CrossRef] [Green Version]
- Thakore, S.B.; Bhatt, B.I. Introduction to Process. Engineering and Design; Tata McGraw-Hill Publishing Company Limited: New Delhi, India, 2007. [Google Scholar]
- Bayazıt, K.; Gök, A.; Uslu, H.; Kırbaşlar, Ş.İ. Phase Equilibria of (Water + Butyric Acid + Butyl Acetate) Ternary Systems at Different Temperatures. Fluid Phase Equilibr. 2014, 379, 185–190. [Google Scholar] [CrossRef]
- Tamada, J.A.; King, C.J. Extraction of Carboxylic Acids with Amine Extractants. 2. Chemical Interactions and Interpretation of Data. Ind. Eng. Chem. Res. 1990, 29, 1327–1333. [Google Scholar] [CrossRef]
- Hong, Y.K.; Hong, W.H. Reactive Extraction of Lactic Acid with Mixed Tertiary Amine Extractants. Biotechnol. Tech. 1999, 13, 915–918. [Google Scholar] [CrossRef]
- Han, D.H.; Hong, W.H. Water-Enhanced Solubilities of Lactic Acid in Reactive Extraction Using Trioctylamine/Various Active Diluents Systems. Sep. Sci. Technol. 1998, 33, 271–281. [Google Scholar] [CrossRef]
- von Frieling, P.; Schügerl, K. Recovery of Lactic Acid from Aqueous Model Solutions and Fermentation Broths. Process. Biochem. 1999, 34, 685–696. [Google Scholar] [CrossRef]
- Inci, I.; Aydin, A. Extraction of Hydroxycarboxylic Acids with MIBK/Toluene Solutions of Amines. J. Sci. Ind. Res. 2003, 62, 926–930. [Google Scholar]
- Wasewar, K.L.; Heesink, A.B.M.; Versteeg, G.F.; Pangarkar, V.G. Equilibria and Kinetics for Reactive Extraction of Lactic Acid Using Alamine 336 in Decanol. J. Chem. Technol. Biotechnol. 2002, 77, 1068–1075. [Google Scholar] [CrossRef] [Green Version]
- Wasewar, K.L.; Pangarkar, V.G.; Heesink, A.B.M.; Versteeg, G.F. Intensification of Enzymatic Conversion of Glucose to Lactic Acid by Reactive Extraction. Chem. Eng. Sci. 2003, 58, 3385–3393. [Google Scholar] [CrossRef] [Green Version]
- Belgodere, J.A. Liquid-Liquid Extraction of Volatile Organic Acids Using Specialty Surfactants. Master’s Thesis, University of Louisiana at Lafayette, Lafayette, LA, USA, 2016. [Google Scholar]
- Hand, D.B. Dineric Distribution. J. Phys. Chem. 1929, 34, 1961–2000. [Google Scholar] [CrossRef]
- Bachman, I. Tie Lines in Ternary Liquid Systems. Ind. Eng. Chem. Anal. Ed. 1940, 12, 38–39. [Google Scholar] [CrossRef]
- Liu, X.; Xu, D.; Diao, B.; Gao, J.; Zhang, L.; Ma, Y.; Wang, Y. Separation of Dimethyl Carbonate and Methanol by Deep Eutectic Solvents: Liquid–Liquid Equilibrium Measurements and Thermodynamic Modeling. J. Chem. Eng. Data 2018, 63, 1234–1239. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, L.; Gao, J.; Pratik, D.; Zhao, L.; Cui, Z. Liquid-Liquid Equilibrium for Ternary Systems of Ethyl Acetate/Isopropyl Acetate + 2,2,3,3-Tetrafluoro-1-Propanol + Water at 298.15, 318.15 K. J. Chem. Thermodyn. 2017, 106, 218–227. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, L.; Gao, J.; Zhang, Z.; Cui, Z. Measurement and Correlation of Liquid–Liquid Equilibrium for the Ternary System 2,2,3,3,4,4,5,5-Octafluoro-1-Pentanol + Methanol + water at (298.15, 308.15, and 318.15) K. Fluid Phase Equilibr. 2016, 409, 377–382. [Google Scholar] [CrossRef]
Chemical Name | IUPAC Name | CAS No. | Mass Fraction 1 |
---|---|---|---|
Alcohol Ethoxylates (AE) | Alcohols, C10–16, ethoxylated | 68002-97-1 | >0.99 2 |
Alcohol Alkoxylates (AA1) | Alcohols, C10–12 ethoxylated propoxylated | 68154-97-2 | 0.9 to 1.00 3 |
Alcohol Alkoxylates (AA2) | Alcohols, C12–13 ethoxylated propoxylated | 70750-27-5 | 1.00 3 |
Lactic acid–water solution | - | - | 0.85 (lactic acid) |
Lactic acid | 2-hydroxypropanoic acid | 79-33-4 | 0.999 |
Water | Oxidane | 7732-18-5 | 0.99 |
Surfactant Phase (Phase I) Mass Fraction | Aqueous Phase (Phase II) Mass Fraction | ||||
---|---|---|---|---|---|
w1 | w2 | w3 | w1 | w2 | w3 |
0.0000 | 0.1561 | 0.8439 | 0.0000 | 0.9965 | 0.0035 |
0.0265 | 0.2676 | 0.7059 | 0.0456 | 0.9481 | 0.0064 |
0.1252 | 0.2748 | 0.5999 | 0.2051 | 0.7907 | 0.0041 |
0.2594 | 0.3526 | 0.3880 | 0.3077 | 0.6900 | 0.0023 |
0.2956 | 0.4366 | 0.2678 | 0.3265 | 0.6735 | 0.0000 |
D1 | D2 | S |
---|---|---|
0.581 | 0.282 | 2.059 |
0.610 | 0.348 | 1.756 |
0.843 | 0.511 | 1.650 |
0.905 | 0.648 | 1.397 |
Extractant 1 | Diluent | Distribution Coefficient, D1 | Extraction Efficiency, E(%) | Ref. |
---|---|---|---|---|
MIBK | - | 0.13 | 11.5 | [45] |
TOA/methylene chloride | Chlorobenzene | 0.20 | 16.7 | [41] |
TBA | MIBK | 0.21 | 17.4 | [41] |
Alamine | Octanol | 0.62 | 38.3 | [1] |
AE | - | 0.58–0.91 | 36.7–47.6 | [This study] |
TBP | - | 0.95 | 48.8 | [41] |
TOA/TPA | - | 1.20 | 54.5 | [46] |
TOA | Chlorobutane | 1.40 | 58.3 | [47] |
TOA | Methylene chloride/n-hexane | 1.45 | 59.2 | [47] |
TOA/methylene chloride | Heptane | 2.14 | 68.2 | [41] |
TOPO | Xylene | 2.20 | 68.8 | [48] |
TOA/methylene chloride | Hexane | 2.52 | 71.6 | [41] |
Alamine 336 | Chloroform | 5.30 | 84.1 | [45] |
Alamine 336 | MIBK | 8.30 | 89.2 | [45] |
Trilauryl amine | Xylene | 8.30 | 89.2 | [45] |
TOA | Chloroform | 9.44 | 90.4 | [41] |
Alamine 336 | Oleyl alcohol | 13.00 | 92.9 | [49] |
Alamine 336 | Decanol | 23.37 | 95.9 | [50] |
Alamine 336 | Octanol | 25.95 | 96.3 | [51] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguda, R.; LeBoeuf, S.; Stelly, C.; Bonilla, S.; LeBlanc, B.; Holmes, W.; Hernandez, R.; Zappi, M.E.; Revellame, E.D. The Potential of Non-Ionic Surfactants for Extraction of Lactic Acid from Aqueous Solution. Appl. Sci. 2020, 10, 5315. https://doi.org/10.3390/app10155315
Aguda R, LeBoeuf S, Stelly C, Bonilla S, LeBlanc B, Holmes W, Hernandez R, Zappi ME, Revellame ED. The Potential of Non-Ionic Surfactants for Extraction of Lactic Acid from Aqueous Solution. Applied Sciences. 2020; 10(15):5315. https://doi.org/10.3390/app10155315
Chicago/Turabian StyleAguda, Remil, Shayla LeBoeuf, Cody Stelly, Samantha Bonilla, Brandon LeBlanc, William Holmes, Rafael Hernandez, Mark E. Zappi, and Emmanuel D. Revellame. 2020. "The Potential of Non-Ionic Surfactants for Extraction of Lactic Acid from Aqueous Solution" Applied Sciences 10, no. 15: 5315. https://doi.org/10.3390/app10155315
APA StyleAguda, R., LeBoeuf, S., Stelly, C., Bonilla, S., LeBlanc, B., Holmes, W., Hernandez, R., Zappi, M. E., & Revellame, E. D. (2020). The Potential of Non-Ionic Surfactants for Extraction of Lactic Acid from Aqueous Solution. Applied Sciences, 10(15), 5315. https://doi.org/10.3390/app10155315